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Abstract. If X is a Banach space and C C X a convex subset, for z** € X** and A C X** let
d(z**,C) = inf{||z** — z|| : € C} be the distance from z** to C and d(A, C) = sup{d(a,C) :
a € A}. Among other things, we prove that if X is an order-continuous Banach lattice and
K is a w*-compact subset of X** we have: (i) d(co® (K),X) < 2d(K,X) and, if K N X is
w*-dense in K, then d(co® (K),X) = d(K,X); (ii) if X fails to have a copy of £1(X;), then
d(c®”” (K), X) = d(K, X); (iii) if X has a 1-symmetric basis, then d(co® (K), X) = d(K, X).

1. Introduction. If X is a Banach space, let B(X) and S(X) be the closed unit ball
and unit sphere of X, respectively, and X* its topological dual. The weak-topology of X
is denoted by w and the weak*-topology of X* by w*. If C' is a convex subset of X**, for
¥ € X** and A C X**, let d(2z**,C) = inf{||2** — x| : € C'} be the distance from z**
to C and d(A, C) = sup{d(a,C) : a € A}. Observe that: (i) d(co(A),C) = d(co(A),C) =
d(A, C) where co(A) is the convex hull of A; (i) if X+ = {z € X***: 2(z) =0, V& € X}
and @ : X** — X" is the canonical quotient mapping, then:

X
d(@™, X) = sup{e(a™) : 2 € S(X1)} = |Qz™"]|.

With this terminology, the Krein-Smulian Theorem (see [3, p. 51]) states the following:
if X is a Banach space and K C X** a w*-compact subset such that CZ(K, X) =0 (thus,
K is a weakly compact subset of X), then d(co® (K),X) = 0, that is, co® (K) c X
and 0" (K) = co(K) is also a weakly compact subset of X (Go(K) = || - ||-closure of
co(K) and @" (K) = w*-closure of co(K)). So, in view of this situation, we can pose
two natural questions:
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(A) If K C X** is a w*-compact subset, does the equality d(co® (K), X) = d(K, X)
always hold?

The answer to this question is negative. In fact, we constructed (see [5], [7]) a Banach
space X such that: (i) there exists a w*-compact subset H C B(X**) such that H N X
is w*-dense in H, d(H,X) = 5 and d(@™ (H),X) = 1; (ii) there exists a w*-compact
subset K C B(X**) such that d(K, X) = 3 and d(@w"" (K), X) = 1.

(B) Does there exist a universal constant 1 < M < oo such that always X has M-
control inside its bidual X**, that is, d(co® (K),X) < Md(K, X) for every w*-compact
subset of X**?7

The answer to this question is affirmative. In [5] we proved the following result, which
extends the Krein-Smulian Theorem: if K C X** is a w*-compact subset and Z C X
a subspace of X, then d(co® (K),Z) < 5d(K, Z) and, if Z N K is w*-dense in K, then
d(e"" (K), Z) < 2d(K, Z). So, in view of these results we have: (i) the universal constant
M of our extension of the Krein-Smulian Theorem satisfies 3 < M < 5; (ii) for the
category of w*-compact subsets K C X** such that X N K is w*-dense in K, the constant
M is exactly 2.

Although the answer to question (A) is, in general, negative there are many Banach
spaces X for which d(co® (K), X) = d(K, X). This is the case (see [5]), for instance, if
01 ¢ X*, if the unit ball B(X*) of the dual X* is w*-angelic (for example, if X is weakly
compactly generated (WCG) or weakly Lindel6f determined (WLD)), if X = ¢4 (I), if K
is fragmented by the norm of X™**, etc.

In order to find classes of Banach space with 1-control in its bidual or, at least, a
better control than in the above general case, we examine in this paper the class of
Banach lattices. First, we have the following remarks:

(a) In [7, Prop. 10] we have constructed a Banach lattice X and a w*-compact subset
K C B(X**) such that d(K,X) = 3 and d(co”” (K), X) = 1. So, concerning the control
inside the bidual, the class of Banach lattices behaves as in the general case.

(b) In [6] we proved that if ¢ is an Orlicz function, I an infinite set and X = £, (1)
the corresponding Orlicz space, equipped with either the Luxemburg or the Orlicz norm,
then for every w*-compact subset K C X** we have d(co® (K),X) = d(K, X) if and
only if ¢ satisfies the Ay condition at 0, that is, if and only if £,(I) has a 1-symmetric
basis.

In view of these results it is natural to ask the following questions. If X is a Banach
space with a 1-symmetric basis, does X have 1-control inside X**? What happens if
X is an order-continuous Banach lattice? The purpose of this note is to consider these
problems. Among other things, we prove that if X is an order-continuous Banach lattice
and K is a w*-compact subset of X** then: (i) d(co® (K), X) < 2d(K, X) and, if KN X
is w*-dense in K, then d(co® (K), X) = d(K, X); (i) if X fails to have a copy of £1(Ry),
then d(co” (K), X) = d(K, X); (iii) if X has a 1-symmetric basis, then d(co® (K), X) =
d(K, X).

Our notation is standard as in the books [9],[10]. | A| denotes the cardinality of a set A,
wy the first uncountable ordinal and 8; = |w;|. Let X be a Banach space. If A is a subset
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of X, then [A] is the subspace generated by A and [A] the closure of [A]. The Banach space
X is said to be weakly compactly generated (for short, WCG) if there exists a w-compact
subset W of X such that X = [IW]. The Banach space X is said to have M -control inside
its bidual X** if d(co® (K), X) < Md(K, X) for every w*-compact subset K of X**. The
notions (countable or uncountable) of 1-unconditional decomposition, 1-unconditional
basis, 1-symmetric basis and transfinite basis can be found in [9] and [12]. Concerning
the notions of Banach lattices, order-continuity (for short, o-continuity), etc., let us refer

the reader to the books [10] and [11].

2. The structure of X, X* and X** when X = )  _,®X,. Let us consider the
structure of X, X* and X** when X is a l-unconditional direct sum X = 3" _, &X,
of a family of Banach subspaces {X, : « € A} of X.

DEFINITION 1. A Banach space X is said to be an 1-unconditional direct sum of a family
of Banach subspaces {X, : @ € A} of X, for short, X = > ., ®X, l-unconditional,
when X = [UpeaXs] and, if z, € X,,64 = 21, a € A, and A is a finite subset of A,

then [ > e 4 €aall <113 0ea Zall:
If X =5 c4®X, is a l-unconditional direct sum, then

(i) For each subset A C A there exists a projection P4 : X — X such that ||P4|| =1
and Pao(X) = > c4®Xa-

(i) Every x € X has a unique representation of the form z =} _ , x, with z, €
X, such that the subset {a € A : z, # 0} is countable, the above series converges
unconditionally and || 4 €a®all = ||z, where e, = £1, Va € A.

(iii) If u € X™*, the a-th coordinate u, of v will be the restriction u, :=u [ X, € X
of u to X,,. We will identify « with the family (uq)aea of its coordinates.

We consider each dual X canonically and isometrically embedded into X* as follows.
If P, : X — X, is the projection associated to X,, then PX(X}) is a subspace of
X* isometric to X%. We identify X with P(X*). Consider in X* the closed subspace

Yo := [Uaca X], which is actually the 1-unconditional direct sum of the closed subspaces

{X3 :a€ A}, that is, Yy = > 4 ® X, 1-unconditional. Let Y be the dual of Y.
Fact 1. Yy can be embedded canonically and isometrically into X™**.

Indeed, if z € Y, for each a € A let z, := z | X be the a-th coordinate of z and
identify z with the family (z4)aca of its coordinates. In order to embed Y into X**,
define the mapping h : Y — X** as follows:

Vze Yy, Yue X*, h(z)(u) = Z Za (U ).
acA
Concerning the definition of A~ we have to check several things, namely:

(A) First, we need to be sure that the series ) 4 za(uq) converges. If Ay C A is a
finite subset, then Zaer Uq € Yy and, if ¢, = +1, Vo € A, then

Z Za(Eqlia) = z( Z eaua> < Izl - H Z €alla
acA

ac€Ay acAy 0

<=l - flull-
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Thus we get: (i) [{a € A : 24(ua) # 0} < Ro; (ii) the series ) . 4 2a(ua) converges
absolutely and, moreover, ) . 4 Za(ua) < ||2]|-[Jul|. Therefore h(z) € X** with ||h(2)| <
lIz|l, Yz € Yy, and h is a continuous linear mapping such that ||a]] < 1.

(B) Let us see that h is an isometry. As h(z) [ Y = 2, Vz € Y}, we have

[P(2)[| = sup{((2),u) : w € B(X")} = sup{(z,u) : u € B(Yo)} = |||
On the other hand, ||h(2)|| < ||z||. So, h is an isometry.

We know that the subspace Y55 = {# € X** : (2,y) = 0, Vy € Yo} of X** is
isometrically isomorphic to the dual (%)*

FacT 2. X** = h(Yy) & Ygh, that is, X** is the monotone direct sum of h(Yy) and Y.
Observe that this means that every z € X™* has a unique decomposition z = zy + z5 with
z1 € h(Yy) and 23 € Y- so that ||z|| > ||z1]| V|| 22]]-

Indeed, it is clear that h(Yy) N Ys- = {0}. Let z € X** and put w; := z | Y. Let us
see that z — h(w;) € Y. For every a € A and every v € X we have

(z = h(w1),v) = (z,0) = (h(w1),v)
=(z ] X2, v) = (wia,v) = (z | X2, v) — (2 | X1,v) =0.
Thus, X** = h(Yy)®Y;". Moreover the above direct sum is monotone because, if z =
21+ 22 € X** with 2z € h(Yy) and 23 € YOJ-, we have on the one hand
2] = sup{(z1 + 22, u) : w € B(Y0)} = sup{(z1,u) : u € B(Yo)} = ||z1]].

On the other hand, given € > 0, choose v € B(X*) such that ||z2] — § < (22, v). We know
that (21,v) = > c4 %1a(Va) (Where 214 1= 2z [ X)) so that there exists a finite subset
Ao C A'such that [ 3, c 4\ 4, #1a(va)| < 5. Thus, if u=v—3" c  va, then u € B(X™),

(22,u) = (22,v) and
Gl = | Y salwa)| = | D2 z1a(va)

acA ac A\ Ay

<

N ™

Hence
22]l = 5 < (22,v) = (22,u) < (21 +22,u) + § = (z,u) + 5 < ||z + 5.

As € > 0 is arbitrary, we get ||z2]| < ||z|| and so the direct sum X** = h(Yg)®Y5" is
monotone.

Finally observe that the canonical copy J(X) of X in X** is inside h(Y") although
J(X) # h(Yy) in general.

3. 1-unconditional direct sums of WCG subspaces. Let us investigate the con-
trol inside its bidual of a Banach space which is a 1-unconditional direct sum of WCG
subspaces. First, we need the following lemma.

LEMMA 2. Let X be a Banach space and K a w-compact subset of X*. Given z € B(X™**)
and € > 0, there exists © € X such that ||| <14 € and

Vk e K, z(k) —e <xz(k) < z(k)+e
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Proof. Without loss of generality, we suppose that K is convex and symmetric with
respect to 0 (otherwise, pick €o(K U —K) instead of K). Consider the Banach space
Z = X®1R. Then Z* = X* @R and Z** = X** @ R. Let Hy := {(k,2(k)—§) : k€ K}
and Hy := {(k,2(k) + §) : k € K} be two w-compact convex disjoint subsets of Z* such
that, if H = Hy — Hy, then H C Z* is a w-compact convex subset (and so a W*—compact
subset) of Z* fulfilling that H N B( §) = 0. Thus, if we pick p > 0 with 5= < p < 1,
then HNB(0; &) = 0. By the Hahn- Banach Theorem there exists a vector ¢ E B(Z) such
that (h,¢) > &, Vh € H.If o = 29 +to, with 29 € X, to € Rand |¢|| = [[zo| + [to] < 1,
then for every (ki,2(k1) — §) € Hy and every (ko, z(k2) 4 §) € Ha we have

P(ka 2(k) + ) = @l(kr. 2(k) — 5)) = 5
Thus
(3.1) zo (k) + toz(k2) + to§ > xo(k1) +toz(k1) — t02 + '026

whence choosing k1 = ky in (3.1), we get tge > &7, that is, § <o < 1. So, |lzof <1 - 5.
Putting k1 = 0 in (3.1) we get

Vk € K, ao(k) + toz(k) + tos > —toz + £
Thus . )
t —
k€ K, ——ao(k) < 2(k) + 5 TP < a(k) + e
tO 2 to

On the other hand, putting k2 = 0 in (3.1) we obtain

t
Vk € K, Fe > wolk) +tox(k) - tog + %.
Thus ) )
t —
Vk e K, 2(k) —e < 2(k) — =222 <~ 50(k)
2 1y to
Therefore, if x = —%xo, then z satisfies the statement of the Lemma. m

PROPOSITION 3. Let X be a Banach space, which is a 1-unconditional direct sum of a
family {X, : o € A} of WCG Banach spaces, we say, X =3 ., ®Xy. Then

(A) X has 2-control inside the bidual X**.
(B) If the spaces X, are reflexive and X := ) ., ®e, Xo (that is, X is the direct
£1-sum of the family {X, : o € A}), then X has 1-control in the bidual X**.

Proof. We adopt the notation of the above paragraphs. So, let Yy = > . , ®X, X** =
h(Yy) & Y+, etc. Observe that in the case (B) we have Yo = > . 4 @, X7, that is, Yy is
the direct co-sum of the subspaces {X* : o € A}. Let K, be a w-compact subset of X,
such that 0 € K, and X, = [K,], a € A. In the case (B) we pick K, := B(X,). Suppose
that there exist a w*-compact subset KX C B(X™**) and some real numbers a,b > 0 such
that

(1) d(co”" (K),X) > b > 2a > 2d(K, X) > 0 in the case (A).
(2) d(@™ (K),X) >b>a>d(K,X) >0 in the case (B).
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By Lemma 12 of [5] we have

Fact. There exist 1 € S(X***)N X+ and a w*-compact subset ) # H C K such that
for every w*-open subset V' of X** with V N H # () there exists £ € E“’*(V N H) such
that (1, &) > b.

Now we proceed step by step:

STEP 1. By the Fact there exists a vector & € @" (H) such that (¢,&,) > b. Since
B(X*) is w*-dense in B(X***), we can find a vector 2} € B(X*) such that (£;,27) > b
and another vector 7, € H so that (ni,x}) > b. Let n; = v; + w; with v; € h(Yy) and
wy € Y- Then a > d(n1, X) > d(m, h(Yg)) = ||w1|, whence

<1}1,J)>'1(> = <’l71,])>'1(> - <w1’x31‘> >b—a.
As (v1,27) = D qca V1a(Z],) > b—a, we can find a finite subset A; C A such that, if 3
is the restriction of z7 to Y c 4 ©®Xa (s0y1 = Y 4, Tia € B(Q_nca, ®Xa) C B(Y0)),
then (n1,11) = (v1,y1) > b—a.
STEP 2. Let V4 = {u € X** : (u,y1) > b — a}, which is a w*-open subset of X** with
ViNH # 0, because 1 € V4 N H. By the Fact there exists & € co?” (Vi N H) with
(1h, &) > b. Let 0 < 2e; < 271 A ((, &) — b) A (a(d(K, X))~! — 1). Consider in X** the
subset Ly := {2} U (3_,c4, Ka). Clearly Ly is a w-compact subset of X**. Moreover, in
the case (B), we have B(3_ . 4, ®1Xa) C L1. By Lemma 2 there exists a vector 23 € X*
such that ||z3]| <1+ ¢; and

Vk e Ly, <’L/J,k> —€6 < <k,$;> < <w,k> + €.

In particular, (&, 25) > b+e€; and (x5, k)| < e <272 Vk € > aca, Ka- Since (§2,73) >
b+ €1, we can choose 12 € Vi N H such that (ne,z3) > b+ € and also (n2,11) > b—a
because 12 € V1. Let o = v + we with vy € A(YS) and we € YOL. Observe that
hwall = d(m, h(Y)) < dina, X) < d(K, X) < a and [(w,a3)] < (1+e)d(K, X) < a.
Now we choose y2 and As in the cases (A) and (B):

CAseE A. We have

(v2, 3) = (n2, 23) — (w2, x3) = (N2, x3) — [{w2, 23)| > b —a.
Thus, as (vo,23) = Y, c4(V2q,25,) > b — a, we can find a finite subset Ay of A
satisfying A; C Az C A such that, if yo is the restriction of a3 to ZO&GAQ ®X, (so

Yo = ZaeA2 x5, € ZO&GAQ @X* C Yy with ||yo|| < 1+4€1), then (2, y2) = (va,y2) > b—a.
Observe that for every k € (J,c 4, Ko we have ¢(k) = 0, whence

[(y2, k)| = [{(x5, k)] < € < 2-2.

CAsE B. Let 91 := a3 | ZaEAl @1 X, (that is, y21 = ZaeAl x3,) and yoo = x5 — vo1.
Since [(z3,k)] < €1, Yk € Y ca Ko, and B3, cx, ®1Xa) C Y nca, Ka, then

21| < 1. So

(v2,722) = (2, ¥3) — (w2, 3) — (V2,721) = (M2, 25) —€1 —a>b—a.
Since (v2,722) = > nea\ 4, (V20,25,) > b—a, we can find a finite subset A> C A\ A; such
that, if yo is the restriction of 235 t0 3~ 4, ®Xa (50 Y2 = D cu, Toa € Dnea, DX5 C Yo
with ||y2|| < 1+ €1), then (12, y2) = (ve,y2) > b — a.
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Further we proceed by iteration. We obtain the sequences {yx : k > 1} C Yo, {n :
k>1} C K and {Ay : k > 1}, Ap C A, fulfilling the following conditions:
CASE A. In this case we have:

(i) The finite subsets Ay of A satisfy A, C A4 for k> 1.

(i) v € Dnea, ©Xa C Yo, [lykll <1+ €x—1, k > 2, and (n;,yx) > b—afor j >k
with 7,k € N.

(iii) For every h € U, ¢, Ko we have [(yxi1,h)| < 27k=10 vk > 1.

Let Ag := Up>14,, Xo = Zaer ®X, and let Py : X — X, be the canonical
projection on Xy, with norm || Py|| = 1. The space X admits the monotone decomposition
X =Xy gXl where X7 := Z Xa.

acA\Agy
Therefore we get the following monotone decompositions
X*= X5 @ XP, X* = Xg" @ X7, X = X3 @ X7, ete.,

with projections Py : X — Xo, Pg: X* — X, Py* : X** — X§*, Pi* : X** — X,
etc. Observe that Py (yi) = yi, Yk > 1, that is, y, € X = PJ(X*), Yk > 1. Let 19 be a
w*-cluster point of the sequence {ny : k > 1} in X**. Obviously 7y € K. Moreover, since
(nj,ye) > b—a, Vj >k, we get (no,yx) > b—a, Yk > 1. Let ¢y be a w*-cluster point of
{yr : k > 1} in X***. Then

(i) po € B(X™*). Actually g is in PJ**(X***) = X§**, that is, P;**(v0) = 0.

(ii) By construction ¢g,x, = 0, Yoo € Ag. Thus ¢g € X", because Uaeu, Ko gener-
ates Xjg.

(iii) (@0, m0) > b — a because (g, yx) > b —a, Yk > 1.

Let W := Pj*(K) C B(X{*), which is a w*-compact subset of Xi*, and wg = P;*(no).
Obviously wg € W.

Cram 1. d(wg, Xp) < a.
Indeed, let x € X be arbitrary. Then
d(wo, Xo) < [lwo — P*al| = |P5*(no) = Pi*e| < no — |l
That is, d(wo, Xo) < d(no, X) < d(K, X) < a.
CLaM 2. d(wg, Xo) > b —a.
Indeed, as o € B(X*™*)N Xg and
{0, wo) = (o, By o) = (Fy™ o, m0) = (po,m0) > b—a,

we conclude that d(wg, Xo) > b — a.
As a < b—a we get a contradiction which proves the statement in the case (A).

CAskE B. In this case we have:

(i) The finite subsets Ay, k > 1, of A are disjoint.
(i) yx € ZaeAk BoXs C Yo, llykll £ 1+ €1, k> 2, and (nj,yx) >b—afor j >k
with j,k € N.
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(iii) For every n € N we have || Y1, y;|| < 2.

Let 19 be a w*-cluster point of the sequence {n; : k > 1} in X**. Obviously 7y € K.
Moreover, since (n;,yx) > b —a, Vj > k, we get (no,yx) > b —a > 0, Yk > 1. Thus
(Mos Y iey yi) = n(b—a), Vn > 1. Since || Y1, y;|| <2, Vn > 1, we get a contradiction
which proves the statement (B). m

PROPOSITION 4. Let X be a Banach space, which is the 1-unconditional direct sum X =
Y oaca BXa of the family {X, : a € A} of WCOG Banach spaces. If K C X** is a
w*-compact subset such that K N X is w*-dense in K, then d(co® (K),X) = d(K, X).

Proof. The proof is analogous to the one of case (A) of Proposition 3. For reader’s
convenience we give the details of the proof. Suppose that there exists a w*-compact

subset K C B(X**) such that
d(@" (K),X)>b>a>d(K,X)>0.
By Lemma 12 of [5] we have:

FacT. There ezist ¢ € S(X***) N X+ and a w*-compact subset ) # H C K such that
for every w*-open subset V of X** with VN H # ( there exists £ € @w*(V N H) with

(,6) > b.

STEP 1. By the Fact there exists a vector & € @ (H) such that (¢,&;) > b. Since
B(X*) is w*-dense in B(X***), we can find a vector x] € B(X™) such that (&, z7) > b.
Let Vi = {u € X**: (u,x}) > b}, which is a w*-open subset of X** such that ViNH # 0
and so, for the sake of density, also V1 N K NX # (). Thus there exists a vector n; € KNX
such that (n;,2z7) > b. Since 11 € X, the support A; = supp(m) = {a € A: 14 # 0} of
71 is countable, we say, A; = {a1, :n > 1}

STEP 2. As Vi N H # (), by the Fact there exists a vector &3 € cov” (Vi1 N H) such that
(1,&) > b. Let Ly := Uijzl K., and €1 := 27 'A(4p(&2) —b). As L1 U{&s} is a w-compact
subset of X**, by Lemma 2 there exists a vector 25 € X* such that ||| <1+ ¢; and

Vk e LU {52}, <1/),]€> —€6 < <k,l’;> < <’l/1, k> + €1.

In particular (¢o,73) > b and |(z3,k)| < 271, Vk € Ly. As (&,23) > b and & €
v (Vi N H), if we put Wy := {u € X**[(u,23) > b}, then Wo N Vi N H # ) and,
for the sake of density, also Wo N V3 N K N X # 0. Denote V3 := Wy NV} and choose
n2 € Van K N X, which satisfies zf(n2) > b, ¢ = 1,2. Since 12 € X, the support
As = supp(n2) = {a € A : 124 # 0} of 12 is countable, we say, Az = {ag, : n > 1}.

Further we proceed by iteration. We get the sequences {x} : k > 1} C X*, {np : k >
1} CKNnX, {Lg:k>1} and {Ay : k > 1}, such that

(a) Ag := supp(nx) = {a € A : npo # 0} is the support of 1, and is countable, say,
A ={agn :n>1}, Vb > 1.
e subsets Ly = J; ._, K,,, are w-compact subsets o , > 1.
b) The subsets L b K, bsets of B(X), Vk > 1
(¢) llzgqll < 1+ ek, (my,25) > b, j > k > 1, and for every h € L we have
[(@fy 1, )] < 27F k> 1.
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Let Ag := U,>1 An, Xo = X qeu, ®Xa and let Py : X — Xo be the canonical
projection, with norm || Py|| = 1. Observe that X, is WCG because it is a countable sum
of WCG Banach spaces. The space X admits the monotone decomposition

m
X = Xy ® X; where X; := Z X,.
ac A\ Ay

Thus we get the monotone decompositions
m m m
X=X Xy, X" =X{"d X", X =X o X, etc.,

with projections Py : X — Xy, Pj : X* — X§, Pi* « X** — X§*, Pi™ « X — X§*,
etc. Observe that Py(nx) = nx € Xo, Yk > 1. Let ny be a w*-cluster point of the
sequence {ny : k > 1} in X**. Obviously 19 € X§* N K because X;* is w*-closed in X**

(actually X3* = X, ) and {n : k > 1} € Xo N K. Since (z¥,m) > b, Vi < k, we get
(o, xF) > b, Vi > 1, and also (o, Pyzf) > b, Vi > 1, because (no, Pyzf) = (Pg*no,z}) =
(o, x}) > b. Let o be a w*-cluster point of {Pjz} : k > 1} in X***. Then

(i) wo € B(X**). Actually o is in P (X**) = X¢**, (that is, P3**(v0) = ©o)
because X§** is w*-closed in X*** and {Pjz} : k > 1} C X§ C X{**.

(ii) Since for every k > 1 and every h € Ly we have

[(Po (xh41), )] = {2k 0, Po(W)] = [{agqa, W) < 278,

we get o € X

(iil) (o, mn0) > b because (1o, P§(x%)) > b, Vk > 1.

Let W := Py*(K) C B(X{*). W is clearly a w*-compact subset of Xj*. Let wg =
P;*(no). Obviously wy € W.
Cram 1. d(wp, Xg) < a.

Indeed, first as W = Pi*(K), Xo = Pi*(X) and ||P;*| = 1, we have d(W, X,) <
|1P;*||d(K, X) < a. Now it is enough to observe that wy € W.

Cram 2. d(wg, Xo) > b.
Indeed, since g € B(X***) N X4 and

Hkk

(w0, w0) = (w0, Pg™1m0) = (Pg
we conclude that d(wg, Xo) > b.
As a < b we get a contradiction which proves the statement. m

‘/70,770> = <<)007770> > ba

Let X be a Banach space which admits the decomposition X =} ., ®X, as a
l-unconditional direct sum of closed subspaces X,. We say that the decomposition X =
Y aea ©Xq is of countable type if for every u € X* the support supp(u) := {a € A : uy #
0} of uis countable, (uq)ae.4 being the set of coordinates of u, that is, uq := u;x, = uoP,,
where P, : X — X, is the canonical projection. For instance, if I is an infinite set,
M : R — [0,+00] an Orlicz function such that its complementary Orlicz function M*
(see [2], [9, Chapter 4]) satisfies M*(t) > 0 for ¢ > 0, then the Orlicz space hy (1) =
{f eRI 3,0, M(fi/\) < 00,YA > 0} has countable decomposition (with respect to
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the canonical basis of hps(I)), because every element of its dual hps(I)* := €y« (I) has
countable support.

LEMMA 5. Let X be a Banach space which admits a decomposition X =3 . ®X, as
a 1-unconditional direct sum of closed subspaces. The following statement are equivalent:

(1) The decomposition X =3 ., ®X, is not of countable type.

(2) X has an isomorphic copy of £1(Ry) disjointly disposed with respect to the decom-
position X =3 -, ®Xa, that is, there exists a subset Ay C A with cardinality | A1 = Ny
and for each a € Ay an element v, € X,, so that the family {v, : @ € A1} is equivalent
to the canonical basis of £1(Ry).

Proof. (1) = (2). If the decomposition X =) _, ©X, is not of countable type, there
exists some u € X* such that the subset Ay := {& € A : uy # 0} satisfies | 4| > Ny,
where u, 1= u;x, =uo P, and P, : X — X, is the canonical projection. By passing to
a subset if necessary, we can find a real number € > 0, a subset A; C Ag with |A;] =8y
and a family {v, : @ € A;} with v, € B(X,,) so that (u,ve) = (U, Va) > €. From this we
can prove that the family {v, : @ € A;} is equivalent to the canonical basis of ¢1(X;) and
generates a copy of £1(X1), which is disjointly disposed with respect to the decomposition
X = ZQGA O Xa-

(2) = (1). Let A; C A be a subset with cardinality |.4;| = 8y and for each o € A; let
v be an element of X, so that the family {v, : @ € A;} is equivalent to the canonical
basis {e, : @ € Ay} of £1(Ay). Let T : ¢1(A;) — X be the isomorphism between
¢1(A;) and the closed subspace generated by {v, : a € A;} so that T'(e,) = v,. Since
T* : X* — £+ (A1) is a quotient mapping and so T*(X*) = loo (A1), if wo € loo(Ay) is
such that wo(a) =1, Va € Aj, there exists a vector u € X* such that T*(u) = wg. Then
for every a € A; we have

(U, va) = (u,Tey) = (T u,eq) = (wo, €q) = 1,

and this proves that u is an element of X* that does not have countable support with
respect to the decomposition X =3 ., ®X,. =

PROPOSITION 6. Let X be a Banach space that admits a decomposition of countable type
X =31 ®X; as a 1-unconditional direct sum of WCG closed subspaces {X; :i € I}.
Then X has 1-control in its bidual X**.

Proof. If I is a countable set, then X is a countable direct sum of WCG Banach subspaces
and, so, it is WCG. Thus the statement follows in this case from [5, Cor. 4]. So, suppose
in the sequel that I is uncountable. We assume that the statement is not true and we are
going to get a contradiction. Let K be a w*-compact subset of X** and z, € @o® (K)
a vector such that d(zp,X) > b > a > d(K,X). Choose ¢y € B(X***) N XL such
that (1, 29) > b. We adopt the following notation. For each i € I let K; C X; be a
w-compact subset of X; which generates X;. If J is a subset of I, let X (J) denote the
subspace X (J) :=>,.; ®X; (so X = X(I)) and let P; denote the canonical projection
P;: X — X(J) with norm ||Py|| = 1. We identify the subspace Pj(X™) of the dual X*
with X (J)*.
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STEP 1. Since (1, z9) > b, there exists 7 € B(X™*) such that (zg,27) > b (because B(X™*)
is w*-dense in B(X***)). By hypothesis the support supp(z}) ={a € T:0#z],} =1
of 27 is countable. Let J; := {a1; : j > 1} and [; := Jy. Thus, if Pr, : X — Zz’eh DX,
is the corresponding canonical projection, then P; (z7) = 27 (that is, #7 € X(I1)*) and
moreover
(Pr; (20), 1) = (20, P, (27)) = (20, 27) > D.

STEP 2. Let K,,, be the w-compact subset that generates X,,,, and put Ly := {29} U
K.,,,, which is a w-compact subset of X**. Let e = 272 A ((1,29) — b). By Lemma 2
there exists a vector x5 € X™* such that ||z3| <1+ ez and

Vk € Lo, <’L/),k> — €2 < <k,£17;> < <1/),]€> + €2.
In particular, (zg,23) > b and [(k,23)| < 272, Vk € K,,,. Let Jo := supp(z3) be the
support of x5, which is countable by hypothesis. Put Jy := {ag; : 7 > 1} and I := J1UJs.
Then Py (z}) =z} € X(I2)*, i = 1,2, and moreover
<P;;*(Zo),$f> = <Z07PI*2(CC:)> = <Z0’w;'k> >b,i=1,2.

StEP 3. Let L3 := {20} U (U{Ka,; : 1 < 4,5 < 2}), which is a w-compact subset of
X**. Let €3 = 273 A ({1, 20) — b). By Lemma 2 there exists a vector = € X* such that
lz%]] <1+ €3 and

Vk € Ls, <’L/),k> — €3 < <k,£17§> < <1/),]€> + €3.

In particular, (zo, #3) > band [(k, 2%)| <272, Vk € K,,;, 1 <4,j < 2. Let J3 := supp(z3)
be the support of 3, that is countable by hypothesis, and put J3 := {ag; : j > 1} and
I3 := JyUJy U J3. Then Py (z) = 2} € X(I3)*, i = 1,2,3, and moreover

(Pr)(20), 7)) = (20, Pr,(x7)) = (20, 7]) > b, i =1,2,3.
Further we proceed by iteration. Let Iy := J,,~, In. Observe that Iy is a countable

subset of I such that P; (z}) = 2} € X(Ip)*, i > 1. Let ¢ € B(X™™) be a w*-cluster
point of the sequence {z : n > 1} in X***. Then

() Since X (Ip)*** is a w*-closed subset of X*** and z € B(X (Ip)*) C B(X (1p)***),
n > 1, we get ¥y € B(X(lp)**) and so P;** (o) = 1o-

(B) Since |(u,x} )] <2771 Vu € K,,,, 1 <i,j < n, and the subset Ui o1 Ko
generates the space X (Io), we conclude that ¥, x(z,) = 0, that is, ¢ € B(X(Io b.

(7) Since (z9,x5) > b, Vk > 1, then (g, z9) > b.

Let H := P;*(K) and wy := P;*(20). Clearly, H is a w*-compact subset of X (Iy)**
(for the topology o (X (Io)**, X (Io)*) and wq € &% (H).

CLam 1. d(H, X (Ip)) < a and d(wo, X (I)) < a.

Indeed
d(H, X (lo)) = d(Pp(K), P (X)) < [P [|d(K, X) < a.

By [5, Cor. 4] we have d(wo, X (Ip)) < a, because X (Ij) is a countable direct sum of
WCG spaces and so it is WCG.

CLAaM 2. d(wg, X (Ip)) > b.
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Indeed, by () we have
(1o, wo) = (Yo, Pry (20)) = (Pr, " (¥0), 20) = (Y0, z0) = b.
As g € X(Ip)* and |[1)o]| < 1, we get d(wo, X (Io)) > b.
Since b > a, we obtain a contradiction which proves the statement. m

PROPOSITION 7. Let X be a Banach space that has a transfinite basis {es : 1 < a < wi}
with constant 1 (that is, if 1 < a1 < ag < -+ < Qpgm < w1 and (\)4™ € R"™™ then
27 Neas || < 13205 Niea, ||) so that every z € X* has countable support. Then X
has 1-control in its bidual X**.

Proof. This proof is analogous to the one of Proposition 6. We suppose that the statement
is not true and we are going to obtain a contradiction. Assume that there exist a w*-
compact subset K C X** and a vector z € co® (K) such that d(zo,X) > b > a >
d(K, X). Choose a vector ¢ € B(X**)N X" such that (1), z0) > b. We adopt the following
notation. If 3 < wi, let X (/) denote the subspace X (8) := ;5 ®[ei] (s0 X = X (w1))
and let P be the canonical projection Pz : X — X (8) with norm ||Pg|| = 1. We identify
the subspace P3(X™) of X* with X(8)*.

STEP 1. Since (1, z9) > b, there exists 7 € B(X™*) such that (zg,27) > b (because B(X™*)
is w*-dense in B(X***)). By hypothesis the support of z7 is countable and so there exists
B1 < wp such that supp(z}) C [1,61). Thus, Pj (27) = 27 (that is, 27 € X(61)*) and
moreover

(P5, (20), x1) = (20, P3, (21)) = (20,27) > b.

STEP 2. Let [1,61) = {a1; : j > 1}. Since (¢, z9) > b and (¢, eq,,) = 0, there exists
x5 € B(X™) such that (z9,23) > b and (23, e,,,) = 0. By hypothesis the support of 3
is countable and so there exists 31 < 2 < w;y such that supp(z3) C [1,32). Thus, for
i = 1,2, we have Pj (z}) = x} (that is, 2} € X(f2)*) and moreover
(P, (20), i) = (20, Pp, (7)) = (20,27) > b.

STEP 3. Let [1,#2) = {az; : j > 1}. Since (¥, z9) > b and (¢, eq,;) =0, 4,5 = 1,2, there
exists x5 € B(X™*) such that (29, 23) > band (3, e4,,) =0, i,j = 1,2. By hypothesis the
support of z% is countable and so there exists 82 < 83 < w; such that supp(z}) C [1, 83).
Thus, for i = 1,2, 3, we have Pj_ (xF) = 7 (that is, 7 € X(f3)*) and moreover

(P (20), 27) = (20, P3, (7)) = (20, 27) > b.
Further we proceed by iteration. Let 8y := sup{f, : n > 1}, that satisfies §y < w; and

Pj (x7) = o}, and so x7 € X(Bo)*, i > 1. Let )9 € B(X™*) a w*-cluster point of the
sequence {z¥ :n > 1} en X***. Then

(c) Since X (8p)*** is a w*-closed subset of X*** and z} € B(X(00)*) C B(X(5o)***),
n =1, we get ¢o € B(X(8o)*™) and so P53 (o) = vo.

(B) Since (), ,1,¢€q,;) = 0, V1 < i,j < n, and the family {e,,; : 1 < i,j} generates
the space X (), we conclude that 10, x(g,) = 0, that is, 1o € B(X(Bo)*4).

() Since (z9,xj) > b, Vk > 1, then (g, z9) > b.
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Let H := P3*(K) and wq := P}*(20). Clearly, H is a w"-compact subset of X (fo)*"
and wy € ¥ (H).
Cram 1. d(H, X (6o)) < a and d(wo, X (6o)) < a.
Indeed
d(H, X (Bo)) = d(P5; (K), P5;(X)) < || Pgr|d(K, X) < a.
By [5, Cor. 4] we get d(wp, X(80)) < a, because X (fy) is separable and so WCG.
Cram 2. d(wg, X(Bp)) > 0.
Indeed, by () we have
(tho, wo) = (Yo, Pg(20)) = (P, (¥0), 20) = (o, z0) = b.
As 1y € X (fo)" and |4 < 1, we get d(wo, X (Bo)) > b.

Since b > a, we obtain a contradiction, which proves the statement. m

PROPOSITION 8. Let X be a Banach space which is the transfinite direct sum of the
family {Xo : 1 < o < wi} of WCG subspaces, X = >, ®Xa, with constant 1
(that is, if 1 < a1 < ag <+ < Qpym < W1, Ta; € Xa, and (N)4™ € R™™ then
1320 Ao || < " A,

has 1-control in its bidual X**.

) so that every z € X* has countable support. Then X

Proof. The proof is analogous to the one of Proposition 7 by using the w-compact subsets
K, C X, that generate X, a < wi, and Lemma 2, as in Proposition 6. =

4. Application to the order-continuous Banach lattices. First we show that, if
X is an o-continuous Banach lattice, then X is a 1-unconditional direct sum of disjoint
closed ideals which are WCG. This result is well known (see [1]) but we give its proof for
the reader’s convenience.

LEMMA 9. Let X be an o-continuous Banach lattice with a weak unit ¢ > 0. Then X s
WCG.

Proof. It is well known (see [10, p. 28]) that the interval [0,e] ;= {z € X : 0 <z <e}isa
w-compact subset of X. Let us see that X = [[0, ¢]], that is, X is the closure of the space

generated by [0, ¢]. Pick a positive element 2z € X . Then ne Az T x for n — oo, whence
|z —ne Azl | 0 because X is o-continuous. So |J,,>,[0, ne] = J,>, n[0, €] is dense in the
positive cone XT. As X = XT — X1, we conclude that X is the closure of the subspace
generated by [0,¢e]. m

LEMMA 10. If X is an o-continuous Banach lattice, then X is the 1-unconditional direct
sum X =3 1 ®Xa of a family of closed ideals { X, : a € A} mutually disjoint, such
that each X, has weak unit and so it is WCG.

Proof. By [10, 1.a.9] X admits the expression X = ) _,®X, as a direct sum of a
family of closed ideals mutually disjoint {X, : @ € A} (so as a l-unconditional direct
sum), such that each X, has a weak unit. By Lemma 9 we get the statement. m
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PROPOSITION 11. Let X be an o-continuous Banach lattice. If K is a w*-compact sub-
set of X**, then d(co" (K),X) < 2d(K,X) and, if K N X is w*-dense in K, then
d@" (K),X) =d(K, X).

Proof. This result follows from Lemma 10, Proposition 3 and Proposition 4. =

PROPOSITION 12. Let X be an o-continuous Banach lattice that does not have a copy of
£1(Ny). Then X has I-control in its bidual X**.

Proof. Clearly, if X is an o-continuous Banach lattice that does not have a copy of
£1(Xy), then X admits by Lemma 5 and Lemma 10 a decomposition of countable type
X = ZaeA ®X, as a l-unconditional direct sum of closed ideals X, each having weak
unit. So, this result follows from Proposition 6. m

PROPOSITION 13. Let X be a Banach space with a I-unconditional basis {e; : i € I}
equivalent to the canonical basis of £1(I). Then X has 1-control in its bidual X**.

Proof. The proof is analogous to the one of part (B) of Proposition 3, putting X; =
[ei], i € I, and taking into account that X* and the subspace Y; of X* (see the notation
of Proposition 3) are canonically isomorphic to ¢ (I) and co(I), respectively. m

A Banach space X has a l-symmetric basis {e; : i € I} (see [12, p. 811]) whenever
{e; : i € I} is a l-unconditional basis of X and, moreover, {e; : i € I} is symmetric,
that is, for any two sequences {i,, : n > 1} and {j, : n > 1} of I, the basic sequences
{€;, : n > 1} and {e;, : n > 1} are equivalent. Of course, the canonical bases of
non-separable Orlicz spaces, Lorentz spaces, Orlicz-Lorentz spaces, etc., are 1-symmetric
bases.

PROPOSITION 14. Let X be a Banach space with a 1-symmetric basis. Then X has 1-
control in its bidual X**.

Proof. CASE 1. Suppose that every element of the dual X* has countable support. In
this case the result follows from Proposition 6.

CASE 2. Suppose that there exists a vector u € B(X*) whit uncountable support. By
Proposition 13 it is enough to prove the following claim.

CLAIM. If there exists a vector u € B(X*) with uncountable support, then the 1-sym-
metric basis {e; : i € I'} of X is equivalent to the canonical basis of £1(I).

Indeed, since supp(u) := {i € I : u(e;) # 0} is uncountable, we can find a real number
€ > 0 and an uncountable subset J C supp(u) such that |u(e;)| > €, Vi € J. Let us prove
that the family {e; : ¢ € J} is equivalent to the basis of £;(.J). Suppose that the basis
{e; : i € J} is normalized and choose a vector of the form >, ... Axei,, i € J. Let
er = £1 so that u(Aperes,) = [Meulei)| > €lAel, 1 <k <n. Then

Sz 3 e =] D wwenen,

1<k<n 1<k<n 1<k<n

Zlu( Z /\kﬁkeik)‘ze Z Ak |,

1<k<n 1<k<n
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and this implies that the family {e; : ¢ € J} is equivalent to the basis of ¢1(J). As the
basis {e; : i € I} of X is symmetric, finally we conclude that {e; : ¢ € I} is equivalent
to the canonical basis of ¢1(I), and this proves the Claim and completes the proof of the

Proposition. =
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