FUNCTION SPACES VIII BANACH CENTER PUBLICATIONS, VOLUME 79 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

ON THE POINTWISE STRONG APPROXIMATION BY (C, 1)(E, 1) MEANS

WŁODZIMIERZ ŁENSKI and BOGDAN ROSZAK

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Szafrana 4a, 65-516 Zielona Góra, Poland
E-mail: W.Lenski@wmie.uz.zgora.pl

Abstract. We present an estimate of the (C,1)(E,1)-strong means with mixed powers of the Fourier series of a function $f \in L_{2\pi}$ as a generalization of the result obtained by M. Yildrim and F. Karakus. Some corollaries on the norm approximation are also given.

1. Introduction. Let $L^p_{2\pi}$ $(1 \leq p < \infty)$ [resp. $C_{2\pi}$] be the class of all 2π -periodic real-valued functions p-integrable [resp. continuous] over $Q = [-\pi, \pi]$ and let $X^p = L^p_{2\pi}$ when $1 \leq p < \infty$ or $X^p = C_{2\pi}$ when $p = \infty$. Let us define the norm of $f \in X^p$ as

$$||f||_p = \begin{cases} (\int_Q |f(x)|^p dx)^{1/p} & \text{when } 1 \le p < \infty, \\ \sup_{x \in Q} |f(x)| & \text{when } p = \infty. \end{cases}$$

Consider the trigonometric Fourier series

$$S[f](x) = \frac{a_0(f)}{2} + \sum_{k=0}^{\infty} (a_k(f)\cos kx + b_k(f)\sin kx) = \sum_{k=0}^{\infty} C_k[f](x)$$

and denote by $S_k[f](x)$ the k-th partial sum of S[f](x). Denote

$$S_{r,p}[f](x) := \frac{1}{r+1} \sum_{k=-p}^{r+p} S_k[f](x)$$
 for $r, p = 0, 1, 2, \dots$

and let

$$|C_1^{q_1}E_1^{q_2}|_{n,p}[f](x) := \left\{ \frac{1}{n+1} \sum_{k=0}^n \left[\frac{1}{2^k} \sum_{r=0}^k \binom{k}{r} |S_{r,p}[f](x) - f(x)|^{q_1} \right]^{q_2/q_1} \right\}^{1/q_2}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 42A24.

Key words and phrases: strong approximation, rate of pointwise strong summability.

The paper is in final form and no version of it will be published elsewhere.

for n, p = 0, 1, 2, ... and $q_1, q_2 > 0$ be the (C, 1) transform of the (E, 1) transform of $S_{r,p}[f](x)$ in the strong sense with the mixed q_1, q_2 -powers (cf. [2], [3]).

As a measure of approximation by the above quantities we use the pointwise characteristic

$$w_x[f](\delta)_p := \left\{ \frac{1}{\delta} \int_0^\delta |\varphi_x(t)|^p dt \right\}^{1/p},$$

where

$$\varphi_x(t) := f(x+t) + f(x-t) - 2f(x),$$

constructed on the base of definition of Lebesgue points $(L^p$ -points) (cf. [3]).

We can observe that with $\widetilde{p} \geq p$ for $f \in X^{\widetilde{p}}$, by the Minkowski inequality

$$\|w_{\cdot, i}[f](\delta)_p\|_{\tilde{p}} \le \omega_{\tilde{p}}[f](\delta),$$

where $\omega_{\widetilde{p}}[f]$ is the modulus of continuity of f in the space $X^{\widetilde{p}}$ defined by the formula

$$\omega_{\widetilde{p}}[f](\delta) := \sup_{0 < |h| \le \delta} \|\varphi_{\cdot}(h)\|_{\widetilde{p}} .$$

By K we shall designate either an absolute constant or a constant depending on some parameters, not necessarily the same at each occurrence.

2. Statement of results. We can now formulate our main result:

Theorem 1. If $f \in L^1_{2\pi}$ then there exists a constant K > 0 such that

$$\begin{split} |C_1^{q_1}E_1^{q_2}|_{n,p}[f](x) &\leq K\bigg(w_x[f]\bigg(\frac{\pi}{n+2p+1}\bigg)_1 + w_x[f]\bigg(\frac{\pi}{(n+2p+1)^\delta}\bigg)_1 \\ &+ \int_{(n+2p+1)^\delta}^{(n+2p+1)} \frac{w_x[f](\frac{\pi}{t})_1}{t}dt + \begin{cases} \frac{1}{n+1} \int_1^{(n+2p+1)^\delta} w_x[f](\frac{\pi}{t}) \ dt \quad when \quad 0 < q_2 < 1, \\ \frac{\log(n+1)}{n+1} \int_1^{(n+2p+1)^\delta} w_x[f](\frac{\pi}{t}) \ dt \quad when \quad q_2 = 1, \\ \frac{1}{(n+1)^{1/q_2}} \int_1^{(n+2p+1)^\delta} w_x[f](\frac{\pi}{t}) \ dt \quad when \quad q_2 > 1 \end{cases} \end{split}$$

with $a \delta \in (0, 1)$ and $q_1, q_2 > 0$ for any $x \in \mathbf{R}$ and n, p = 0, 1, 2, ...

Hence by the Minkowski inequality and our observation we can state

Theorem 2. If $f \in L^q_{2\pi}$ with $1 \leq q \leq \infty$, then there exists a constant K > 0 such that

$$\| |C_1^{q_1} E_1^{q_2}|_{n,p}[f](\cdot)\|_q \le K \left(\omega_q[f] \left(\frac{\pi}{(n+2p+1)^{\delta}}\right) + \int_{(n+2p+1)^{\delta}}^{(n+2p+1)^{\delta}} \frac{\omega_q[f](\frac{\pi}{t})}{t} dt. \right.$$

$$+ \left\{ \begin{aligned} \frac{1}{n+1} \int_1^{(n+2p+1)^{\delta}} \omega_q[f](\frac{\pi}{t}) \ dt & \text{when } 0 < q_2 < 1, \\ \frac{\log(n+1)}{n+1} \int_1^{(n+2p+1)^{\delta}} \omega_q[f](\frac{\pi}{t}) \ dt & \text{when } q_2 = 1, \\ \frac{1}{(n+1)^{1/q_2}} \int_1^{(n+2p+1)^{\delta}} \omega_q[f](\frac{\pi}{t}) \ dt & \text{when } q_2 > 1 \end{aligned} \right.$$

with a $\delta \in (0, 1)$ and $q_1, q_2 > 0$ for any n, p = 0, 1, 2, ...

From Theorem 1 we can derive the following corollary:

COROLLARY 3. If we additionally assume that $f \in L^1_{2\pi}$ and $x \in \mathbf{R}$ are such that $w_x[f](t) = o_x\left(\frac{1}{\log \frac{\pi}{t}}\right)$ in case $0 < q_2 \le \frac{1}{1-\delta}$ and $w_x[f](t) = o_x\left(t^{1-\frac{1}{(1-\delta)q_2}}\right)$ in case $q_2 > \frac{1}{1-\delta}$

as $t \to 0$ and if there exists an $s \ge 1$ such that $p = O(n^s)$ as $n \to \infty$, then

$$|C_1^{q_1}E_1^{q_2}|_{n,p}[f](x) = o_x(1)$$
 as $n \to \infty$.

REMARK 4. We note that in the case $q_1 = q_2 = 1$ the above corollary is a generalization of the result obtained by M. Yildrim and F. Karakus in [1].

- **3. Proofs of the results.** We only prove Theorem 1 and Corollary 3.
- **3.1.** Proof of Theorem 1. By simple calculations we obtain

$$|C_{1}^{q_{1}}E_{1}^{q_{2}}|_{n,p}[f](x)$$

$$\leq \left\{\frac{1}{n+1}\sum_{k=0}^{n} \left[\frac{1}{2^{k}}\sum_{r=0}^{k} {k \choose r} \left| \frac{1}{2\pi(r+1)} \left[\int_{0}^{\pi/(n+2p+1)} + \int_{\pi/(n+2p+1)}^{\pi/(n+2p+1)^{\delta}} + \int_{\pi/(n+2p+1)^{\delta}}^{\pi} \right] \right.\right.$$

$$\left. \varphi_{x}(t) \frac{\sin(r+2p+1)t/2 \sin(r+1)t/2}{\sin^{2}t/2} dt \right|^{q_{1}} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}}$$

$$\leq |I_{1}| + |I_{2}| + |I_{3}|, \quad \text{with } 0 < \delta < 1.$$

First we have

$$\begin{split} |I_{1}| &\leq \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \binom{k}{r} \right] \frac{1}{2\pi(r+1)} \right. \\ &\times \int_{0}^{\pi/(n+2p+1)} |\varphi_{x}(t)| \frac{(r+2p+1)t/2 (r+1)t/2}{t^{2}/\pi^{2}} dt \bigg|^{q_{1}} \bigg]^{q_{2}/q_{1}} \bigg\}^{1/q_{2}} \\ &= \frac{\pi^{2}}{8} \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \binom{k}{r} \left(\frac{(r+2p+1)}{2\pi} \int_{0}^{\pi/(n+2p+1)} |\varphi_{x}(t)| dt \right)^{q_{1}} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}} \\ &\leq \frac{\pi^{2}}{8} w_{x}[f] \left(\frac{\pi}{n+2p+1} \right)_{1} \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \binom{k}{r} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}} \\ &= \frac{\pi^{2}}{8} w_{x}[f] \left(\frac{\pi}{n+2p+1} \right)_{1}. \end{split}$$

To estimate the term I_2 , we note that

$$|I_{2}| \leq \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} {k \choose r} \right] \frac{1}{2\pi(r+1)} \right.$$

$$\times \int_{\pi/(n+2p+1)}^{\pi/(n+2p+1)^{\delta}} |\varphi_{x}(t)| \frac{(r+1)t/2}{t^{2}/\pi^{2}} dt \right|^{q_{1}} \left. \int_{q_{2}/q_{1}}^{q_{2}/q_{1}} \right\}^{1/q_{2}}$$

$$\leq \frac{1}{2\pi} \int_{\pi/(n+2p+1)}^{\pi/(n+2p+1)^{\delta}} \frac{|\varphi_{x}(t)|}{t} dt \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} {k \choose r} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}}$$

$$\leq \frac{\pi}{4} \int_{\pi/(n+2p+1)^{\delta}}^{\pi/(n+2p+1)^{\delta}} \frac{|\varphi_{x}(t)|}{t} dt = \frac{\pi}{4} \int_{\pi/(n+2p+1)^{\delta}}^{\pi/(n+2p+1)^{\delta}} \frac{1}{t} \frac{d}{dt} \left(\int_{0}^{t} |\varphi_{x}(u)| du \right) dt$$

$$= \frac{\pi}{4} \left[w_{x}[f] \left(\frac{\pi}{(n+2p+1)^{\delta}} \right) - w_{x}[f] \left(\frac{\pi}{n+2p+1} \right) + \int_{\pi/(n+2p+1)^{\delta}}^{\pi/(n+2p+1)^{\delta}} \frac{w_{x}[f](t)}{t} dt \right]$$

$$= \frac{\pi}{4} \left[w_{x}[f] \left(\frac{\pi}{(n+2p+1)^{\delta}} \right) + \int_{(n+2p+1)^{\delta}}^{(n+2p+1)^{\delta}} \frac{w_{x}[f](\frac{\pi}{t})}{t} dt \right].$$

The integral I_3 can be estimated as follows:

$$\begin{split} |I_{3}| &\leq \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \binom{k}{r} \right] \frac{1}{2\pi(r+1)} \right. \\ &\times \int_{\pi/(n+2p+1)^{\delta}}^{\pi} |\varphi_{x}(t)| \frac{1}{t^{2}/\pi^{2}} dt \Big|^{q_{1}} \Big]^{q_{2}/q_{1}} \Big\}^{1/q_{2}} \\ &= \frac{\pi}{2} \int_{\pi/(n+2p+1)^{\delta}}^{\pi} \frac{|\varphi_{x}(t)|}{t^{2}} dt \Big\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \left(\frac{1}{r+1} \right)^{q_{1}} \binom{k}{r} \right]^{q_{2}/q_{1}} \Big\}^{1/q_{2}} \\ &= \frac{\pi}{2} \int_{\frac{\pi}{(n+2p+1)^{\delta}}}^{\pi} \frac{1}{t^{2}} \frac{d}{dt} \left(\int_{0}^{t} |\varphi_{x}(u)| du \right) dt \\ &\times \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \left(\frac{1}{r+1} \right)^{q_{1}} \binom{k}{r} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}} \\ &\leq \left[\frac{1}{\pi} w_{x}[f](\pi) - \frac{(n+2p+1)^{\delta}}{\pi} w_{x}[f] \left(\frac{\pi}{(n+2p+1)^{\delta}} \right) \right. \\ &+ 2 \int_{\pi/(n+2p+1)^{\delta}}^{\pi} \frac{w_{x}[f](t)}{t^{2}} dt \left[\frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \left(\frac{1}{r+1} \right)^{q_{1}} \binom{k}{r} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}} \\ &\leq \frac{\pi}{2} \left[\frac{1}{\pi} w_{x}[f](\pi) + \frac{2}{\pi} \int_{1}^{(n+2p+1)^{\delta}} w_{x}[f] \left(\frac{\pi}{t} \right) dt \right] \\ &\times \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^{k}} \sum_{r=0}^{k} \left(\frac{1}{r+1} \right)^{q_{1}} \binom{k}{r} \right]^{q_{2}/q_{1}} \right\}^{1/q_{2}}. \end{split}$$

Now, simple calculations lead us to the estimation

$$\left\{ \frac{1}{n+1} \sum_{k=0}^{n} \left[\frac{1}{2^k} \sum_{r=0}^{k} \left(\frac{1}{r+1} \right)^{q_1} {k \choose r} \right]^{q_2/q_1} \right\}^{1/q_2} \\
\leq 2^{1/q_1} (2 + 2q_1) \left\{ \frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{(k+1)^{q_2}} \right\}^{1/q_2}.$$

Hence,

$$\begin{split} |I_3| & \leq K \int_1^{(n+2p+1)^{\delta}} w_x[f] \bigg(\frac{\pi}{t}\bigg) \ dt \bigg\{\frac{1}{n+1} \sum_{k=0}^n \bigg(\frac{1}{r+1}\bigg)^{q_2}\bigg\}^{1/q_2} \\ & \leq \left\{ \begin{aligned} K \frac{1}{n+1} \int_1^{(n+2p+1)^{\delta}} w_x[f] (\frac{\pi}{t}) \ dt & \text{ when } \ 0 < q_2 < 1, \\ K \frac{\log(n+1)}{n+1} \int_1^{(n+2p+1)^{\delta}} w_x[f] (\frac{\pi}{t}) \ dt & \text{ when } \ q_2 = 1, \\ K \frac{1}{(n+1)^{1/q_2}} \int_1^{(n+2p+1)^{\delta}} w_x[f] (\frac{\pi}{t}) \ dt & \text{ when } \ q_2 > 1. \end{aligned} \right. \end{split}$$

This completes the proof.

3.2. Proof of Corollary 3. Since $w_x[f](t) = o_x(\frac{1}{\log \frac{\pi}{t}})$ as $t \to 0$ we estimate the terms in Theorem 1 as follows:

$$w_x[f](\frac{\pi}{n+2p+1})_1 \le \frac{o_x(1)}{\log(n+2p+1)} \le \frac{o_x(1)}{\log(n+1)},$$

$$w_x[f](\frac{\pi}{(n+2p+1)^{\delta}})_1 \le \frac{o_x(1)}{\delta \log(n+2p+1)},$$

$$\int_{(n+2p+1)^{\delta}}^{(n+2p+1)} \frac{w_x[f](\frac{\pi}{t})_1}{t} dt \le o_x(1) \int_{(n+2p+1)^{\delta}}^{(n+2p+1)} \frac{dt}{t \log t}$$

$$= o_x(1) \int_{\delta \log(n+2p+1)}^{\log(n+2p+1)} \frac{dt}{t} = o_x(1) \log \frac{1}{\delta}.$$

For the last term we can observe that

$$\int_{1}^{(n+2p+1)^{\delta}} w_x[f] \left(\frac{\pi}{t}\right)_{1} dt \le o_x(1) w_x[f](\pi) (n+2p+1)^{\delta}$$

and if we put $\delta = \frac{1}{s+1}$, then $(n+2p+1)^{\delta} \leq (n+2Kn^s+1)^{1/(s+1)} \leq K(n+1)^{s/(s+1)}$ and

$$\int_{1}^{(n+2p+1)^{\delta}} w_x[f] \left(\frac{\pi}{t}\right)_1 \le o_x(1) K(n+1)^{s/(s+1)}.$$

Hence, for $0 < q_2 \le \frac{1}{1-\delta}$ our corollary follows but otherwise, since $w_x[f](t) = o_x(t^{1-\frac{1}{(1-\delta)q_2}})$ as $t \to 0$ we obtain

$$\frac{1}{(n+1)^{1/q_2}} \int_1^{(n+2p+1)^{\delta}} w_x[f] \left(\frac{\pi}{t}\right)_1 \le o_x(1) K \frac{1}{(n+1)^{1/q_2}} (n+1)^{(1-\delta)\frac{1}{(1-\delta)q_2}} = o_x(1),$$

and our proof is complete.

References

- [1] M. Yildrim and F. Karakus, The almost (C, 1)(E, 1) summability of a Fourier series and its conjugate series, News Bull. Cal. Math. Soc. 27 (2004), 17–24.
- [2] S. Lal and S. S. Yadav, The (C, 1)(E, 1) summability of a Fourier series and its conjugate series, Bull. Cal. Math. Soc. 93 (2001), 331–338.
- [3] W. Łenski, On the rate of pointwise strong (C, α) summability of Fourier series, in: Approx. Theory (Kecskemét, 1990), Colloquia Math. Soc. János Bolyai 58, 453–486.
- [4] A. Zygmund, Trigonometric Series, Cambridge, 1968.