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Abstract. Under some assumptions on the matrix of a summability method, whose rows are
sequences of bounded variation, we obtain a generalization and an improvement of some results

of Xie-Hua Sun and L. Leindler.

1. Introduction. Let f be a continuous and 27-periodic function (f € Cy,) and let

agp > :
f(x)~ 5 + Z (ay cosnx + by, sinnx) (1.1)

n=1
be its Fourier series. Denote by S, (x) = S, (f, ) the n-th partial sum of (1.1) and by
w (f,9) the modulus of continuity of f € Co.
The usual supremum norm will be denoted by |-|| .
Let w be a nondecreasing continuous function on the interval [0, 27r] having the prop-
erties

W(O):O, w(61+52)§w(51)+w(6g).

Such a function will be called a modulus of continuity.
Denote by H“ the class of functions

H* :={f € Cor; |f(x) = f () < Cw(|z —y[)},

where C is a positive constant. For f € H¥, we define the norm ||-|| , by the formula

£l = Iflle + sup [A¥F (2, y)],
1;5 y
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where

84f ) = LWL,

If w(t)=C1]t" (0 < a<1), where Cis a positive constant, then

H* ={f €Co; [f(x) = fWI<Cilz—y|", 0<a<1}
is a Banach space and the metric induced by the norm ||-||, on H?® is said to be the
Holder metric.

Let A := (ank) (k,n=0,1,...) be a lower triangular infinite matrix of real numbers
satisfying the following conditions:

D) ank >0 (k=0,1,...) ,anx =0,(k >n) and Y _ank =1, (1.2)
k=0
where n =0,1,2,...,
ii) for every k, anr — 0(n — 00). (1.3)

Let the A-transformation of (S, (f;z)) be given by

Tn(f)::Tn(f;x)::ZankSk(f;x) (n=0,1,...).
k=0

and let

n

A= D anr, (E=1,2,....n+1).
r=n—k+1

Let w (t) be a given modulus of continuity satisfying the following condition:

i) Lfétt)))q —0(1) (t—0,), (1.4)
for0<p<g<land feC.

In [6] Xie-Hua Sun proved the following theorems:
THEOREM 1. Let A = (ani) satisfy the conditions (1.2), (1.3) and ani, < apki1 for

k=0,1,....n—1andn=0,1,.... If f € C and w (f;t), w(t) satisfy (1.4) then

(9~ 11 = o {32 A2t } (a2l i) }) (15)

k=1 k=1
THEOREM 2. Let A = (any) satisfy the conditions (1.2), (1.3) and any > apk41 for

E=0,1,....n=1andn=0,1,.... If f € C and w (f;t), w(t) satisfy (1.4) then

17 (f) = £ll, = o({éankw (f, ﬁ)}) (1.6)

Now we define two classes of sequences ([3]).

A sequence ¢ := (¢,) of nonnegative numbers tending to zero is called the Rest
Bounded Variation Sequence, or briefly ¢ € RBV'S, if it has the property

Z len — ent1] < K(¢)em (1.7)

k=m

for all natural numbers m, where K (c) is a constant depending only on c.
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A sequence ¢ := (¢;,) of nonnegative numbers will be called the Head Bounded Vari-
ation Sequence, or briefly ¢ € HBV S, if it has the property

m—1

Z len — ent1] < K(e)em (1.8)
k=0
for all natural numbers m, or only for all m < N if the sequence c has only finite nonzero
terms and the last nonzero term is cy.
Therefore we assume that the sequence (K ()~ is bounded, that is, that there
exists a constant K such that

0<K(ap) <K

holds for all n, where K («,) denote the sequence of constants appearing in the inequal-
ities (1.7) or (1.8) for the sequence a;, := (ank)peo- Now we can give the conditions to
be used later on. We assume that for allm and 0 <m <n

oo

Z ‘ank - ank—i—l‘ < Kapm (1'9)
k=m

and
m—1
Z |ank - ank+1| S Kanm (110)
k=0

hold if ay, := (ank)je belongs to RBV'S or HBV'S, respectively.
In [3] L. Leindler proved the following theorem:

THEOREM 3. Let us assume that (1.2) and (1.9) hold. Then for f € Cay

()~ flo=0(w( ) + Z ) Ii) N

In the paper we present estimates of the deviation T}, (f) — f in the norm ||-|| , under
more general assumptions on the elements of the matrix A.

Throughout the paper we shall use the following notations:

sin (k +
bl =Tt 0+ f )27 (), A=Y a it D)
P sin 5u
By Ki, Ks, ... we shall designate either an absolute constant or a constant depending on

the indicated parameters, not necessarily the same at each occurrence.

2. Main results. Our main results are the following.

THEOREM 4. Let (1.2), (1.10) hold. If f € C and w (f;t), w(t) satisfy (1.4) then

IITn(f)—fllwz()({%IA } {%A f’k }_%). (2.1)

k=1
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THEOREM 5. Let (1.2), (1.9) hold. If f € C and w (f;t), w(t) satisfy (1.4) then

P

1T () - £l = o({kz_;w == }) (22)

REMARK 1. If the elements of the matrix A satisfy the condition a,; < apk4+1 for k =
0,1,...,n—landn =0,1,..., then the condition (1.10) also holds and therefore Theorem
1 is a corollary of Theorem 4. Analogously we can derive Theorem 2 from Theorem 5.

If in the assumptions of the Theorem 5 we take w (|t|) = O (|t|’) with p = 0, then we
have immediately the following corollary

COROLLARY 1. Under the assumptions of Theorem 3 we have

1T (f) = fllc = 0<Za”’f”<f’ k+1>)

REMARK 2. It is easy to see that from the above estimate the estimate (1.11) follows
by (1.9).

3. Lemmas. To prove our theorems we need the following lemmas.
LEMMA 1. If oy, := (ank) e, belongs to HBV'S, then for % <u<mw

2 (K (o) + 1)+ 7

[An (w)] <

Ay, (3.1)

where u™" := max{1, [u~']}.
Proof. An elementary calculation shows that
T " 71'
D DI ) S e B

u
k=n—u—1+1

[An (w)] <

nul k+
Zakbm(n Ly

1
1
5—0 S 2U

Applying the Abel transformation and using (1.8), we get

—1
—ulo1 . p—y ! 2
e sin %u sin %‘Hu
E E |ank — Gnit1] — | tanpnwr| ———F—
1 sin 5u sin 5U

<
k=0 2
-1
on—u ~—1 2 2
T v 7 (K (an) + 1)
- ﬁ Z |ank - ank+1| + ?an,nfufl < u—znan,nfufl'
k=0
If a := {ank } e belongs to HBV'S then, by (1.8)
m—1
anu — Apm S |afn;1, - anm| S Z |ank - ank+1| S K (an) Anm.
k=p
for any m > p > 0, whence we have
Onp < (K (an) + 1) anm. (3.2)

From this, we obtain

2(K (o) + 1)? i
1A, (u)] < T @) £ 1) Y et A
u k=n—u—1+1 u




APPROXIMATION OF FUNCTIONS BY MATRIX MEANS 123

_ T () + D24

Ay
u

and our proof is complete. m

LEMMA 2. If oy, := (ank)3e, belongs to RBV'S, then for f € Cor

1T (f) = flle < 8 (K (an) +1) (2K (an) +1) Y anBi (£), (3.3)
k=0

where E, (f) denotes the best approximation of the function f by trigonometric polyno-

mials of order at most n.

Proof. Let m = m,, > 0 be such that 2™ <n+1 < 2™*! forn =0,1,..., then applying
the Abel transformation we get

T (f;2) = £ (@) = ank (Sk (f;2) = £ (2)) = ano (So (f;2) — f (x))
k=0

+Z Z anz 7 f( ))+ Z ank(Sk(f;x)*f(x))
k=1 j=2k—1 k=2m—1
m—1 2F_2 i
= ano (S0 (f52) = f @)+ D (3 (ani = anir1) D (Si(fi2) — f (@)

k=1 j=2k-1 [=2k—1

oy Y (5:(fim)— £ @)

k n

+ Z (k= anps1) S (St (F52) = F @) +am S (Sk(fiz) = f ()

=2m-1 |=2m—1 k=2m—1

= ano (000 (f;2) — f ()

+ Z Z ((ani — aniy1) (i — 281 4 1) (03901 (f32) = f(2))

k=1 =2k—1

Fap 61257 (o301 06121 (fi2) — [ (2)))

+ Z (ank — ank+1) (k=277 + 1) (opp_om—r (fi2) — [ (2))

—om—1

+ann (n - 2m—1 + 1) (Un,n—Qm_l (f,.f(}) - f (.’IJ)) ’

where
n

> (Sk(f;2)— (@) (0<m<n)

k=n—m

Onm (f32) = mr1

is the de la Vallée-Poussin mean. Using the well known inequality [6]

[9nm (1) = fle < 22 B (1)
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we obtain
1T (f) = flle < 2an0Eo (f)
m—1 2k_2
+ (zEQk V() Jani = anisn] (0 1) + dag o 125 By (f))
k=1 i= 2k—1
n—1
+2E5m-1 (f) D lank — ankra| (k+ 1) + 2anp (n + 1) Eyus (f) .
k=om-—1

y (1.7) we have
ITn (f) = flle < 2an0Eo (f)
—1
+ (2K (an) (2k — 1) Gy k—1 For— (f) + 4an’2k,12k_1E2k—1 (f))
k=1

+2nK (ay) apom—1Egm—1 (f) +2(n+ 1) apnEam-1 (f) .
If a, := {ank }pe belongs to RBV'S then, by (1.7)

3

n—1
Gnn — OGnm < ‘anm - ann| < Z |ank — Ank+1
k=m
S Z |ank - ank+1| S K(an) Anm
k=m
holds for any n > m > 0, whence we have
ann < (K () +1) anm.- (3.4)
From this
ITn (f) = flle < 2an0Eo (f)
+ (2K (a) (4 Z 2128 By (f) 42 (0 + 1) Gy g1 Egs (f)).
By (3.4)
(n + 1) an72m71E2m71 (f) S 2m+1an72m71E2m71 (f)
27n—1 27n—1
Sdapgm Y, Be(f) S4(K(an)+1) Y anBk(f)
k=2m—241 k=2m—241
and for k > 2
2k:—1 2k—1
Qo125 Epeca (f) < 205000 > Ei(f) S2(K(an)+1) Y anEi(f).
i=2k—241 i=2k—241
Therefore
1T (f) = flle < 2an0E0 (f) +4 (2K (an) + 1) an1 B (f)
m-1 2F71 2m !
F8(K () +1) 2K () + 1) (3 X anik > awBi())

k=2 j=2k—-241 k=2m—-241
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2m,—1

< 8(K (o) +1) 2K (0) + 1) > anEy (f)
k=0

< 8(K (o) +1) 2K (a) + 1) Y aun Bi (f)
k=0

and our proof is complete. m

LEMMA 3. If ay, := (ank)pe belongs to RBV'S, then
/ A (8)] dt < 4K (an) (K (an) + 1). (3.5)
0

Proof. Let m = m,, > 0 be such that 2™ <n+1 < 2™*! for n =0,1,..., then applying
the Abel transformation we get

n

Ay (t) = Z (ank — 1) (k+ 1) Fy, () = (ano — an1) Fo (t)

k=0
m—1 2°—1 n
5 =) O+ DO+ 0+ DE (@) S (@ — turn).
k=1 |=2k—-1 k=om-—1

where F),(t) is the Fejér kernel. Since the kernel F), (¢) is positive, using (1.7) we can show
that

™ ™ m—1 2F—1
[ Al < [ {lan—enlFa@)+ Y. 3 la - el 0+ DE (0
0 0 k=1 |=2k—1
n
FADF () Y - ank+1\}dt
k=2m—1
- m—1 2F—1 -
_ ano—an1|/ R+ S |anl—anl+1\(l+l)/ B () dt
0 k=1 |=2k—1 0
n s
+(n+1) Y |ank—ank+1|/ F, (t)dt
k=2m—1 0
1 m—1 2F—1
= §{|an0 —am|+ Y Y lam — | (141)
k=1 l:2k—1
n
(1) > lank = ankil}
k=2m—1
K(a ) m—1
< 2 ° (ano + I; 2kan’2k71 + (n + 1) an72m71).

By (3.4)

2771—1

(n+ 1) apan < 2" apom <8(K(on)+1) Y ank
k=2m—-241
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and for k£ > 2

2]&:71
2kan,2k—1 <4(K(ap)+1) Z G-
1=2k—241

Thus we obtain the desired estimate

2k71

/Oﬂ A, ()] dt < K(;‘”) (ano + 20, +4 (K () +1) > 3

k=1 |=2k—241

2m,—1

F8(K(@)+1) Y au)

k=2m—241

<AK (o) (K (o) +1) D ann

< 4K (o) (K(an) +1) ) ank = 4K () (K (o) +1) . =
k=0

4. Proofs of the theorems. In this section we shall prove our theorems.

4.1. Proof of Theorem 4. Setting

R (o) = R 0) = B ) = 5 [ (02 (0= 6, (0) A, (0
and
Ro (@) = T, (i) = f (2) = 5 [0 () A, ()
we get
IR, xy|<—/ 60 (£) — 6y (O] | An ()]
and

IR, |<—/ 6 0114, O]t < < [ (7)1, 0]
It is clear that
60 (8) — 6, ()] < o (| — )
and
60 (8) — 6, (O] < 4o (3 1)

Hence, using (4.1), we have

el < Lot —a) ([ + [ 14w w1

=il o (4 ).
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It is obvious that
I < an
b= / sin lt Z k
Using (3.1), we get
T An
I, < Kl/

n—1 k+1

A Ky}
_ T n,t nk+1
=K, E /ﬁ - dt < K ,;_1 —

sin (k: + )t‘dt <(2n+ 1) < 3. (4.4)

n

_ A,
¢ ldt:Kl/ t’tdt

k=1
- An k = An k
<2K —= <2K —. 4.5
om0 Ak < op 3 A (45)
k=2 k=1
From (3.2) and (1.2) we can observe that
n+1 A n+1 n+1
Z Z anr_K+1Zann k+1 = K+1Zank——
k=1 k=1 r=n—k-+1
and by (4.3)-(4.5), we obtain
+
Ry (z,9)| < Kow (f; |2z — (4.6)
k:
On the other hand, using (4.2), we have
2 ™
R < 2 [ w (i), 0] a
2 !/ !/
w(f;t) Ay ()|dt:;(11+12). (4.7)
Again by (1.2)
, ™ (" 7r
< — < — .
n<w(f) /0 [An ()] dt < 37 (£,7)
and by (3.1) and using the monotonicity of the modulus of continuity
4 = 1\ A
Bk [ oo / ’ (f; 1) &
jus 1 t t
& A
n,t
= : <K
=K Z/ ( > Hhdt < ( )
n T n+
<sK Y w (1 7) Z ( ) 4. (4:8)
k=2 k=1

From the monotonicity of the modulus of continuity by (3.2) and (1.2)

n+1 . An’k . n+1 An,k
Z‘”(f;%) ki 2w<f’n—+1)k=1 K

k=1
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> 50 (£ 2) g oo = s (1) (4.9)

Combining (4.6)-(4.9) we obtain

B (29) < Ko Y e (f57) (4.10)
k=1
and the same estimate for |R, ()| is true
n+1
TN Ank
<K - ’ 4.11
B, (@) 4;w(f,k) : (4.11)
Using (4.6), (1.4) and (4.10), we get
(B (2,9)| "
sup {AR, (z,y)} =sups ———— |Rn (z,y)| ¢
w (AR, (2.) { S R (o)
n+1A % n+1 ) 1‘%
§K5{Z } {ZAM } . (4.12)
k=1

Now collecting our partial results (4.11) and (4.12) we obtain (2.1), and this completes
the proof. m

4.2. Proof of Theorem 5. Using the same notations as in the above proof, from (4.1) and
(3.5) we get

C s
R (o) < 2 (e =) [ 140 )]

< SORWELD | hile— ). (4.13)

™

On the other hand

By (z,y)| < [To (f52) = f (@) + T (f;9) = f ()]
by (4.2) and (3.3), whence we have

R (2,y)] <16 (K +1) (2K + 1) ansEx (f) < K Zankw (f, " 1) (4.14)
k=0

Analogously, we can show that

Ry (2)] = |To () = f ()| <8(K +1) 2K +1) Y ank By (f)
k=0

< K, Zankw (f, " 1) (4.15)

Finally, using the same method as in the proof of Theorem 4, (2.2) follows from (4.13)-
(4.15). =



(1]
[2]
(3]
[4]
[5]
[6]
[7]

APPROXIMATION OF FUNCTIONS BY MATRIX MEANS 129

References

P. Chandra, On the degree of approximation of a class of functions by means of Fourier
series, Acta Math. Hungar. 52 (1988), 199-205.

P. Chandra, A note on the degree of approzimation of continuous function, Acta Math.
Hungar. 62 (1993), 21-23.

L. Leindler, On the degree of approximation of continuous functions, Acta Math. Hungar.
104 (2004), 105-113.

R. N. Mohapatra and P. Chandra, Degree of approximation of functions in the Hélder
metric, Acta Math. Hungar. 41 (1983), 67-76.

T. Singh, Degree of approrimation to functions in a normed spaces, Publ. Math. Debrecen
40 (1992), 261-271.

X.-H. Sun, Degree of approximation of functions in the generalized Hélder metric, Indian
J. Pure Appl. Math. 27 (1996), 407-417.

Ch. J. de la Vallée-Poussin, Lecons sur l’approzimation des fonctions d’une variable réelle,
Paris, 1919.






