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Abstract. We present an estimate of the (C,1)(FE, 1)-strong means with mixed powers of the
Fourier series of a function f € Ly, as a generalization of the result obtained by M. Yildrim and
F. Karakus. Some corollaries on the norm approximation are also given.

1. Introduction. Let LY (1 < p < o0) [resp. Ca,| be the class of all 2m-periodic
real-valued functions p-integrable [resp. continuous| over @ = [—n, 7] and let X? = L
when 1 < p < 0o or XP = Cy; when p = co. Let us define the norm of f € X? as

_ J gl f(@)Pda)/? when 1 <p < o,
1£ll, = sup,eq |f(@)] when p = oc.

Consider the trigonometric Fourier series
51f1(x) = " 4 S (0 () coska + b sinka) = 3 Clfl(a)
k=0 k=0

and denote by Si[f](z) the k-th partial sum of S[f](x). Denote

r+p
Splfl@)i= = SUS@)  forrp=0,1,2,...
k=p
and let
1 "y El a2/q1y 1/q2
1 Bl = {5 [ 2 (0) 80l - s |
k=0 r=0
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for n,p = 0,1,2,... and q1,g2 > 0 be the (C, 1) transform of the (F,1) transform of
Sy.p[f](x) in the strong sense with the mixed g1, go-powers (cf. [2], [3]).
As a measure of approximation by the above quantities we use the pointwise charac-

teristic 5 y
p
w0 = {5 [ leatopar

pa(t) == flz +1) + f(z — 1) = 2f (@),
constructed on the base of definition of Lebesgue points (LP-points) (cf. [3]).
We can observe that with p > p for f € XP, by the Minkowski inequality

lw. [f1(0)pll; < w; [£1(5),
where w[f] is the modulus of continuity of f in the space X P defined by the formula

wp[f](0) := sup IIso( )Nz -
0<|h|<

By K we shall designate either an absolute constant or a constant depending on some

where

parameters, not necessarily the same at each occurrence.

2. Statement of results. We can now formulate our main result:

THEOREM 1. If f € Li_ then there erists a constant K > 0 such that

ot Bl < & (w7 ool (o).

L T [F)(Z) dt when 0<go < 1,

(n+2p+1) wx[f](ﬂh it n
+/< SR o { loBletl) I ()3 G when gy =1,

n—+2 +1 P

with a § € (0, 1) and q1,q2 > 0 for any x € R and n,p=10,1,2,...

n+2p+1)9°

Hence by the Minkowski inequality and our observation we can state

THEOREM 2. If f € L with 1 < q < oo, then there exists a constant K > 0 such that

10l < K (wal) gy ) + /( " w115

CQlElD
|| ‘ 1 1 n+ 2p+ 1)5 n+2p+1)5 t

1 p(n+2pt1)° q[f](z) dt  when 0<gs <1,

n+1 1 t
og(n n—+2 1 -
QLo " f(E) dt when g =1,
n+2p+1)° .
7(n+11)1/‘12 1( P wq[f](;) dt  when g9 >1

with a § € (0, 1) and ¢q1,q2 > 0 for any n,p=0,1,2,
From Theorem 1 we can derive the following corollary:

COROLLARY 3. If we additionally assume that f € Li_ and x € R are such that
N
we[f](t) = oz(@) m case ) < qo < l—ié and w,[f1(t) = 0, (tl (176)q2) in case ga > - 5
t
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ast — 0 and if there exists an s > 1 such that p = O(n®) as n — oo, then

|C§1E§I2|n,p[f](x) = O:E(]‘) as mn — oo.

REMARK 4. We note that in the case ¢; = g2 = 1 the above corollary is a generalization
of the result obtained by M. Yildrim and F. Karakus in [1].

3. Proofs of the results. We only prove Theorem 1 and Corollary 3.

3.1. Proof of Theorem 1. By simple calculations we obtain

w/(n+2p+1) 7/(n+2p+1)° T
VA SR P
27T 7” + 1) w/(n+2p+1) w/(n+2p+1)°

q1:| q2/q1 }1/qz

‘CQ] qu |n,p[ [€9)

(el Ol

0 r=0

sin(r 4+ 2p 4+ 1)t/2 sin(r + 1)t/2
‘pw(t) )
sin® ¢/2

S|Il|+|l2|+|13|; with 0 < 6 < 1.

dt

First we have

(sl ()

7 /(n+2p+1) (r+2p+1)t/2 (r+1)t/2 q1792/q1y 1/q2
<[ e ) L [
0 m

-Ho ZH > (1) <M [ )"

0

=0
2 1 k k q2/q1y 1/q2
< Wa[f] kZ
8 n+2p+1 n—i—lk ‘ 2 =\

2

— gwx[f]<m)1

To estimate the term I3, we note that

{nilé{%ig)

m/(nt2p+1)° (r+1)t/2
X / |50x(t)|w d

1

. B+ )

IN

dt

IN

1
2r(r+1)

12|

IA

q1792/q1y 1/q2
11
/(n+2p+1)

1 7/ (n+2p+1)° |80x( )| 1 k q2/q1y 1/q2
<5/ ; dt{n+1z{2_’fz<r>} }
T Jx/(n+2p+1)

r=0
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/w/(n+2p+1)5 |‘Pr(t)|dt - /Tr/(n+2p+1)5 1 d (/ | |d )
=7 0z (u)|du
7/ (n+2p+1) t 4 Jr)(nvopr1) tdt

1
= ()
(g ) ¢ [ )

n -+ 2p +1 7/(n+2p+1) t
(n+2p+1) g
z {wz[f](%) +/ wel /(%) dt}
4 (Tl + 2p + 1) (n+2p+1)% t

The integral I3 can be estimated as follows:

{ 2 i{2k2(k)

| 13]

IN

2m(r +

7r/(n+2p+1)5 752/772

2r(r+1)
]qz/Q1}1/q2
_Z/ |50w( )l dt i 1 Z 1 q1 k a2/q1y 1/q2
2 n/(n+2p+1)° t2 n+1 = 2k r+1 r

1Ld/ [t
%(/0 %W)IdU) dt

i k a q2/q1y 1/q2
Azl O )

k=0

i) - D ()
1

[
ol 2

IN

T ™ n+2p+1)9

n

L, R O
g[%wx[f](w) N % é(n+2p+1)5 ( ) }

" a2/a1y 1/az
X{ni1];)[2%2(r+l> ()] }

Now, simple calculations lead us to the estimation

IN

k

1 "1 1 @ g\ 192/90y Va2
SRS

1/ 1 1 1/q2
<21 (242 .
<2 Y )
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Hence,
(n+2p+1)° T 1 n 1 g2y 1/4q2
I3 <K Z) ded ——
n<k | wil)(F) {nH’;)(TH) !
8
KA ey welf](F) dt - when 0<gp <1,
< K1og7§ﬁ1) j‘l(n+2p+1) awm[f](g) dt when ¢ =1,
2p+1 x
(n+11)1/q2 1(n+ Py w[f](F) dt when go > 1.

This completes the proof. m

3.2. Proof of Corollary 3. Since wy[f](t) = om(@) as t — 0 we estimate the terms in
Theorem 1 as follows: '

s 0:(1) 02(1)
wx[f](n +2p+ 1)1 = log(n+2p+1) : log(n +1)’
A e S T

(n+2p+1)5)1 =6 log(n+2p+1)
(n+2p+1) ™ (n+2p+1)

/ wg;[fi(th dtﬁom(l)/ dt
(

n+2p+1)9 (n+2p+1)9 tlogt
log(n+2p+1) dt B 1

—o.(1) | & 0.(1) log -
Slog(n+2p+1) T 5
For the last term we can observe that
(n+2p+1)‘S p-
[ (%) < eulnmon s 21y
1

and if we put § = sil, then (n+2p+1)° < (n+2Kn® + 1)V/6+D) < K(n+1)%/6+D and

(n+2p+1)° -
/ um[f](;) < Oz(l)K(n_’_l)S/(s-i-l)‘
! 1

Hence, for 0 < ¢ < ﬁ our corollary follows but otherwise, since w,[f](t) =
Oy (tl

1 (n+2p+1)° - . e
e ), welf ]<?)1 < 0 (VK (oo ()7 = 0,(1),

and our proof is complete. =

S W .
<1*5>‘12) as t — 0 we obtain
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