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Abstra
t. We study weighted fun
tion spa
es of Lebesgue, Besov and Triebel-Lizorkin typewhere the weight fun
tion belongs to some Mu
kenhoupt Ap 
lass. The singularities of fun
tionsin these spa
es are 
hara
terised by means of envelope fun
tions.Introdu
tion. The purpose of this paper is to use the re
ently introdu
ed 
on
ept ofgrowth envelopes and 
ontinuity envelopes in fun
tion spa
es, respe
tively, in order to
hara
terise weighted spa
es of type Lp(R

n, w), Bs
p,q(R

n, w) and F s
p,q(R

n, w) where wbelongs to some Mu
kenhoupt 
lass Ap. The idea to 
onsider growth envelopes and 
on-tinuity envelopes in (unweighted) fun
tion spa
es originates from su
h 
lassi
al results asthe famous Sobolev embedding theorem [36℄, or, se
ondly, from the Brézis-Wainger re-sult [5℄ on the almost Lips
hitz 
ontinuity of fun
tions from a Sobolev spa
e H1+n/p
p (Rn),

1 < p < ∞. Basi
ally, the unboundedness of fun
tions that belong to (
lassi
al) Sobolevspa
es W k
p (Rn), k ∈ N0, 1 ≤ p <∞, (and more general s
ales of spa
es) is 
hara
terised.By Sobolev's embedding theorem it is known that for k ≤ n

p , 1 ≤ p < ∞, there are(essentially) unbounded fun
tions in W k
p (Rn). More pre
isely, in 
ase of k < n

p , one has
W k

p (Rn) →֒ Lr(R
n) for p ≤ r ≤ p∗ = np

n−kp , whereas in the limiting 
ase, k = n
p ,(0.1) Wn/p

p (Rn) →֒ Lr(R
n) whenever p ≤ r <∞,but Wn/p

p (Rn) 6 →֒ L∞(Rn) unless p = 1. Beyond the `
riti
al line' k = n
p , i.e., for k > n

por k = n and p = 1, we have W k
p (Rn) →֒ L∞(Rn).In the past a lot of work has been devoted to Sobolev type embeddings, in parti
ularto re�nements of the limiting 
ase (0.1) in terms of wider 
lasses of fun
tion spa
es.We do not want to report on this elaborate history here; apart from the original papers2000 Mathemati
s Subje
t Classi�
ation: Primary 46E35; Se
ondary 42B35.Key words and phrases: Mu
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96 D. D. HAROSKEassertions of this type are indispensable parts in books dealing with Sobolev spa
es andrelated questions, 
f. [1℄, [45℄, [26℄, [10℄.In order to study the growth or unboundedness of su
h fun
tions (distributions) thegrowth envelope E
G
(X) = (EX

G
(t), uX

G
) of a fun
tion spa
e X ⊂ Lloc

1 is introdu
ed, where
EX
G

(t) ∼ sup{f∗(t) : ‖f |X‖ ≤ 1}, t > 0,is the growth envelope fun
tion of X and uX
G

∈ (0,∞] is some additional index providinga �ner des
ription. Here f∗ denotes the non-in
reasing rearrangement of f , as usual.When X →֒ C it makes sense to repla
e f∗(t) with ω(f,t)
t and to study questions of thesmoothness of fun
tions, where ω(f, t) is the modulus of 
ontinuity. This leads to the
ontinuity envelope fun
tion,

EX
C

(t) ∼ sup

{
ω(f, t)

t
: ‖f |X‖ ≤ 1

}
, 0 < t < 1,and the 
ontinuity envelope EC. These 
on
epts were introdu
ed in [43℄, [18℄, where thelatter book also 
ontains a re
ent survey of the present state-of-the-art (
on
erning ex-tensions and more general approa
hes) as well as appli
ations and further referen
es.A �rst motivation to study weighted spa
es resulted from questions of lo
al versusglobal behaviour of EX

G
(t), that is, for t → 0 and t → ∞, respe
tively. The idea was to
he
k that so-
alled `admissible' weights, say, wα(x) = (1 + |x|2)α/2, have no in�uen
eon the lo
al singularity behaviour (measured in envelopes), unlike (parti
ular examplesof) Mu
kenhoupt weights, e.g., wα(x) = |x|α, α > 0. Se
ondly, we expe
ted that globallytheir in�uen
e is the same. These assumptions 
ould be veri�ed in [19℄, see also [18℄.However, we only studied the above model 
ases essentially, sti
king to growth envelopes.The present paper 
ontains new and more general results, not only 
overing 
ontinuityenvelope fun
tions, but modifying the model weight fun
tion as well as proving a �rstresult in the general 
ase. We restri
t ourselves to Mu
kenhoupt weights and 
onsider�rst

wα,β(x) =

{
|x|α if |x| ≤ 1 ,

|x|β if |x| > 1 ,

} with β ≥ 0, −n < α ≤ β.We 
an prove in this situation that
E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p−max(α,0)

np + s
n , 0 < t < 1,and

E
Bs

p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p− β

np , t→ ∞,where we have to assume −n + max(α,0)
p < s− n

p < max(α,0)
p . In 
ase of Lebesgue spa
esthe 
ounterpart reads as

E
Lp(wα,β)
G

(t) ∼ t−
max(α,0)

np − 1
p , 0 < t < 1,and

E
Lp(wα,β)
G

(t) ∼ t−
β

np− 1
p , t→ ∞.In the general 
ase w ∈ Ap we obtain that

c1 sup
|E|=t

( ∫

E

w(x) dx

)−1/p

≤ E
Lp(w)
G

(t) ≤ c2 sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

,



SINGULARITIES IN WEIGHTED FUNCTION SPACES 97where the supremum is taken over all sets E ⊂ R
n with measure |E| = t. Finally, 
omingto 
ontinuity envelopes, we prove that for max(α,0)

p < s− n
p <

max(α,0)
p + 1,

E
Bs

p,q(wα,β)

C
(t) ∼ E

F s
p,q(wα,β)

C
(t) ∼ t−1+s−n

p −max(α,0)
p , 0 < t < 1.The main tools to prove su
h results are unweighted 
ounterparts, sharp embeddings andatomi
 de
ompositions of 
orresponding spa
es. It is obvious but surprising at �rst glan
ethat parameters α < 0 do not 
hange the 
orresponding singularity behaviour. The �rstobservation of this kind, though in a di�erent 
ontext, is 
ontained in [21℄.Note that envelope results have some interesting appli
ations to limiting embeddings,Hardy-type inequalities, and the estimate of approximation numbers of related 
ompa
tembeddings, we refer to [18℄ for further details.The paper is organised as follows. Se
tion 1 
olle
ts standard notation and fundamen-tals about Mu
kenhoupt weights and weighted fun
tion spa
es, in Se
tion 2 we brie�yre
all the 
on
epts of envelope fun
tions in
luding basi
 examples. The main results are
ontained in Se
tions 3 and 4 
on
erning growth envelope fun
tions and 
ontinuity enve-lope fun
tions, respe
tively.A
knowledgements. The present paper is an extended version of the short talk givenat the 
onferen
e `Fun
tion Spa
es VIII', July 3-7, 2006, B�dlewo. Some further ideasemerged from dis
ussions with Professor Leszek Skrzyp
zak while we were working on ajoint proje
t about embeddings of weighted fun
tion spa
es; I would like to thank himfor the inspiring talks.1. Weighted fun
tion spa
es. We use standard notation. Let N be the 
olle
tion ofall natural numbers and let N0 = N ∪ {0}. Let Rn be eu
lidean n-spa
e, n ∈ N, C the
omplex plane. If a ∈ R, then a+ = max(a, 0). For 0 < u ≤ ∞, the number u′ is givenby 1/u′ = (1 − 1/u)+. Given two (quasi-) Bana
h spa
es X and Y , we write X →֒ Y if

X ⊂ Y and the natural embedding of X in Y is 
ontinuous. All unimportant positive
onstants will be denoted by c, o

asionally with subs
ripts. For 
onvenien
e, let both
dx and | · | stand for the (n-dimensional) Lebesgue measure in the sequel. As we shallalways deal with fun
tion spa
es on Rn, we may often omit the `Rn' from their notationfor 
onvenien
e.1.1. Mu
kenhoupt weights. We brie�y re
all some fundamentals on Mu
kenhoupt 
lasses
Ap. By a weight w we shall always mean a lo
ally integrable fun
tion w ∈ Lloc

1 , positivea.e. in the sequel. Let M stand for the Hardy-Littlewood maximal operator given by
Mf(x) = sup

B(x,r)∈B

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy, x ∈ R
n,where B is the 
olle
tion of all open balls B(x, r) = {y ∈ Rn : |y − x| < r}, r > 0.Definition 1.1. Let w be a positive, lo
ally integrable fun
tion on Rn.(i) Let 1 < p < ∞. Then w belongs to the Mu
kenhoupt 
lass Ap if there exists a
onstant 0 < A <∞ su
h that for all balls B,



98 D. D. HAROSKE

(1.1) (
1

|B|

∫

B

w(x) dx

)1/p(
1

|B|

∫

B

w(x)−p′/p dx

)1/p′

≤ A,where p′ is given by 1/p′ + 1/p = 1, as usual.(ii) A weight w belongs to the Mu
kenhoupt 
lass A1 if there exists a 
onstant A > 0su
h that
Mw(x) ≤ Aw(x) for almost all x ∈ R

n.(iii) The Mu
kenhoupt 
lass A∞ is given by A∞ =
⋃

p>1 Ap.Sin
e the pioneering work of Mu
kenhoupt [27℄, [28℄, [29℄, these 
lasses of weightfun
tions have been studied in great detail, we refer, in parti
ular, to the monographs [13℄,[38℄, [39, Ch. IX℄, and [37, Ch. V℄ for a 
omplete a

ount of the theory of Mu
kenhouptweights.Remark 1.2. For 
onvenien
e, we re
all a few basi
 properties only. The 
lass Ap isstable with respe
t to translation, dilation and multipli
ation by a positive s
alar. Aweight w ∈ Ap possesses the doubling property, and w ∈ Ap implies w−p′/p ∈ Ap′ ,
1 < p < ∞. In addition to the (more or less obvious) monotoni
ity Ap1

⊂ Ap2
for

1 ≤ p1 < p2 ≤ ∞, the so-
alled `reverse Hölder inequality', a fundamental feature of Apweights (see [37, Ch. V, Prop. 3, Cor.℄) leads to the somehow surprising property thatfor any w ∈ Ap there exists some number r < p su
h that w ∈ Ar.Example 1.3. Obviously, one of the most prominent examples of a Mu
kenhoupt weight
w ∈ Ap, 1 < p <∞, is given by(1.2) wα(x) = |x|α, x ∈ R

n, −n < α <∞.It is well known that wα ∈ A1 if, and only if, α ≤ 0 and wα ∈ Ap if, and only if,
α < n(p − 1). In this paper we shall study a slightly more general weight with possiblydi�erent polynomial growth both near zero and in�nity,(1.3) wα,β(x) =

{
|x|α if |x| ≤ 1 ,

|x|β if |x| > 1 ,

} with α > −n, β > −n.Obviously this re�nes the approa
h (1.2), i.e., wα,α = wα. One veri�es that wα,β ∈ Ap if
−n < α < n(p− 1) and − n < β < n(p− 1).1.2. Fun
tion spa
es of type Bs

p,q(R
n, w) and F s

p,q(R
n, w) with w ∈ A∞. Let w ∈ A∞ bea Mu
kenhoupt weight and 0 < p <∞. All spa
es are de�ned on R

n in this se
tion. Theweighted Lebesgue spa
e Lp(w) 
ontains all measurable fun
tions su
h that(1.4) ‖f |Lp(w)‖ = ‖w1/pf |Lp‖ =

( ∫

Rn

|f(x)|pw(x) dx

)1/p

is �nite. Note that for p = ∞ one obtains the 
lassi
al (unweighted) Lebesgue spa
e,(1.5) L∞(w) = L∞, w ∈ A∞.We thus restri
t ourselves to p <∞ in what follows.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 99The S
hwartz spa
e S and its dual S ′ of all 
omplex-valued tempered distributionshave their usual meaning here. Let ϕ0 = ϕ ∈ S be su
h that(1.6) suppϕ ⊂ {y ∈ R
n : |y| < 2} and ϕ(x) = 1 if |x| ≤ 1,and for ea
h j ∈ N let ϕj(x) = ϕ(2−jx) − ϕ(2−j+1x). Then {ϕj}

∞
j=0 forms a smoothdyadi
 resolution of unity. Given any f ∈ S ′, we denote by Ff and F−1f its Fouriertransform and its inverse Fourier transform, respe
tively. Let f ∈ S ′, then the Paley-Wiener-S
hwartz theorem implies that F−1(ϕjFf) is an entire analyti
 fun
tion on Rn.Definition 1.4. Let 0 < q ≤ ∞, 0 < p < ∞, s ∈ R, and {ϕj}j a smooth dyadi
resolution of unity. Assume w ∈ A∞.(i) The weighted Besov spa
e Bs

p,q(w) is the set of all distributions f ∈ S ′ su
h that
‖f |Bs

p,q(w)‖ =
( ∞∑

j=0

2jsq‖F−1(ϕjFf)|Lp(w)‖q
)1/q(1.7) is �nite. In the limiting 
ase q = ∞ the usual modi�
ation is required.(ii) The weighted Triebel-Lizorkin spa
e F s

p,q(w) is the set of all distributions f ∈ S ′su
h that
‖f |F s

p,q(w)‖ =
∥∥∥
( ∞∑

j=0

2jsq|F−1(ϕjFf)(·)|q
)1/q

|Lp(w)
∥∥∥(1.8) is �nite. In the limiting 
ase q = ∞ the usual modi�
ation is required.Remark 1.5. The spa
es Bs

p,q(w) and F s
p,q(w) are independent of the parti
ular 
hoi
e ofthe smooth dyadi
 resolution of unity {ϕj}j appearing in their de�nitions. They are quasi-Bana
h spa
es (Bana
h spa
es for p, q ≥ 1), and S →֒ Bs

p,q(w) →֒ S ′, similarly for the
F -
ase, where the �rst embedding is dense if q < ∞; 
f. [6℄. Moreover, for w0 ≡ 1 ∈ A∞we re-obtain the usual (unweighted) Besov and Triebel-Lizorkin spa
es; we refer, in par-ti
ular, to the series of monographs by Triebel, [40℄, [41℄, [42℄ and [44℄ for a 
omprehensivetreatment of the unweighted spa
es.The above spa
es with weights of type w ∈ A∞ have been studied by Bui �rst in[6℄, [7℄, with subsequent papers [8℄, [9℄. It turned out that many of the results fromthe unweighted situation have weighted 
ounterparts: e.g., we have F 0

p,2(w) = hp(w),
0 < p < ∞, where the latter are Hardy spa
es, see [6, Thm. 1.4℄, and, in parti
-ular, hp(w) = Lp(w) = F 0

p,2(w), 1 < p < ∞, w ∈ Ap, see [38, Ch. VI, Thm. 1℄.Con
erning (
lassi
al) Sobolev spa
es W k
p (w) (built upon Lp(w) in the usual way) wehave(1.9) W k

p (w) = F k
p,2(w), k ∈ N0, 1 < p <∞, w ∈ Ap,
f. [6, Thm. 2.8℄. Further results, 
on
erning, for instan
e, embeddings, (real) interpola-tion, extrapolation, lift operators, duality assertions 
an be found in [6℄, [7℄, [13℄.



100 D. D. HAROSKEMore re
ently, Ry
hkov extended in [32℄ the above 
lass of weights in order to in
or-porate lo
ally regular weights, too, 
reating in that way the 
lass Aloc
p . Re
ent worksare due to Roudenko [12, 30, 31℄, and Bownik [3, 4℄. We partly rely on our approa
h[20℄.Remark 1.6. In the past, Besov and Triebel-Lizorkin spa
es with so-
alled `admissible'weights (of at most polynomial growth) were studied in detail, i.e., di�erent 
hara
teri-sations, the 
ontinuity and 
ompa
tness of 
orresponding embeddings and further topi
s.As a proto-type one 
an think of(1.10) v(x) = (1 + |x|2)α/2, α ∈ R, x ∈ R

n.Then the de�nition of Bs
p,q(v) and F s

p,q(v) is literally the same as in De�nition 1.4. Asfor literature we refer to [14℄, [15℄, [16℄, see also [11, Ch. 4℄ and [33℄ for a more generalapproa
h. Quite re
ently, there was a refreshed interest in this topi
 leading to the papers[22℄, [23℄, [24℄, [25℄ and [35℄. Appli
ations are des
ribed in [16℄.One remarkable point is that for su
h weights f ∈ Bs
p,q(v) if, and only if, vf ∈ Bs

p,q,with equivalent norms, ‖f |Bs
p,q(v)‖ ∼ ‖vf |Bs

p,q‖. In view of (1.4) one has thus to modify
v by v1/p in order to 
ompare results in 
orresponding spa
es.We formulate two spe
ial embedding results for weighted spa
es of type Bs

p,q(w) and
F s

p,q(w) that will be used in the sequel. The �rst one will enable us to redu
e all (non-limiting) 
ases to the study of B-spa
es only. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and
w ∈ A∞. Then(1.11) Bs

p,min(p,q)(w) →֒ F s
p,q(w) →֒ Bs

p,max(p,q)(w),see [6, Thm. 2.6℄. In other words, whenever the q-parameter has no in�uen
e on theresult we 
an immediately transfer the B-results to the F -spa
es by (1.11). The nextresult establishes a link between weighted and unweighted Besov spa
es; it is proved in[21℄.Proposition 1.7. Let(1.12) −∞ < s2 ≤ s1 <∞, 0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞,and wα,β be given by (1.3). Then(1.13) Bs1
p1,q1

(wα,β) →֒ Bs2
p2,q2if, and only if,(1.14) β ≥ 0 and δ = s1 −

n

p1
− s2 +

n

p2
≥

max(α, 0)

p1
.Remark 1.8. We brie�y 
ompare this result with the admissible weights v dis
ussed inRemark 1.6. Restri
ted to the parameters given by (1.12) we proved in [15, Thm. 2.3℄that(1.15) Bs1

p1,q1
(v) →֒ Bs2

p2,q2
if, and only if, δ ≥ 0 and v(x) ≥ cfor some c > 0 and all x ∈ Rn. In parti
ular, with v given by (1.10) we have to assume,in addition, that α ≥ 0. For extensions and more general results in this 
ontext we referto [15℄.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 1012. Envelope fun
tions2.1. Growth envelope fun
tions. Let for some measurable fun
tion f : R
n → C, �nitea.e., its de
reasing rearrangement f∗ be de�ned as usual,(2.1) f∗(t) = inf{s ≥ 0 : |{x ∈ R

n : |f(x)| > s}| ≤ t} , t ≥ 0.Definition 2.1. LetX be some quasi-normed fun
tion spa
e on Rn. The growth envelopefun
tion EX
G

: (0,∞) → [0,∞] of X is de�ned by(2.2) EX
G

(t) = sup
‖f |X‖≤1

f∗(t), t > 0.It is well-known that EX
G

is monotoni
ally de
reasing and right-
ontinuous, that X →֒

L∞ if, and only if, EX
G

is bounded, and that there are fun
tion spa
es X whi
h do notpossess a growth envelope fun
tion in the sense that EX
G

is not �nite for any t > 0; werefer to [17℄ and [18℄ for a more general approa
h as well as a detailed a

ount of basi
properties of EX
G
. We only mention the 
onvenient `monotoni
ity' feature for further use :(2.3) X1 →֒ X2 implies EX1

G
(t) ≤ cEX2

G
(t) for some c > 0 and all t > 0.Remark 2.2. Let X be a rearrangement-invariant Bana
h fun
tion spa
e, t > 0, and

At ⊂ Rn with |At| = t, then the fundamental fun
tion ϕX of X is de�ned by ϕX(t) =

‖χ
At
|X‖. In [18, Se
t. 2.3℄ we proved that in this 
ase(2.4) EX

G
(t) ∼

1

ϕX(t)
∼ ‖χ

At
|X‖−1, t > 0.Example 2.3. Basi
 examples for spa
es X are the well-known Lorentz spa
es; for de�ni-tions and further details we refer to [2, Ch. 4, Def. 4.1℄, for instan
e. This s
ale representsa natural re�nement of the s
ale of Lebesgue spa
es. In [18, Se
t. 3.2℄ we proved that for

0 < p <∞, 0 < q ≤ ∞,(2.5) E
Lp,q

G
(t) ∼ t−

1
p , t > 0.Remark 2.4. We dealt in [18℄ with the so-
alled growth envelope E

G
(X) of some fun
tionspa
e X : the envelope fun
tion EX

G
is equipped with some additional �ne index uX

G
that
ontains further information. In view of (2.5) this reads as E

G
(Lp,q) = (t−

1
p , q). However,we do not study this index in the present 
ontext (though it might be interesting).In general, the 
on
ept of growth envelopes make sense only for spa
es X ⊂ Lloc

1 ,i.e., when we deal with lo
ally integrable fun
tions. For X = Bs
p,q we shall thus assume

s > n( 1
p − 1)+ sin
e by [34, Thm. 3.3.2℄ this implies Bs

p,q ⊂ Lloc
1 for all 0 < p, q ≤ ∞,whereas in the borderline 
ase s = n( 1

p − 1)+ one needs additional assumptions on p and
q, respe
tively. This setting will not be treated here. We re
all some unweighted results.Proposition 2.5. Let 0 < q ≤ ∞, 0 < p <∞, and s > n( 1

p − 1)+.(i) Assume s < n
p . Then(2.6) E

Bs
p,q

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p + s

n , 0 < t < 1.(ii) Assume s = n
p and let 1 < q ≤ ∞ in 
ase of B-spa
es, and 1 < p < ∞ in 
ase of

F -spa
es, respe
tively. Then



102 D. D. HAROSKE(2.7) E
Bn/p

p,q

G
(t) ∼ | log t|

1
q′ , E

F n/p
p,q

G
(t) ∼ | log t|

1
p′ , 0 < t < 1

2 .(iii) We have(2.8) E
Bs

p,q

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p , t→ ∞.For a proof of this result we refer to [43, Thms. 13.2, 15.2℄ 
on
erning (i)�(ii), and to[18, Se
ts. 8.1, 8.3, 10.3℄. In the latter book one 
an also �nd a treatment of borderline
ases and a re
ent a

ount of further related results.2.2. Continuity envelope fun
tions. Let C be the spa
e of all 
omplex-valued boundeduniformly 
ontinuous fun
tions on Rn, equipped with the sup-norm as usual. Re
all thatthe 
lassi
al Lips
hitz spa
e Lip1 is de�ned as the spa
e of all fun
tions f ∈ C su
h that(2.9) ‖f |Lip1‖ = ‖f |C‖ + sup

t∈(0,1)

ω(f, t)

tis �nite, the expression (2.9) de�ning its norm, where ω(f, t) stands for the modulus of
ontinuity,
ω(f, t) = sup

|h|≤t

sup
x∈Rn

|f(x+ h) − f(x)|, t > 0.Definition 2.6. LetX →֒ C be some quasi-normed fun
tion spa
e on Rn. The 
ontinuityenvelope fun
tion EX
C

: (0,∞) → [0,∞] of X is de�ned by(2.10) EX
C

(t) = sup
‖f |X‖≤1

ω(f, t)

t
, t > 0.It is well-known that EX

C
is equivalent to some monotoni
ally de
reasing fun
tion,that X →֒ Lip1 if, and only if, EX

C
is bounded, and that(2.11) X1 →֒ X2 implies EX1

C
(t) ≤ cEX2

C
(t) for some c > 0 and all t > 0;we refer to [18, Ch. 5℄ for a more general approa
h and further details.Remark 2.7. Again, we dealt in the papers and books mentioned above usually withthe so-
alled 
ontinuity envelope E

C
(X) of some fun
tion spa
e X where EX

C
is equippedwith some additional �ne index uX

C
.Example 2.8. Let for 0 < a < 1, b ≥ 0, the Lips
hitz spa
es Lipa, Lip(1,−b) representthe natural extensions of (2.9): we 
olle
t all f ∈ C su
h that

‖f |Lipa‖ = ‖f |C‖ + sup
t∈(0,1)

ω(f, t)

ta
,and

‖f |Lip(1,−b)‖ = ‖f |C‖ + sup
t∈(0, 1

2 )

ω(f, t)

t| log t|b
,respe
tively, are �nite. In [18, Se
t. 5.3℄ we proved that(2.12) ELipa

C
(t) ∼ t−(1−a), 0 < t < 1,and(2.13) ELip(1,−b)

C
(t) ∼ | log t|b, 0 < t < 1

2 .
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ounterpart of Proposition 2.5 reads as follows.Proposition 2.9. Let 0 < q ≤ ∞, 0 < p <∞, and n
p ≤ s ≤ n

p + 1.(i) Assume n
p < s < 1 + n

p . Then(2.14) E
Bs

p,q

C
(t) ∼ E

F s
p,q

C
(t) ∼ t−1−n

p +s, 0 < t < 1.(ii) Assume s = n
p + 1 and let 1 < q ≤ ∞ in 
ase of B-spa
es, and 1 < p <∞ in 
aseof F -spa
es, respe
tively. Then(2.15) E

B1+n/p
p,q

C
(t) ∼ | log t|

1
q′ , E

F 1+n/p
p,q

C
(t) ∼ | log t|

1
p′ , 0 < t < 1

2 .(iii) Assume s = n
p and let 0 < q ≤ 1 in 
ase of B-spa
es, and 0 < p ≤ 1 in 
ase of

F -spa
es, respe
tively. Then(2.16) E
Bn/p

p,q

C
(t) ∼ E

F n/p
p,q

C
(t) ∼ t−1, 0 < t < 1.For a proof of this result we refer to [43, Thms. 13.2, 15.2℄ 
on
erning (ii), and to [18,Ch. 9℄ for all 
ases, as well as further details and related results. Note that for B-spa
esthe 
ase p = ∞ 
an be in
luded (with the 
orresponding result).3. Growth envelope fun
tions in weighted fun
tion spa
es. Let w ∼ wα,β begiven by (1.3) with α > −n, β > −n for 1 < p < ∞. Moreover, we shall only deal withspa
es on Rn in this se
tion and will thus omit it from their notation.3.1. Weighted Lebesgue spa
es. First we re
all what is already known in 
ase of α = β ≥

0. In [19℄ (see also [18℄) we proved the following result.Proposition 3.1. Let 1 < p <∞, 0 ≤ α < n(p−1), and w ∼ wα,α given by (1.3). Then(3.1) E
Lp(w)
G

(t) ∼ t−
α

np− 1
p , 0 < t < 1,and(3.2) E

Lp(w)
G

(t) ∼ t−
α

np− 1
p , t→ ∞.Remark 3.2. Note that for admissible weights v of type (1.10) the parallel result readsas

E
Lp(v)
G

(t) ∼ t−
1
p , 0 < t < 1, 0 < p <∞, α ≥ 0,whereas the global behaviour ELp(v)

G
(t) for t→ ∞ is the same as (3.2), 
f. [19℄.We extend this result now to weights w ∼ wα,β with parameters −n < α ≤ β, β ≥ 0.Proposition 3.3. Let 1 < p < ∞, β ≥ 0, −n < α ≤ β, and w ∼ wα,β given by (1.3).Then(3.3) E

Lp(wα,β)
G

(t) ∼ t−
max(α,0)

np − 1
p , 0 < t < 1,and(3.4) E

Lp(wα,β)
G

(t) ∼ t−
β

np− 1
p , t→ ∞.



104 D. D. HAROSKEProof. Step 1. In view of the 
onstru
tion (1.3) we obviously have(3.5) Lp(wα,β) →֒ Lp(wγ,γ) if, and only if, α ≤ γ ≤ β.Thus (2.3) and (3.2) imply (with γ = β ≥ 0)(3.6) E
Lp(wα,β)
G

(t) ≤ ct−
β

np− 1
p for t→ ∞.Moreover, if we apply (3.5) with γ = α+, then by (2.3) and (3.1),(3.7) E

Lp(wα,β)
G

(t) ≤ ct−
α+
np − 1

p for 0 < t < 1.For the 
onverse estimates, assume �rst 0 ≤ α ≤ β. Let(3.8) fs = s−
1
p− α

npχ
As
, As ⊂ R

n, |As| = s.Assume, for 
onvenien
e, As = Kcs1/n(0), the ball 
entered at the origin with radius
cs1/n, and c appropriately 
hosen su
h that |As| = s. Then(3.9) f∗s (t) = s−

1
p− α

npχ
[0,s)

(t), t > 0,and for 0 < s < 1,
‖fs|Lp(wα,β)‖ = s−

1
p− α

np

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p− α

np

( ∫ cs1/n

0

|x|α dx

)1/p

∼ s−
1
p− α

np

(
s

1
n (α+n)

)1/p

∼ c′,i.e. (up to possible normalising fa
tors) we have ‖fs|Lp(wα,β)‖ ≤ 1. Hen
e,(3.10) E
Lp(wα,β)
G

(t) ≥ sup
s>0

f∗s (t) ≥ c sup
s>t

s−
1
p− α

np ∼ t−
α

np− 1
p , 0 < t < 1,where we used (3.9) and α > −n. If s→ ∞, we 
onsider(3.11) gs = s−

1
p− β

npχ
As

with As =

{
x ∈ R

n : c1s
1
n ≤ |x| ≤ c2s

1
n

}
,where c1, c2 are 
hosen appropriately su
h that |As| = s. Consequently,(3.12) g∗s(t) = s−

1
p− β

npχ
[0,s)

(t), t > 0,and
‖gs|Lp(wα,β)‖ = s−

1
p− β

np

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p− β

np s
β

np |As|
1
p ∼ csin
e wα,β(x) ∼ |x|β ∼ s

β
n for x ∈ As and s >> 1. Note that we (only) used |As| = s inthis argument. Now we 
an pro
eed as above, that is,(3.13) E

Lp(wα,β)
G

(t) ≥ sup
s>0

g∗s (t) ≥ c sup
s>t

s−
1
p− β

np ∼ t−
β

np− 1
p , t→ ∞,where we additionally used β > −n. In view of (3.6), (3.7) and (3.10) this 
on
ludes theproof for 0 ≤ α ≤ β.Step 2. Let −n < α ≤ 0 ≤ β. As already pointed out, estimate (3.13) remains valid, sothat by (3.6), (3.7) it is left to prove in this 
ase(3.14) E

Lp(wα,β)
G

(t) ≥ ct−
1
p , 0 < t < 1.
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tions (3.8) by(3.15) hs = s−
1
pχ

As
, As = Kcs1/n(x0), |x0| = 2, 0 < s < 1,and c is again 
hosen su
h that |As| = s. Then wα,β(x) ∼ 1 for all x ∈ As su
h that(3.16) ‖hs|Lp(wα,β)‖ ∼ s−

1
p

( ∫

As

wα,β(x) dx

)1/p

∼ s−
1
p |As|

1
p ∼ c′,and h∗s(t) = s−

1
pχ

[0,s)
(t), t > 0. Parallel to (3.10) this leads to (3.14).Remark 3.4. Let −n < α ≤ β < 0. One 
an easily 
he
k that our proof above 
oversthe lower estimates (3.13) and (3.14) in this 
ase, too. So a reasonable 
onje
ture seemsthat Proposition 3.3 remains true for α ≤ β < 0, but the 
orresponding upper estimatesare not yet proved. Furthermore, one 
ould also 
onsider values β ≤ α and bene�t fromthe lower estimates (3.10), (3.13) and (3.14) 
orrespondingly.Before we 
ome to weighted spa
es of Besov and Triebel-Lizorkin type we try toextra
t some ideas from the above proof to formulate the result on a more abstra
t level.Proposition 3.5. Let 1 < p <∞, w ∈ Ap and Lp(w) be given by (1.4). Then there arepositive 
onstants c1, c2 su
h that for all t > 0,(3.17) c1 sup

|E|=t

( ∫

E

w(x) dx

)−1/p

≤ E
Lp(w)
G

(t) ≤ c2 sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

,where the supremum is taken over all sets E ⊂ Rn with |E| = t.Proof. We �rst deal with the estimate from below and adapt the `extremal' fun
tions(3.15) (see also (3.8) and (3.11)) appropriately. Let for s > 0,(3.18) hs = s−
1
pχ

Es
, Es ⊂ R

n, |Es| = s,where the set Es ⊂ Rn generalises As from above whi
h was 
hosen a

ording to ourneeds, i.e., to re�e
t the `typi
al' behaviour of our weight fun
tion. (In our 
ase w ∼ wα,βthis refers to |x| → 0 and |x| → ∞, respe
tively.) In general, however, we have no furtherinformation about `appropriate' sets Es, but at least we 
an 
on
lude that
‖hs|Lp(w)‖ ∼ s−

1
p

( ∫

Es

w(x) dx

)1/p

.Sin
e h∗s(t) = s−
1
pχ

[0,s)
(t),

E
Lp(w)
G

(t) ≥ sup
s

h∗s(t)

‖hs|Lp(w)‖
∼ sup

s>t

( ∫

Es

w(x) dx

)−1/p

,leading �nally to the lower estimate in (3.17). Of 
ourse, we use w ∈ Ap here.Conversely, let f ∈ Lp(w) with ‖f |Lp(w)‖ ≤ 1. First we apply an abstra
t resultabout resonant measure spa
es a

ording to [2, Ch. 2, Def. 2.3, Thm. 2.7℄, that is,
∫ ∞

0

f∗(t)g∗(t) dt = sup
k∗=g∗

∫

Rn

|f(x)||k(x)| dx,
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tion k on R
n whi
h are equimeasurable with g.We 
hoose g = χ

B
with |B| = t, hen
e g∗ = χ

[0,t)
, then |k| is the 
hara
teristi
 fun
tionof some set Et ⊂ R

n with |Et| = t. Thus monotoni
ity leads to(3.19) tf∗(t) ≤

∫ t

0

f∗(u) du = sup
|Et|=t

∫

Et

|f(x)| dx.Moreover, our assumption together with Hölder's inequality implies(3.20) ∫

Et

|f(x)| dx ≤ ‖f |Lp(w)‖

(∫

Et

w(x)−p′/p dx

)1/p′

≤ c

( ∫

Et

w(x)−p′/p dx

)1/p′

,su
h that (3.19), (3.20) and De�nition 2.1 lead to
E

Lp(w)
G

(t) ≤ c sup
|E|=t

1

|E|

( ∫

E

w(x)−p′/p dx

)1/p′

.Remark 3.6. Note that (3.17) is 
losely 
onne
ted with the Mu
kenhoupt 
ondition(1.1) for the weight w ∈ Ap. More pre
isely, if the supremum over all sets E ⊂ Rn with
|E| = t 
ould be repla
ed by the supremum over all balls B ⊂ Rn with |B| = t, then weimmediately obtain(3.21) E

Lp(w)
G

(t) ∼ sup
|B|=t

(∫

B

w(x) dx

)−1/p

= sup
|B|=t

‖χ
B
|Lp(w)‖−1as a 
onsequen
e of (1.1). But this is not yet 
overed by the above proof. However, theexamples studied so far in (2.5) (w ≡ 1), Propositions 3.1 (w = wα,α, α ≥ 0) and 3.3(w = wα,β , β ≥ 0, −n < α ≤ β) exemplify (3.17) (and also (3.21)). Moreover, observe thesimilarity between (2.4) and (3.21), though Lp(w) is not a rearrangement-invariant spa
ein general. Obviously the sup|B|=t disappears in (2.4) (just be
ause of the rearrangement-invarian
e).3.2. Weighted Besov and Triebel-Lizorkin spa
es. We 
ome to weighted spa
es of type

Bs
p,q(w) and F s

p,q(w). First we 
olle
t what is already known (in addition to the un-weighted result re
alled in Proposition 2.5).Proposition 3.7. Let 0 < q ≤ ∞, 0 < p <∞, n( 1
p −1)+ < s < n

p , α ≥ 0, and w ∼ wα,αgiven by (1.3).(i) Let 0 ≤ α
p < n− n

p + s. Then(3.22) E
Bs

p,q(w)

G
(t) ∼ E

F s
p,q(w)

G
(t) ∼ t−

1
p + s

n− α
np , 0 < t < 1.(ii) Let 1 < p <∞, and 0 ≤ α < n(p− 1). Then(3.23) E

Bs
p,q(w)

G
(t) ∼ E

F s
p,q(w)

G
(t) ∼ t−

α
np− 1

p , t→ ∞.Remark 3.8. Again, as in the Lp 
ase we have for admissible weights v of type (1.10)that
E

Bs
p,q(v)

G
(t) ∼ E

F s
p,q

G
(t) ∼ t−

1
p + s

n , 0 < t < 1,whereas the global behaviour 
oin
ides with (3.23). Moreover, we determined the 
orre-sponding growth envelopes for Bs
p,q(w), F s

p,q(w) (and Bs
p,q(v), F s

p,q(v)) in [18℄.



SINGULARITIES IN WEIGHTED FUNCTION SPACES 107Theorem 3.9. Let 0 < q ≤ ∞, 0 < p < ∞, s > 0, β ≥ 0, −n < α ≤ β, and wα,β begiven by (1.3). Assume that(3.24) −n+
max(α, 0)

p
< s−

n

p
<

max(α, 0)

p
.(i) Then(3.25) E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p−max(α,0)

np + s
n , 0 < t < 1.(ii) Let 1 < p <∞, then(3.26) E

Bs
p,q(wα,β)

G
(t) ∼ E

F s
p,q(wα,β)

G
(t) ∼ t−

1
p− β

np , t→ ∞.Proof. Step 1. Note �rst that it is su�
ient to deal with B-spa
es only due to (1.11). Wedis
uss 
ondition (3.24) �rst. As mentioned in Se
tion 2.1 brie�y, the 
on
ept of growthenvelopes requiresX ⊂ Lloc
1 and X 6 →֒ L∞ for the underlying fun
tion spa
e X in general.We use Proposition 1.7 in the form(3.27) Bs

p,q(wα,β) →֒ Bσ
τ,q and α+

p
= δ = s−

n

p
− σ +

n

τ
,and s ≥ σ, 0 < p ≤ τ ≤ ∞, and 0 < q ≤ ∞. For unweighted B-spa
es it is known that

Bσ
τ,q ⊂ Lloc

1 if σ > max(n
τ − n, 0) (negle
ting limiting 
ases). Thus the left-hand sideof (3.24) implies that we 
an always suitably 
hoose σ and τ su
h that (3.27) implies

Bs
p,q(wα,β) ⊂ Lloc

1 . Moreover, we may assume that τ ≥ max(p, 1). On the other hand,
Bσ

τ,q →֒ L∞ for σ > n
τ (negle
ting limiting 
ases again) su
h that s− n

p >
α+

p and (3.27)lead to Bs
p,q(wα,β) →֒ L∞ (whi
h is not interesting from our point view). Disregardinglimiting 
ases we are left to 
onsider parameters a

ording to (3.24). (As a by-produ
t ofour theorem and general features of growth envelopes we shall obtain that Bs

p,q(wα,β) 6 →֒

L∞ when (3.24) is satis�ed.)Step 2. First we deal with the estimates from above and use (3.27) together with theunweighted result Proposition 2.5. By our assumption (3.24) and the embedding (3.27)we 
on
lude n( 1
τ − 1)+ < σ < n

τ su
h that (2.6) reads as(3.28) E
Bσ

τ,q

G
(t) ∼ t−

1
τ + σ

n , 0 < t < 1,whi
h dire
tly leads to the 
orresponding upper estimate in (3.25) in view of (2.3) and(3.27). As for the global behaviour we use (3.23) and the embedding Bs
p,q(wα,β) →֒

Bs
p,q(wβ,β) sin
e α ≤ β (re
all (3.5) with γ = β). Thus (2.3) and (3.23) (with α = β)prove the upper estimate in (3.26).Step 3. It remains to show the 
onverse estimates in (3.25) and (3.26). Let(3.29) fj(x) = 2−j(s−n

p −
α+
p )ψ(2j(x− x0)), x ∈ R

n,be atoms in Bs
p,q(wα,β), where ψ is the 
ompa
tly supported C∞-fun
tion in Rn givenby(3.30) ψ(x) =

{
e
− 1

1−|x|2 , |x| < 1,

0 , |x| ≥ 1;
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 de
omposition result in [20℄, [3℄. Here we 
an 
hoose x0 = 0 for
α ≥ 0, but |x0| ∼ 2 for α < 0. Hen
e, ‖fj |B

s
p,q(wα,β)‖ ≤ c, and

f∗j (t) ∼ 2−j(s−n
p −

α+
p )ψ∗(2jnt), j ∈ N.One easily 
al
ulates that(3.31) ψ∗(t) ∼

{
e
− 1

1−(t/|ωn|)2/n , t < |ωn|,

0 , t ≥ |ωn|,where |ωn| denotes the (surfa
e) measure of the unit sphere in Rn. Let 0 < t < 1 and
hoose j0 ∈ N su
h that 2−j0n ∼ t. Thus
E

Bs
p,q(wα,β)

G
(t) ≥ c sup

j∈N

f∗j (t) ≥ c f∗j0(c
′2−j0n)

≥ c′′ 2−j0(s−
n
p −

α+
p ) ∼ t

s
n− 1

p−
α+
np ,i.e., the inequality 
onverse to (3.25).Step 4. As for the global behaviour we adapt the 
orresponding argument appropriatelyin order to show the lower estimate of (3.4). Let(3.32) ̺ = ϕ1 = ϕ(2−1·) − ϕ,where ϕ is given by (1.6). Then, obviously, supp ̺ ⊂ {x ∈ Rn : 1 < |x| < 4}, and forsuitably 
hosen ϕ, ̺∗(|ωn|) ≥

1
2 . We repla
e fj given by (3.29) with(3.33) gj(x) = 2−j n+β

p ̺(2−jx), x ∈ R
n, j ∈ N,and obtain

g∗j (t) ∼ 2−j n+β
p ̺∗(2−jnt) ≥ c2−j n+β

p for t ∼ 2jn, j ∈ N.This will immediately 
on
lude the proof granted that we 
an show that gj ∈ Bs
p,q(wα,β)with ‖gj |B

s
p,q(wα,β)‖ ≤ c uniformly in j ∈ N.Let k be some 
ompa
tly supported C∞ fun
tion on R

n with
∑

m∈Zn

k(x−m) = 1, x ∈ R
n.Then we have for all x ∈ Rn, j ∈ N,

gj(x) = 2−j n+β
p

∑

m∈Zn

k(x−m) ̺(2−jx) ∼ 2−j n+β
p

∑

|m|∼2j

k(x−m)̺(2−jx).(3.34)
On the other hand, a0m(x) = k(x−m)̺(2−jx) 
an be regarded as 1K-atoms lo
ated near
Q0m, m ∈ Zn, and thus (3.34) represents a spe
ial atomi
 representation of gj . By thealready mentioned atomi
 de
omposition with Mu
kenhoupt weights, [20℄, [3℄, this yields

‖gj |B
s
p,q(wα,β)‖p ≤ c1 2−j(n+β)

∥∥∥
∑

|m|∼2j

χ
0m

|Lp(wα,β)
∥∥∥

p

≤ c22
−j(n+β)

∫

Rn

( ∑

|m|∼2j

χ
0m

(x)
)p

|x|β dx
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≤ c32

−j(n+β)
∑

|m|∼2j

∫

Q0m

|x|β dx

≤ c42
−j(n+β)

∑

|m|∼2j

|m|β ≤ c5,where χ
0m

stands for the 
hara
teristi
 fun
tion of Q0m, m ∈ Z
n. This 
ompletes theargument.Remark 3.10. The result naturally extends Proposition 3.7 from α = β ≥ 0 to β ≥ 0,

−n < α ≤ β. Apart from the already mentioned limiting 
ases in (3.24), i.e., s = n+α+

por s = n+α+

p − n, respe
tively, further parameter settings, e.g., α ≤ β < 0 or β ≤ αdeserve attention. Even more desirable, however, would be a general result similar toProposition 3.17. But this will be studied elsewhere. Let us �nally remark, that theadditional restri
tion p > 1 in (ii) is a 
onsequen
e of the (method of the) proof andprobably not ne
essary, see also the unweighted result (2.8). Moreover, one 
an prove forthe 
orresponding indi
es that uX
G

= q if X = Bs
p,q(wα,β) and uX

G
= p if X = F s

p,q(wα,β).Note, �nally, that the unboundedness of EX
G

(t) for t→ 0 in (3.25) implies Bs
p,q(wα,β) 6 →֒

L∞, F s
p,q(wα,β) 6 →֒ L∞ in 
ase of (3.24).4. Continuity envelope fun
tions in weighted fun
tion spa
es. We �nally dealwith 
ontinuity envelopes for spa
es Bs

p,q(w), F s
p,q(w) with w ∈ A∞. Nothing is knownso far in su
h weighted situations; we rely on the unweighted results Proposition 2.9 andthe te
hniques developed above.Theorem 4.1. Let 0 < q ≤ ∞, 0 < p < ∞, β ≥ 0, −n < α ≤ β, and wα,β be given by(1.3). Assume that(4.1) max(α, 0)

p
< s−

n

p
<

max(α, 0)

p
+ 1.Then(4.2) E

Bs
p,q(wα,β)

C
(t) ∼ E

F s
p,q(wα,β)

C
(t) ∼ t−1+s−n

p −max(α,0)
p , 0 < t < 1.Proof. Step 1. Again it is su�
ient to deal with B-spa
es only due to (1.11). We dis
uss
ondition (4.1) �rst. As mentioned in Se
tion 2.2, the 
on
ept of 
ontinuity envelopesrequires X →֒ C and X 6 →֒ Lip1 for the underlying fun
tion spa
e X in general. Weuse (3.27) and the 
orresponding unweighted result. Sin
e Bσ

τ,q →֒ C if σ > n
τ and

Bσ
τ,q →֒ Lip1 for σ − n

τ > 1 (negle
ting limiting 
ases) we 
an argue as in Step 1 of theproof of Theorem 3.9 and substantiate (4.1).Step 2. First we deal with the estimates from above and use (3.27) together with theunweighted result Proposition 2.9(i) for Bσ
τ,q ,(4.3) E

Bσ
τ,q

C
(t) ∼ t−1+σ−n

τ , 0 < t < 1,whi
h dire
tly leads to the 
orresponding upper estimate in (4.2) in view of (2.11) and(3.27). It remains to show the 
onverse estimate in (4.2). Let(4.4) fj(x) = 2−j(s−n
p −

α+
p )ϕ(2j(x− x0)), j ∈ N,



110 D. D. HAROSKEwhere ϕ is the molli�ed version of
ϕ̃(x) =

{
0, |x| ≥ 1,

1 − |x|, |x| ≤ 1,
x ∈ R

n,su
h that supp ϕ(2j ·) ⊂ {y ∈ Rn : |y| ≤ c2−j}, j ∈ N, and
ω(ϕ(2j ·), t)

t
∼ 2j , t ∼ 2−j , j ∈ N.Then fj given by (4.4) is a Bs

p,q(wα,β)-atom (as we do not need moment 
onditions).Again we 
an 
hoose x0 = 0 for α ≥ 0, but |x0| ∼ 2 for α < 0. In parti
ular, this means
‖fj |B

s
p,q(wα,β)‖ ∼ 1. Sin
e

ω(fj , t)

t
∼ 2−j(s−n

p −
α+
p −1), t ∼ 2−j , j ∈ N,hen
e

E
Bs

p,q(wα,β)

C
(2−j) ≥ c

ω(fj , 2
−j)

2−j
≥ c′2−j(s−n

p −
α+
p −1), j ∈ N,and by standard arguments the proof of (4.2) is 
omplete.Remark 4.2. In 
ase of Besov spa
es one 
an extend the result to p = ∞ whi
h 
oin-
ides with the unweighted result [18, Prop. 9.1℄, re
all (1.5). There are 
ounterparts foradmissible weights in the sense of Remark 1.6: One 
an prove, for instan
e, that

E
Bs

p,q(v)

C
(t) ∼ E

Bs
p,q

C
(t), 0 < t < 1,and the 
ounterpart for F -spa
es where v is given by (1.10). Moreover, the indi
es inthose 
ases are given by uBs

p,q(wα,β)

C
= u

Bs
p,q(v)

C
= q and uF s

p,q(wα,β)

C
= u

F s
p,q(v)

C
= p.Remark 4.3. Let us �nally remark that envelope result 
an be applied to obtain Hardy-type inequalities, to establish 
riteria for limiting embeddings, and, last but not least, toprove surprisingly sharp upper estimates for the asymptoti
 behaviour of approximationnumbers of related 
ompa
t embeddings. This will not be presented here; we refer to [18,Ch. 11℄ for further details and referen
es.
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