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Abstract. We study weighted function spaces of Lebesgue, Besov and Triebel-Lizorkin type
where the weight function belongs to some Muckenhoupt A, class. The singularities of functions
in these spaces are characterised by means of envelope functions.

Introduction. The purpose of this paper is to use the recently introduced concept of
growth envelopes and continuity envelopes in function spaces, respectively, in order to
characterise weighted spaces of type L,(R",w), B; ,(R",w) and F; (R", w) where w
belongs to some Muckenhoupt class A,. The idea to consider growth envelopes and con-
tinuity envelopes in (unweighted) function spaces originates from such classical results as
the famous Sobolev embedding theorem [36], or, secondly, from the Brézis-Wainger re-
sult [5] on the almost Lipschitz continuity of functions from a Sobolev space H;'m/p (R™),
1 < p < 0. Basically, the unboundedness of functions that belong to (classical) Sobolev
spaces W]f (R™), k € Ny, 1 < p < 0o, (and more general scales of spaces) is characterised.
n

By Sobolev’s embedding theorem it is known that for k£ < o 1 < p < o0, there are

essentially) unbounded functions in W¥(R™). More precisely, in case of k < 2, one has
P P

Wf(R”) — L,(R") forp<r< p*= nfﬁp, whereas in the limiting case, k = 7,

(0.1) W;/p(Rn) — L,.(R™) whenever p<r < oo,

but W;“’(R”) #+ Loo(R™) unless p = 1. Beyond the ‘critical line’ k = 2, i.e., for k > &
or k=nand p =1, we have W) (R") < Lo (R™).

In the past a lot of work has been devoted to Sobolev type embeddings, in particular
to refinements of the limiting case (0.1) in terms of wider classes of function spaces.
We do not want to report on this elaborate history here; apart from the original papers
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assertions of this type are indispensable parts in books dealing with Sobolev spaces and
related questions, cf. [1], [45], [26], [10].

In order to study the growth or unboundedness of such functions (distributions) the
growth envelope €(X) = (&2 (t),ul) of a function space X C LI°° is introduced, where

£g (t) ~sup{f*(t) : [IfIX| < 1}, t>0,

is the growth envelope function of X and ué € (0, 00] is some additional index providing
a finer description. Here f* denotes the non-increasing rearrangement of f, as usual.
When X < C it makes sense to replace f*(t) with @ and to study questions of the
smoothness of functions, where w(f,t) is the modulus of continuity. This leads to the

continuity envelope function,
X W(f, t)
EC (t) ~sup { ;

and the continuity envelope &c. These concepts were introduced in [43], [18], where the

X <1}, 0<t<l,

latter book also contains a recent survey of the present state-of-the-art (concerning ex-
tensions and more general approaches) as well as applications and further references.

A first motivation to study weighted spaces resulted from questions of local versus
global behaviour of EGX (t), that is, for ¢ — 0 and ¢ — oo, respectively. The idea was to
check that so-called ‘admissible’ weights, say, wq (z) = (1 + |2|?)*/2, have no influence
on the local singularity behaviour (measured in envelopes), unlike (particular examples
of) Muckenhoupt weights, e.g., w*(z) = |z|¥, @ > 0. Secondly, we expected that globally
their influence is the same. These assumptions could be verified in [19], see also [18].
However, we only studied the above model cases essentially, sticking to growth envelopes.

The present paper contains new and more general results, not only covering continuity
envelope functions, but modifying the model weight function as well as proving a first
result in the general case. We restrict ourselves to Muckenhoupt weights and consider

first
oo i el <1,
= > - < .
Wa, () {mﬁ it o> 1, with (3 >0, n<a<p

We can prove in this situation that
FS 1 max(a,0)

EGB;U‘q(wn,ﬁ)(t) - ng,q(wa,ﬁ)(t) -~ tiEiTJr%, 0<t<l,

and 5 r B
5 (we S (we _1_ B8
EG p,q( [f)(t) ~ gG p,q( ﬁ)(t) ~t1 P ny t— oQ,

0 0
where we have to assume —n + % < s— % < %. In case of Lebesgue spaces

the counterpart reads as

_ max(«,0) 1

(S‘GLp(w(’ﬁ)(t)Nt T w, 0<t<,

and
gl (t) m W H, - o0,

In the general case w € A, we obtain that

-1/p I 1 , 1/p’
€1 sup (/ w(z) dx> < 5GP(W)(t) < ¢y sup _(/ w(z)~ /P dx) ’
|E|=t \/E ei=t 1EI\Je
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where the supremum is taken over all sets E C R™ with measure |E| = t. Finally, coming

to continuity envelopes, we prove that for w <s— % < % + 1,

glrale ) gy o glvalted) gy Ly e g g
The main tools to prove such results are unweighted counterparts, sharp embeddings and
atomic decompositions of corresponding spaces. It is obvious but surprising at first glance
that parameters o < 0 do not change the corresponding singularity behaviour. The first
observation of this kind, though in a different context, is contained in [21].

Note that envelope results have some interesting applications to limiting embeddings,
Hardy-type inequalities, and the estimate of approximation numbers of related compact
embeddings, we refer to [18] for further details.

The paper is organised as follows. Section 1 collects standard notation and fundamen-
tals about Muckenhoupt weights and weighted function spaces, in Section 2 we briefly
recall the concepts of envelope functions including basic examples. The main results are
contained in Sections 3 and 4 concerning growth envelope functions and continuity enve-
lope functions, respectively.

Acknowledgements. The present paper is an extended version of the short talk given
at the conference ‘Function Spaces VIII’, July 3-7, 2006, Bedlewo. Some further ideas
emerged from discussions with Professor Leszek Skrzypczak while we were working on a
joint project about embeddings of weighted function spaces; I would like to thank him
for the inspiring talks.

1. Weighted function spaces. We use standard notation. Let N be the collection of
all natural numbers and let Ny = N U {0}. Let R™ be euclidean n-space, n € N, C the
complex plane. If a € R, then a4 = max(a,0). For 0 < u < oo, the number u’ is given
by 1/u’ = (1 — 1/u),. Given two (quasi-) Banach spaces X and Y, we write X — Y if
X C Y and the natural embedding of X in Y is continuous. All unimportant positive
constants will be denoted by ¢, occasionally with subscripts. For convenience, let both
dz and | - | stand for the (n-dimensional) Lebesgue measure in the sequel. As we shall
always deal with function spaces on R", we may often omit the ‘R™’ from their notation
for convenience.

1.1. Muckenhoupt weights. We briefly recall some fundamentals on Muckenhoupt classes
A,. By a weight w we shall always mean a locally integrable function w € L'°, positive

a.e. in the sequel. Let M stand for the Hardy-Littlewood maximal operator given by
1
Mf(z) = sup ——— lf(y)ldy, =€eR",
B(z,r)eB |B($7 T)| B(z,r)

where B is the collection of all open balls B(z,r) ={y € R": |y —z| <r}, r>0.
DEFINITION 1.1. Let w be a positive, locally integrable function on R™.

(i) Let 1 < p < co. Then w belongs to the Muckenhoupt class A, if there exists a
constant 0 < A < oo such that for all balls B,
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(1.1) (%/Bw(w) dx)l/p(ﬁ/Bw(x)_p//p dx)w < A,

where p’ is given by 1/p’ + 1/p = 1, as usual.
(i1) A weight w belongs to the Muckenhoupt class A; if there exists a constant A > 0
such that

Muw(z) < Aw(z) for almost all z € R".
(iii) The Muckenhoupt class Ao is given by Ao =~ Ap.

Since the pioneering work of Muckenhoupt [27], [28], [29], these classes of weight
functions have been studied in great detail, we refer, in particular, to the monographs [13],
[38], [39, Ch. IX], and [37, Ch. V] for a complete account of the theory of Muckenhoupt
weights.

REMARK 1.2. For convenience, we recall a few basic properties only. The class A, is
stable with respect to translation, dilation and multiplication by a positive scalar. A
weight w € A, possesses the doubling property, and w € A, implies w PP e Ay,
1 < p < oo. In addition to the (more or less obvious) monotonicity A, C Ap, for
1 < p1 < p2 < 00, the so-called ‘reverse Holder inequality’, a fundamental feature of A,
weights (see [37, Ch. V, Prop. 3, Cor.]) leads to the somehow surprising property that
for any w € A, there exists some number r < p such that w € A,.

ExXAMPLE 1.3. Obviously, one of the most prominent examples of a Muckenhoupt weight
we Ay, 1 <p<oo,is given by

(1.2) wo(z) =z|% z€R?, —n<a<oco.

It is well known that w, € A; if, and only if, @« < 0 and w, € A, if, and only if,
a < n(p —1). In this paper we shall study a slightly more general weight with possibly
different polynomial growth both near zero and infinity,

lz|* if o] <1, :
1.3 op(x) = ) th —n, _n.
(1.3) We, () {|x'@ i ojp > 1, with a>-n, G>-n
Obviously this refines the approach (1.2), i.e., wq,o = Wqo. One verifies that w, g € A, if
—n<a<n(p-1) and —n<fB<n(p-1).

1.2. Function spaces of type By (R, w) and F; ,(R",w) with w € A. Let w € A be
a Muckenhoupt weight and 0 < p < oo. All spaces are defined on R™ in this section. The
weighted Lebesgue space L,(w) contains all measurable functions such that

1/p
(1.4 I 12l =l A1zl = ([ 1@t ao)
is finite. Note that for p = co one obtains the classical (unweighted) Lebesgue space,
(1.5) Loo(w) =L, wE Ax.

We thus restrict ourselves to p < oo in what follows.
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The Schwartz space S and its dual S’ of all complex-valued tempered distributions
have their usual meaning here. Let g = ¢ € S be such that

(1.6) suppp C {y e R" : Jy| <2} and p(z)=1 if |z <1,

and for each j € N let ¢;(z) = ¢(2772) — p(279+1z). Then {¢j}52 forms a smooth
dyadic resolution of unity. Given any f € S’, we denote by Ff and F~1f its Fourier
transform and its inverse Fourier transform, respectively. Let f € &', then the Paley-
Wiener-Schwartz theorem implies that 7~ !(p;F f) is an entire analytic function on R™.

DEFINITION 1.4. Let 0 < ¢ < 00, 0 < p < 00, s € R, and {y¢,}; a smooth dyadic
resolution of unity. Assume w € A.

(i) The weighted Besov space B ,(w) is the set of all distributions f € S’ such that

o0

, _ 1/q
(1.7) £ 184 (w) | = (322717 (o, F )|y (w)]|7)
3=0
is finite. In the limiting case ¢ = oo the usual modification is required.
(ii) The weighted Triebel-Lizorkin space Fy; (w) is the set of all distributions f € S’
such that

(1) 1£ 17, = [ (2517 e, Do) (o)
j=0

is finite. In the limiting case ¢ = oo the usual modification is required.

REMARK 1.5. The spaces B, ,(w) and F;  (w) are independent of the particular choice of
the smooth dyadic resolution of unity {¢; }; appearing in their definitions. They are quasi-
Banach spaces (Banach spaces for p,q¢ > 1), and § — B; (w) — &', similarly for the
F-case, where the first embedding is dense if ¢ < oo; cf. [6]. Moreover, for wg =1 € A,
we re-obtain the usual (unweighted) Besov and Triebel-Lizorkin spaces; we refer, in par-
ticular, to the series of monographs by Triebel, [40], [41], [42] and [44] for a comprehensive
treatment of the unweighted spaces.

The above spaces with weights of type w € A, have been studied by Bui first in
[6], [7], with subsequent papers [8], [9]. It turned out that many of the results from
the unweighted situation have weighted counterparts: e.g., we have FY,(w) = hy(w),
0 < p < oo, where the latter are Hardy spaces, see [6, Thm. 1.4], and, in partic-
ular, hy(w) = Ly(w) = Fly(w), 1 < p < o0, w € Ay, see [38, Ch. VI, Thm. 1].
Concerning (classical) Sobolev spaces W (w) (built upon L,(w) in the usual way) we
have

(1.9) Wy(w) = Ffy(w), keNy, 1<p<oo, w€eA,,

cf. [6, Thm. 2.8]. Further results, concerning, for instance, embeddings, (real) interpola-
tion, extrapolation, lift operators, duality assertions can be found in [6], [7], [13].
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More recently, Rychkov extended in [32] the above class of weights in order to incor-
porate locally regular weights, too, creating in that way the class A;OC. Recent works
are due to Roudenko [12, 30, 31|, and Bownik [3, 4]. We partly rely on our approach
[20].

REMARK 1.6. In the past, Besov and Triebel-Lizorkin spaces with so-called ‘admissible’
weights (of at most polynomial growth) were studied in detail, i.e., different characteri-
sations, the continuity and compactness of corresponding embeddings and further topics.
As a proto-type one can think of

(1.10) v(z) = (1+ 2%, aeR, zeR"

Then the definition of B,  (v) and F} (v) is literally the same as in Definition 1.4. As
for literature we refer to [14], [15], [16], see also [11, Ch. 4] and [33] for a more general
approach. Quite recently, there was a refreshed interest in this topic leading to the papers
[22], [23], [24], [25] and [35]. Applications are described in [16].

One remarkable point is that for such weights f € B;7q(v) if, and only if, vf € B} ,
with equivalent norms, | f|B; ,(v)|| ~ [[vf|B; |- In view of (1.4) one has thus to modify
v by v/? in order to compare results in corresponding spaces.

We formulate two special embedding results for weighted spaces of type B, ,(w) and
F} ,(w) that will be used in the sequel. The first one will enable us to reduce all (non-
limiting) cases to the study of B-spaces only. Let 0 < p < 00, 0 < ¢ < 00, s € R, and
w € As. Then

(1.11) B;,min(p,q)(w) - inq(w) - B;,maX(p,q)(w)’
see [6, Thm. 2.6]. In other words, whenever the g-parameter has no influence on the
result we can immediately transfer the B-results to the F-spaces by (1.11). The next

result establishes a link between weighted and unweighted Besov spaces; it is proved in
[21].

PROPOSITION 1.7. Let
(1.12) —00 <82 <51 <00, 0<pr<py<oo, 0<gq <g2 <00,

and wq, g be given by (1.3). Then

(1.13) Byl g (wap) = Bp2

if, and only if,

(1.14) B8>0 and 5:31—2—32"‘32%'
b1 P2 1

REMARK 1.8. We briefly compare this result with the admissible weights v discussed in
Remark 1.6. Restricted to the parameters given by (1.12) we proved in [15, Thm. 2.3]
that

(1.15) Bs o (v) — B2 if, and only if, >0 and v(z)>c

P1,91 Pp2,92
for some ¢ > 0 and all € R™. In particular, with v given by (1.10) we have to assume,
in addition, that a > 0. For extensions and more general results in this context we refer
to [15].
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2. Envelope functions

2.1. Growth envelope functions. Let for some measurable function f : R" — C, finite
a.e., its decreasing rearrangement f* be defined as usual,

(2.1) ff@)=inf{s>0:[{x eR": |f(z)| > s} <t} , t=>0.

DEFINITION 2.1. Let X be some quasi-normed function space on R™. The growth envelope
function & : (0,00) — [0,00] of X is defined by
(2.2) EX()= sup  fr(t), t>0.
lf1XII<1

It is well-known that EGX is monotonically decreasing and right-continuous, that X —
L if, and only if, EGX is bounded, and that there are function spaces X which do not
possess a growth envelope function in the sense that EGX is not finite for any t > 0; we
refer to [17] and [18] for a more general approach as well as a detailed account of basic
properties of 5GX . We only mention the convenient ‘monotonicity’ feature for further use :

(2.3) X1 < Xo implies &' (t) < & (1) for some ¢ > 0 and all ¢ > 0.
REMARK 2.2. Let X be a rearrangement-invariant Banach function space, ¢ > 0, and
A; C R™ with |A¢| = t, then the fundamental function ¢ of X is defined by ¢ (t) =
X, [X]]. In [18, Sect. 2.3] we proved that in this case

(2.4) & (1) ~ ~lIx, X1t >0

1
ex(t)
EXAMPLE 2.3. Basic examples for spaces X are the well-known Lorentz spaces; for defini-
tions and further details we refer to [2, Ch. 4, Def. 4.1], for instance. This scale represents
a natural refinement of the scale of Lebesgue spaces. In [18, Sect. 3.2] we proved that for
0<p<oo, 0<qg<L oo,

(2.5) gty ~t7v,  t>0.

REMARK 2.4. We dealt in [18] with the so-called growth envelope &;(X) of some function
space X : the envelope function EGX is equipped with some additional fine index ué that
contains further information. In view of (2.5) this reads as €;(L, ) = (f% ,q)- However,
we do not study this index in the present context (though it might be interesting).

In general, the concept of growth envelopes make sense only for spaces X C LI°¢,
i.e., when we deal with locally integrable functions. For X = B, , we shall thus assume
s > n(5 — 1) since by [34, Thm. 3.3.2] this implies By , C LY° for all 0 < p,q < oo,
whereas in the borderline case s = n(% — 1)+ one needs additional assumptions on p and
q, respectively. This setting will not be treated here. We recall some unweighted results.

PROPOSITION 2.5. Let 0 < g < 00, 0 < p < 0o, and s > n(% —1).

(i) Assume s < %. Then
(2.6) Era(t) ~ EP () ~ TR, 0<t< 1.

(i1) Assume s = % and let 1 < g < 0o n case of B-spaces, and 1 < p < o0 in case of

F'-spaces, respectively. Then
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2.7 B (1) ~ | log 1|7 5 (1) ~ logt] 7, 0<t< i
(2.7) & () ~[logtl, &P (t) ~|logt|?, 0<t< 3.
(iii) We have

(2.8) EXPu(t) ~ EPI () ~tTF, t— 00,

For a proof of this result we refer to [43, Thms. 13.2, 15.2] concerning (i)—(ii), and to
[18, Sects. 8.1, 8.3, 10.3]. In the latter book one can also find a treatment of borderline
cases and a recent account of further related results.

2.2. Continuity envelope functions. Let C be the space of all complex-valued bounded
uniformly continuous functions on R"™, equipped with the sup-norm as usual. Recall that
the classical Lipschitz space Lip' is defined as the space of all functions f € C such that

. w(f,t
(2.9) VALY = I71C] + sup 242D
t€(0,1)

t

is finite, the expression (2.9) defining its norm, where w(f,t) stands for the modulus of
continuity,

w(f,t) = sup sup |f(z+h)—f(z), t>0.
|h|<t zER"

DEFINITION 2.6. Let X — C be some quasi-normed function space on R". The continuity
envelope function Sé( : (0,00) — [0, 00] of X is defined by

w(f,t
(2.10) &)= sup ﬁ, t>0.
X<t t
It is well-known that Eé( is equivalent to some monotonically decreasing function,

that X < Lip' if, and only if, Eé( is bounded, and that
(2.11) X1 < X, implies EX'(t) < & (t) for some ¢ > 0 and all ¢ > 0;
we refer to [18, Ch. 5] for a more general approach and further details.

REMARK 2.7. Again, we dealt in the papers and books mentioned above usually with
the so-called continuity envelope €-(X) of some function space X where ECX is equipped
with some additional fine index ué( .

EXAMPLE 2.8. Let for 0 < a < 1, b > 0, the Lipschitz spaces Lip?, Lip(l’_b)

the natural extensions of (2.9): we collect all f € C such that

represent

. a w(/f,t
AL = fic) + sup D,
te(0,1)
and (.9
. _ w(f,t
1AL = 710+ sup S0
te(0,1) | log t|
respectively, are finite. In [18, Sect. 5.3] we proved that
(2.12) EP )y~ o<t <,

and

(2.13) ghe

=9 b 1
(t) ~ |logt|’, 0<t<s.
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The counterpart of Proposition 2.5 reads as follows.
PROPOSITION 2.9. Let 0 < g < 00, 0 < p < 00, and % <s< %Jr 1.

(i) Assume  <s <1+ 2. Then

(2.14) 0ty m ) ~ T ET 0<t< 1
(ii) Assume s =241 and let 1 < g < 0o in case of B-spaces, and 1 < p < 00 in case
of F-spaces, respectively. Then

14n

1 pitn/p 1
(t) ~ |logt|, &7 (t) ~|logt|¥, 0<t<

(215 g
(iii) Assume s = 7 and let 0 < ¢ < 1 in case of B-spaces, and 0 < p
F'-spaces, respectively. Then

IA o=

1 in case of

n/p n/p
(2.16) ()~ EPT ()~ 0<t< 1L
For a proof of this result we refer to [43, Thms. 13.2, 15.2] concerning (ii), and to [18,
Ch. 9] for all cases, as well as further details and related results. Note that for B-spaces
the case p = oo can be included (with the corresponding result).

3. Growth envelope functions in weighted function spaces. Let w ~ wq, g be
given by (1.3) with a > —n, 8 > —n for 1 < p < oo. Moreover, we shall only deal with
spaces on R"™ in this section and will thus omit it from their notation.

3.1. Weighted Lebesque spaces. First we recall what is already known in case of « = 8 >
0. In [19] (see also [18]) we proved the following result.

PROPOSITION 3.1. Let 1 < p <00, 0 < aw < n(p—1), and w ~ wq o given by (1.3). Then

(3.1) My vt 0<t <1,
and
(3.2) M)y BT o o0,

REMARK 3.2. Note that for admissible weights v of type (1.10) the parallel result reads
as

EGL”(”)(t)Nt‘%, 0<t<l, O0<p<oo, a>0,
whereas the global behaviour SGL”(v) (t) for t — oo is the same as (3.2), cf. [19].

We extend this result now to weights w ~ w, g with parameters —n < a < 3, 8 > 0.

PROPOSITION 3.3. Let 1 < p < o0, 3 >0, -n < a <, and w ~ wy g given by (1.3).
Then
_ max(a,0)

(3.3) EEP W) (1) TR 0<t < 1,

and

1

(3.4) g () w5, oo,
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Proof. Step 1. In view of the construction (1.3) we obviously have

(3.5) Ly(wa,g) = Lp(wy,) if, and only if, o <y < g.
Thus (2.3) and (3.2) imply (with v = 8 > 0)
(3.6) gl (p) < ot 5 for t— oo,

Moreover, if we apply (3.5) with v = o, then by (2.3) and (3.1),
(3.7) gy <t F for 0<t<l.
For the converse estimates, assume first 0 < a < (3. Let

(3.8) fo=sTpTWx, , ACR", |A|=s

Assume, for convenience, A; = K 1/-(0), the ball centered at the origin with radius
cs'/™, and ¢ appropriately chosen such that |A,| = s. Then

(3.9) Ji) =75 (@), t>0,
and for 0 < s < 1,

1/p cst/m 1/p
1l Lp(wa gl = 555 ( [ west@) dz) . ( JARTT dx)
Ag 0

1/p
1 1
NS_F_%(sF(O‘Jrn)) NC/7

i.e. (up to possible normalising factors) we have || fs|L,(wq,g)| < 1. Hence,

(3.10) EGLP(w“’ﬁ)(t) > sup fX(t) > csup sTE T~ t T B, <t <1,
>0 s>t

where we used (3.9) and o > —n. If s — oo, we consider

(3.11) gs = s_%_%XA with Ay = {1’ ER":¢ys7 < |z < czsi},

where ¢1, co are chosen appropriately such that |A;| = s. Consequently,

_1_B
(3.12) g =5y, 0, >0
and

_1_38 1/p _1_8 B 1
s Lp(wap)l| =s~» "7 Wap(x) dr |~ TP s AP ~ e
since we, g(7) ~ |z]% ~ st for 2 € A, and s >> 1. Note that we (only) used |44 = s in
this argument. Now we can proceed as above, that is,

(3.13) SGLp(w”’[’)(t) > sup g (t) > csup §TF T~ tiﬁ*i, t — o0,
s>0 s>t

where we additionally used 8 > —n. In view of (3.6), (3.7) and (3.10) this concludes the
proof for 0 < a < .

Step 2. Let —n < o < 0 < (. As already pointed out, estimate (3.13) remains valid, so
that by (3.6), (3.7) it is left to prove in this case

(3.14) glrtes) i)y > et™5, 0<t<l.
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We modify the extremal functions (3.8) by
(3.15) he=s7vX, , Ac=Kgm(mg), |mol=2, 0<s<l,

and c is again chosen such that |As| = s. Then w, g(x) ~ 1 for all x € A, such that

L 1/p . .
(3.16) [hes| Lp(wa,g)|| ~ s> (/ Wa,5(2) dw) ~ s w|Aglr ~

s

and hX(t) = sTEYX (t), t > 0. Parallel to (3.10) this leads to (3.14). =

[0,s)
REMARK 3.4. Let —n < a < 8 < 0. One can easily check that our proof above covers
the lower estimates (3.13) and (3.14) in this case, too. So a reasonable conjecture seems
that Proposition 3.3 remains true for a < 8 < 0, but the corresponding upper estimates
are not yet proved. Furthermore, one could also consider values 3 < « and benefit from
the lower estimates (3.10), (3.13) and (3.14) correspondingly.

Before we come to weighted spaces of Besov and Triebel-Lizorkin type we try to
extract some ideas from the above proof to formulate the result on a more abstract level.

PROPOSITION 3.5. Let 1 < p < 00, w € A, and L,(w) be given by (1.4). Then there are
positive constants c1,co such that for all t > 0,

-1/p I 1 , 1/p’
(3.17) ¢ sup (/ w(x) das) <& p() (t) < ¢g sup E(/ w(z) PP das) )
E E

|E|=t |E|=t
where the supremum is taken over all sets E C R™ with |E| =t.

Proof. We first deal with the estimate from below and adapt the ‘extremal’ functions
(3.15) (see also (3.8) and (3.11)) appropriately. Let for s > 0,

(3.18) hs=s""x,, EsCRY, |Es| = s,

where the set F; C R™ generalises A; from above which was chosen according to our
needs, i.e., to reflect the ‘typical’ behaviour of our weight function. (In our case w ~ wq g
this refers to || — 0 and |z| — oo, respectively.) In general, however, we have no further
information about ‘appropriate’ sets E;, but at least we can conclude that

Izl ~ s ([ @) dx>1/p_

. . 1
Since hi(t) = s PX[073)(t),

Lp(w) su 4h:(t) ~ su w(x) dz o
&0 2 o gy o ([ wear)

s s>t s
leading finally to the lower estimate in (3.17). Of course, we use w € A, here.
Conversely, let f € L,(w) with ||f|L,(w)|| < 1. First we apply an abstract result

about resonant measure spaces according to [2, Ch. 2, Def. 2.3, Thm. 2.7], that is,

| roeoa= sw [ @ik a.
0 n

k*=g*
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where the supremum is taken over all function £ on R™ which are equimeasurable with g.

We choose g = x , with |[B| =, hence g* = x then |k| is the characteristic function

[0,t)’
of some set £y C R™ with |E;| = t. Thus monotonicity leads to
¢
(3.19) tf*(t) < / f*(u) du = sup / |f(z)] dz.
0 |E¢|=t JE,

Moreover, our assumption together with Holder’s inequality implies

1/p’ 1/p’
20 [ i@l <L @i( [ @ rar) " <o [ o)
E; E; Ey
such that (3.19), (3.20) and Definition 2.1 lead to

L(w) 1 .y 1/p'
& () <csup — w(z) PP da . m
[EI\ JE

|El=t
REMARK 3.6. Note that (3.17) is closely connected with the Muckenhoupt condition
(1.1) for the weight w € A,. More precisely, if the supremum over all sets E C R" with
|E| =t could be replaced by the supremum over all balls B C R™ with |B| = ¢, then we
immediately obtain

—-1/p
2w s ([ uan) = s g L)

|B|=t
as a consequence of (1.1). But this is not yet covered by the above proof. However, the
examples studied so far in (2.5) (w = 1), Propositions 3.1 (w = wg,q, & > 0) and 3.3
(w=wagp, §>0,—n < a<pf)exemplify (3.17) (and also (3.21)). Moreover, observe the
similarity between (2.4) and (3.21), though L,(w) is not a rearrangement-invariant space
in general. Obviously the sup |, disappears in (2.4) (just because of the rearrangement-
invariance).

3.2. Weighted Besov and Triebel-Lizorkin spaces. We come to weighted spaces of type
By (w) and F; (w). First we collect what is already known (in addition to the un-

weighted result recalled in Proposition 2.5).
PROPOSITION 3.7. Let 0 < ¢ < 00, 0 < p < 00, n(}—lj—l)Jr <s< 3,20, andw ~ waa
given by (1.3).

(i) Let0 < 5 <n—3+s. Then

(3.22) &2ra () 5y T 0<t< 1
(ii) Let 1l < p< oo, and 0 < a < n(p—1). Then

(3.23) &8y m gy T o
REMARK 3.8. Again, as in the L, case we have for admissible weights v of type (1.10)

that 5 -
S ) s 1 s
(S‘Gp,q@)(t)Nng,q(t)Nt—;-‘rg’ 0<t<l,

whereas the global behaviour coincides with (3.23). Moreover, we determined the corre-
sponding growth envelopes for By  (w), F; ,(w) (and By ,(v), F; ,(v)) in [18].
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THEOREM 3.9. Let 0 < ¢ <00, 0 <p<o00,5>0,82>0, —n<a<fB and wyg be
given by (1.3). Assume that

(3.24) _p g Rex(@0) o max(a,0)
b p b
(i) Then
(3.25) glralved) gy o glralPad) gy L s mEET T o<t <1,
(ii) Let 1 < p < oo, then
(326) EGB;‘q(waﬂ)(t) ~ gGF;,q(wa,B)(t) ~ tiii%, t — co.

Proof. Step 1. Note first that it is sufficient to deal with B-spaces only due to (1.11). We
discuss condition (3.24) first. As mentioned in Section 2.1 briefly, the concept of growth
envelopes requires X C LI°° and X ¢ L, for the underlying function space X in general.
We use Proposition 1.7 in the form

(3.27) B, (wa,p) — B7, and a—+:5:57ﬁfa+ﬁ,
’ ’ P p T

and s > 0,0 < p <7 <00,and 0 < g < co. For unweighted B-spaces it is known that
BZ, C L¥° if ¢ > max(2 — n,0) (neglecting limiting cases). Thus the left-hand side
of (3.24) implies that we can always suitably choose ¢ and 7 such that (3.27) implies
By (wa,p) C L'°¢. Moreover, we may assume that 7 > max(p,1). On the other hand,
B7 , = Lo for 0 > 2 (neglecting limiting cases again) such that s — > % and (3.27)
lead to Bj ,(wa,5) = Loo (which is not interesting from our point view). Disregarding
limiting cases we are left to consider parameters according to (3.24). (As a by-product of
our theorem and general features of growth envelopes we shall obtain that Bj ,(wa,s) 7~
Lo when (3.24) is satisfied.)

Step 2. First we deal with the estimates from above and use (3.27) together with the
unweighted result Proposition 2.5. By our assumption (3.24) and the embedding (3.27)
we conclude n(L — 1); < ¢ < Z such that (2.6) reads as

(3.28) X ~ TR, 0<t <,

which directly leads to the corresponding upper estimate in (3.25) in view of (2.3) and
(3.27). As for the global behaviour we use (3.23) and the embedding B; ,(wa,) —
By (wg ) since a < 3 (recall (3.5) with v = ). Thus (2.3) and (3.23) (with a = j3)
prove the upper estimate in (3.26).

Step 3. It remains to show the converse estimates in (3.25) and (3.26). Let

(3.29) filw) = 2796753920 (x — 20)), @€ R™,

be atoms in Bf,,q(wa”g)7 where 1 is the compactly supported C°*°-function in R" given
by

(3.30) W(x) = {e_m s o] <1,

0 Llz[>1
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we refer to the atomic decomposition result in [20], [3]. Here we can choose xg = 0 for
a >0, but |zg| ~ 2 for a < 0. Hence, || f;|B; ,(wa,p)| < ¢, and
f(0) ~ 27675y @), jEN.
One easily calculates that
S S
(3.31) W(t) Lle 1—(t/|wn2/™ , 1< |wn|,
0 ’ t Z |wn|7

where |w,| denotes the (surface) measure of the unit sphere in R™. Let 0 < ¢ < 1 and
choose jo € N such that 270" ~ t. Thus

EGB;,q(wa,B)(t) > CSlellNg f;(t) > f;o (012—j0n)
J

(s _ St s _1_ %+
ZC//2 Jo(s—%——=F)

i.e., the inequality converse to (3.25).

Step 4. As for the global behaviour we adapt the corresponding argument appropriately
in order to show the lower estimate of (3.4). Let

(3.32) o=¢1=027") -9,

where ¢ is given by (1.6). Then, obviously, supp o C {z € R" : 1 < |z| < 4}, and for
suitably chosen ¢, o*(|lw,]) > % We replace f; given by (3.29) with

(3.33) 9;(x) =

and obtain

ﬁg(2_jsc), reR" jeN,

g5 (t) ~ 9 =i 0" (277) > 2777 for t~ 2/" jeN.
This will immediately conclude the proof granted that we can show that g; € By , (Wa,8)
with [|g;|B, ,(wa,p)|| < ¢ uniformly in j € N.
Let k be some compactly supported C* function on R™ with
Z k(x — =1, xzeR™
mezn
Then we have for all x € R", j € N,

(334)  gi(@) =275 3 ke—m) 0@ V2) ~ 2775 S k(e —m)o(2 ).

mezn |m|~27

On the other hand, ag,,(z) = k(x —m)o(277x) can be regarded as 1x-atoms located near
Qom, m € Z", and thus (3.34) represents a special atomic representation of g;. By the
already mentioned atomic decomposition with Muckenhoupt weights, [20], [3], this yields

—iln P
9518 g (wap)I” < e1 27904 37 Ly (wa)

|m|~27

§C22*j(n+5)/ ( Z Xo, ) |x|’8 dx

|m|~27
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< 32740 Z / z|? da
|m|~27 = <0m
< 042—j(n+6) Z |m|/3 < s,
|m|~27
where Xom stands for the characteristic function of Qq,,, m € Z". This completes the
argument. =
REMARK 3.10. The result naturally extends Proposition 3.7 from a« =3 > 0 to 8 > 0,
n+aoy
P
— n, respectively, further parameter settings, e.g., a < 8 < 0 or § < «

—n < a < . Apart from the already mentioned limiting cases in (3.24), i.e., s =
_ ntoy
or s = —==
deserve attention. Even more desirable, however, would be a general result similar to
Proposition 3.17. But this will be studied elsewhere. Let us finally remark, that the
additional restriction p > 1 in (ii) is a consequence of the (method of the) proof and
probably not necessary, see also the unweighted result (2.8). Moreover, one can prove for
the corresponding indices that ud = ¢ if X = BS (wa,p) and ug =pif X = FS (wa,5).
Note, finally, that the unboundedness of EGX (t) for t — 0 in (3.25) implies B} ,(wa,5) 7~
Lo, Fj (wa ) # Loo in case of (3.24).

4. Continuity envelope functions in weighted function spaces. We finally deal
with continuity envelopes for spaces By (w), F; ,(w) with w € A. Nothing is known
so far in such weighted situations; we rely on the unweighted results Proposition 2.9 and

the techniques developed above.

THEOREM 4.1. Let 0 < ¢ <00, 0 <p < oo, >0, —n < a < 3, and wy g be given by
(1.3). Assume that

(4.1) max(a, 0) s Mo max(a, 0) ey
p b p
Then
(4.2) g2raWed) gy o glnaes) ) | ymismgomE g oy

Proof. Step 1. Again it is sufficient to deal with B-spaces only due to (1.11). We discuss
condition (4.1) first. As mentioned in Section 2.2, the concept of continuity envelopes
requires X — C and X ¢ Lip' for the underlying function space X in general. We
use (3.27) and the corresponding unweighted result. Since B, — C if 0 > 2 and
By, — Lip! for o — 2 > 1 (neglecting limiting cases) we can argue as in Step 1 of the

proof of Theorem 3.9 and substantiate (4.1).

Step 2. First we deal with the estimates from above and use (3.27) together with the
unweighted result Proposition 2.9(i) for BZ

7,97
(4.3) ) m T o<t <,

which directly leads to the corresponding upper estimate in (4.2) in view of (2.11) and
(3.27). It remains to show the converse estimate in (4.2). Let

a+)

(4.4) file) = 277075 7520 (@ — 2)), jEN,
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where ¢ is the mollified version of

- 0 x| > 1
— ) p— Y Rn
o= {1 iy TR
such that supp ¢(27) C {y € R" : |y| <277}, j €N, and
27.) ¢t . .
W@l oy jen

t )
Then f; given by (4.4) is a By (wa,5)-atom (as we do not need moment conditions).
Again we can choose 29 = 0 for a > 0, but |xg| ~ 2 for a < 0. In particular, this means
1/31Bp 4(wa )|l ~ 1. Since

w(fjvt) ~ 27j(57%7a—+71)

, ., t~277 jeN,

hence i
s w . . 2 J . n @
chp,q( a,B)(2—]) Z cw(félj ) > 0/27‘](57;7%71) ] c N,

and by standard arguments the proof of (4.2) is complete. m

REMARK 4.2. In case of Besov spaces one can extend the result to p = oo which coin-
cides with the unweighted result [18, Prop. 9.1], recall (1.5). There are counterparts for
admissible weights in the sense of Remark 1.6: One can prove, for instance, that
B B
gcp,q(v)(t)wgcp,q(t)’ 0<t<1,

and the counterpart for F-spaces where v is given by (1.10). Moreover, the indices in

. By ,(wa,p) B; (v) Fy o (wa,p) Fy ()
those cases are given by u"* =uc”* =qand u"! =ucl" =

REMARK 4.3. Let us finally remark that envelope result can be applied to obtain Hardy-
type inequalities, to establish criteria for limiting embeddings, and, last but not least, to
prove surprisingly sharp upper estimates for the asymptotic behaviour of approximation
numbers of related compact embeddings. This will not be presented here; we refer to [18,
Ch. 11] for further details and references.
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