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Abstract. Let (2, 1) be a measure space, E be an arbitrary separable Banach space, E;« be the
dual equipped with the weak™ topology, and g : Q2 x E — R be a Carathéodory function which
is Lipschitz continuous on each ball of E for almost all s € Q. Put G(x) := [, g(s,x(s))dpu(s).
Consider the integral functional G defined on some non-LP-type Banach space X of measurable
functions z: {2 — E. We present several general theorems on sufficient conditions under which
any element v € X* of Clarke’s generalized gradient (multivalued C-subgradient) dcG(z) has the
representation v(v) = [,(¢(s),v(s))du(s) (v € X) via some measurable function ¢: Q — Ej.
of the associate space X' such that ((s) € Ocg(s,z(s)) for almost all s € Q. Here, given a
fixed s € Q, dcg(s, uo) denotes Clarke’s generalized gradient for the function g(s,-) at up € E.
Concerning X, we suppose that it is either a so-called non-solid Banach M-space (in particular,
non-solid generalized Orlicz space) or Kéthe-Bochner space (solid space).

Introduction. The purpose of the present paper is to formulate and prove several gen-
eral results (see Theorems 3.2-3.3, Remark 3.4 in Section 3, Theorems 4.2-4.5 in Sec-
tion 4) for the calculation of Clarke’s generalized gradients (also called multivalued C-
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subgradients in nonsmooth analysis) of locally Lipschitz integral functionals. We succeed
to obtain the results for these functionals defined on a non-LP-type space X of measurable
functions which is either a so-called non-solid Banach M-space (in particular, non-solid
generalized Orlicz space) or Kéthe-Bochner space (solid space).

Theorem 4.2 in the case of the solid space X is a generalization of the LP-result of
F. H. Clarke, J. P. Aubin/F. H. Clarke in 1976-1983 [5, 11, 12]. Note that this LP-result is
intensively used in the theory of partial differential inclusions and non-smooth mechanics
(see, e.g., [9, 16, 23, 24]).

In Section 6 we show that Theorem 4.2 with its proof in a very special case for the solid
regular Orlicz—Bochner space X = L‘I’(E) implies an alternative proof for the L®-result
of R. Ptuciennik/S. Tian/Y. Wang in 1990 [36, Theorem 2]. We observe that the LP-result
of F. Clarke under his condition (A) (see [12, Theorems 2.7.5, 2.7.3]) can be standardly
generalized to the case of Lipschitz integral functionals defined on a K&éthe—Bochner
space X (solid space), and so we shall not present this generalization herein. It turns
out that the LP-result of F. Clarke [12, Theorem 2.7.5] under his condition (B) together
with its proof given in [12, Proofs of Theorems 2.7.5, 2.7.2] can be generalized in several
directions via introducing the so-called U-property such as in Lemmas 3.1, 4.1 and via
using verifiable “majorant” conditions such as in Theorems 3.2-3.3, 4.2-4.3. Analyzing
the above conditions (A)-(B), we propose the “majorant” conditions (K6)-(K7) and
(K8)-(K9) in Theorems 4.4-4.5 and we need not apply Lebourg’s mean value theorem
[12, Theorem 2.3.7] for proving Theorems 4.4—4.5.

By the non-smooth variational methods [9, 24], the calculation formula for Clarke’s
generalized gradient established in Corollary 6.2 of Theorems 4.3, 4.5, can be applied to
the solvability problem for the Dirichlet elliptic inclusion in R? involving exponential-
growth-type multivalued right-hand side in the Orlicz space L*°, where ®y(a) = exp(a?)
— 1 (see details in our paper [32]). Observe that the above mentioned L®-result of 36,
Theorem 2| cannot be applied to this problem, since the “exponential-type” function @
does not satisfy the condition (A) of [36]. The above inclusion in L®° was studied by
topological methods in [1, 2, 30, 31].

In Section 1 we give some terminology and auxiliary facts for Banach lattices, Kothe—
Bochner spaces, Banach M-spaces, and Clarke’s generalized gradients. In Section 2 we
give the auxiliary Lemmas 2.1, 2.3, and then the known Lemma 2.4 for convex integral
functionals defined on these spaces. In Section 5 we give Corollaries 5.1-5.2 of Theorems
3.2-3.3 for the case of the non-solid generalized Orlicz space X = LM (Q, R™) with m > 2.
In Section 6 we give Corollary 6.2 of Theorems 4.3, 4.5 for the solid Orlicz—Bochner space
X =L%(E).

1. Some terminology and auxiliary facts. Let (2,2, 1) be a measure space with a
complete o-finite o-additive measure p on some o-algebra 2 of subsets of 2. Throughout
this paper E denotes a separable Banach space. Denote [3] by CI(E) (resp., Cp(FE),
Cv(E), CvCp(E), etc.) the family of all nonempty closed (resp., compact, convex, convex
compact, etc.) subsets of E. By bco A we denote the balanced closed convex hull of A C E.
Put Bg(u,r) :={w € E : ||w —u||g < r} for r € (0,00). Given a Suslin locally convex
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space F, we denote by B(F') the o-algebra of Borel subsets of F. Then a multifunction
I': Q — 2F is called (see, e.g., [8, 13, 15]) measurable if [~ (C) := {s: ['(s)NC # 0} € A
for C € B(F). Sell' denotes the set of all measurable selections of I'. The theory of
measurable selections is given in [8, 13, 15] (in particular, for T': Q — 2Fu~, since (by
[8, p. 198], [7, p. 4,11]) the dual space E*. with the topology w* = ¢(E*, E) is a Lusin
space for the case of separability of F).

Given a function z: @ — E and a multifunction H: Q x E — Cp(E}.), define
Ny (z) := Sel H(-,z(-)). General theorems on the boundedness of the (Nemytskij) mul-
tivalued superposition operator Ny can be found in [3, 4, 26, 34, 39]. We say that
the Filippov implicit function property is valid for the multifunction H if given any
measurable function £: Q@ — Ef. and any measurable multifunction b: @ — Cp(E)
with £(s) € H(s,b(s)) almost everywhere (a.e.), there exists a measurable function
z: Q — E with z(s) € b(s) and £(s) € H(s,z(s)) a.e. The multifunction H is called
(A x B(E),B(E%.))(mod 0)-measurable if exists Qy with p(Q\Qo) = 0 such that H
is (A x B(E),B(E?.))-measurable on y x E. The multifunction H is called multi-
superpositionally measurable if the multifunction s — Ng(c)(s) := H(s,c(s)) is mea-
surable for any measurable multifunction s — c(s) € Cp(E). Many sufficient conditions
for the above properties for H can be found e.g. in [2, 8, 16, 42]. By Filippov’s theorem
[2, Theorem 6.1]| all the above properties are valid for any Carathéodory multifunction
H: QxR™— Cp(R™).

Further, L°(Q, F') denotes the space of all (equivalent classes of ) measurable functions
x: Q — F. A Banach space K C L°(Q,R) with norm || - ||k is called [4, 22, 41] a Banach
lattice with monotone norm (also under the name, Kothe space, Banach ideal space), if
r € K and y € L°(Q,R) and |y(s)| < |z(s)| a.e., then y € K and |ly|lx < ||2|/x. Put
K, :={zeK:z(s) >0 ae.}. We shall use only K with supp K = Q. Given a Banach
lattice K C L°(Q,R), define |21, 41] the Kéthe-Bochner space X = K(E) C L°(, E)
as the Banach space of all measurable functions z: Q — E such that ||z(-)||g € K, with
norm ||z||x = ||[|lz()||gllx. Let L™ be the Banach algebra of all essentially bounded
measurable scalar-valued functions defined on 2. A Banach space X C L°(, E) with
norm || - || x is called [29] a Banach M-space (or Banach L*°-module [27, 28, 33], or ideal*
space [41]) if x € X and o € L™ imply that ax € X and |jaz|x < ||| p]|/z|x- If the
above condition is valid only for o € (L°°), then X is called a Banach M -space.

The spaces K and K(FE) are called solid spaces (see, e.g., [35] and references cited
therein). Spaces of measurable functions which are not from the classes of the above
spaces K and K (FE) are usually called non-solid spaces. Historical comments on different
classes of non-solid spaces can be found in [6, 20, 25, 35].

A prominent example of a Banach M-space is the generalized (non-solid in general
for the case m > 2) Orlicz space LM = LM(Q,R™) C L°(Q,R™) with the Luxemburg
norm |||z = inf{\ > 0: [, M(x(s)/N)du(s) <1} < co, where M: R™ — [0,00) is a
given Young (even, convex) function (see more general cases of M defined on Q x F with
dim E > 2, e.g. in [10, 14, 17, 18, 19, 20, 25, 26, 35, 40]).

From now on, we suppose that X = X (€, E) satisfies one of the following conditions
(cf. [6, 20, 35]):
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(M,,) E=R™ mecN,X c L%, E) is a Banach M-space with supp X = ;

(My) dim E = 400, X C L%(Q, E) is a Banach M -space and exist «, 3 € L°(€2, (0, 00))
such that L>®(Q, F;a) € X C LY(Q, E;3) continuously, where L>®(, E;a) is
equipped with norm |||/ () = [|£]|=(g) and L'(Q, E; () is equipped with
norm ||{EHL1(5) = H%HLl(E).

Under the condition (M,,) with m > 2, the associate space X' = X'(Q2, R™) is defined
in [27, 28, 33] by

X' = {2’ € L°%(Q,R™) : 2'(s) € vsupp X (s) a.e., (z,2') € R(Vx € X)}, (1.1)

where (z,2') := [,(2(s),2/(s))du(s) and the vector support vsupp X (always exists)
can be defined by vsupp X (s) := the closure of {z1(s),x2(s), ...} a.e. for some sequence
xn, € X such that © € X = x(s) € the closure of {x;(s),x2(s),...} a.e. Under the
condition (M), the associate space X' = X'(Q, E.) is defined as

X':={a' € L%, E}.) : (x,2') € R(Vx € X)}. (1.2)

It is known that X’ can be interpreted as a Banach subspace of the dual space X* by the
injection '’ — (-, ') with norm ||z’| x := sup{(z,z’) : ||z|x < 1} < 00. If X = K(F)
is the Kothe-Bochner space, then X' = (K(E)) = K'(EX.), where K'(EX.) is the
Koéthe—Bochner space (modelled by means of K’) of measurable functions y: Q — Ef.
(if in addition E* is separable, then X' = K'(E*)). If X = LM, then X’ = LM with
equivalent norms (in the case of M defined on F with dim E = 400, the convex dual M*
is defined on EZ.).

Let U be an open subset of a Banach space E. If f: U — R is Lipschitz continuous
on U, then f has Clarke’s generalized derivative f°(x;-):

fo (.’IJ; ’U) = lim sup f(y + )\’U) — f(y)

y—x A
Al0

The set Oc f(x) = {¢ € E* : ((,v) < f°(z;v) (Vv € E)} is called the generalized gradient
(Clarke’s C-subgradient) of f at x (then [12, 23] O¢ f(z) € CvCp(EZ.)). A function f is
said [12, Definition 2.3.4] to be regular in Clarke’s sense at x if the directional derivative
f(z;v) of f at x along v exists and f/(z;v) = f°(x,v) for every v € E.

(v € E). (1.3)

2. Auxiliary lemmas. If g: 2 x £ — R is locally Lipschitz continuous with respect
to the second variable, then ¢°(s, ug;v) denotes the Clarke derivative at ug in direction
v of the function u — g(s,u). By [12, 23] the function ¢°(s,u;v) is continuous in v. For
the simplicity, dcg(s,uo) denotes the generalized gradient at uy of g(s,-). The proofs
of Lemmas 2.1, 2.3 are standard via the known measurable selection theorems [8] (for
proving Lemma 2.3 one need else Lebourg’s theorem [12, Theorem 2.3.7]).

LEMMA 2.1. Let g: Q x E — R be a function such that g(-,u) is measurable for any
u € E and g(s,-) is Lipschitz continuous on each ball of E for almost all s € Q. Then,
given any measurable functions x, v : ) — E, the function s € Q — ¢°(s,z(s);v(s)) is
measurable.
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THEOREM 2.2 (Lebourg [12, Theorem 2.3.7]). Let f: U — R be Lipschitz continuous on
an open subset U of E. Assume that U contains the convex interval [x,y]. Then, there
exists a point u € (x,y) such that f(z) — f(y) € (Ocf(u),xr —y).

LEMMA 2.3. Let g be as in Lemma 2.1 and xz,y : Q — E be two measurable func-
tions. Suppose that the multifunction A: Q x [0,1] — CvCp(R), (s,a) — A(s,«a) :=
(Ocy(s,ax(s) + (1 —a)y(s)), z(s) —y(s)) is (A x B(R), B(R)) (mod 0)-measurable. Then
there exist measurable functions u: Q — E and §: Q — E¥. such that u(s) € [x(s),y(s)],
§(s) € Dog(s,uls)) and g(s, 2(s)) — g(s,y(s)) = (£(s),2(s) — y(s)) a.e.

Proof. We divide the proof into Steps 2.1-2.3.

Step 2.1: Given a fixed measurable function z: Q — EJ., the multifunction M: Q —
CvCp(Ex.) U {0}, M(s) := Ocg(s, z(s)) has dom M = Q(mod 0). By Lemma 2.1, the
function s — ¢°(s, 2(s); v) = sup{(u*,v) : u* € dcg(s, z(s))} is measurable for all v € E,

and so, by [8], M is measurable.
Step 2.2: Let

H{(s) :={u € [2(s),y(s)] - g(s,2(s)) — 9(s,y(s)) € (Ocg(s,u),z(s) —y(s))},
F:Qx[0,1] = CvCp(R), F(s,a) :={g(s,2(s)) — g(s,y(s)) —r : r € A(s,a)}.

By the assumption, we deduce that F' is (2 x B(R), B(R)) (mod 0)-measurable and so
F~({0}) € (A x B(R)) (mod 0). On other hand, by Lebourg’s Theorem 2.2 for a.a. s € Q
there exists a € [0, 1] such that 0 € F(s, ), i.e. there exists 0y C  such that u(Q\Qo)
= 0 and Projo,F'~ ({0}) = Qo. Hence, by the von Neumann—-Aumann selection theorem
[8, Theorem II1.22] the multifunction H: Qy — 2/%U\{0}, H(s) := {a : 0 € F(s,a)}
(whose graph coincides with £~ ({0})) has a measurable selector a: Qo — [0,1]. Then
s = u(s) := a(s)xz(s) + (1 — a(s))y(s) is a measurable selector of the multifunction H

on .
Step 2.3: By Lebourg’s Theorem 2.2,

Afs) :={u” € E" : g(s,2(s)) — g(s,y(s)) = (u*, z(s) —y(s))} € CvCU(EL-)
for all s € . It is an easy check that A is measurable. By Steps 2.1-2.2, we deduce that
the multifunction T': Qy — 285+ T'(s) := A(s) N dcg(s,u(s)) € CI(EX.), is measurable.
By [8], there exists a measurable selector £ of T', i.e. £(s) € Ocg(s,u(s)) and g(s,z(s)) —
9(s,y(s)) = (&(s), () —y(s)) on Qo. m

A function f: Q x F — R := RU {400} is called a normal integrand if f(s, ) is lower
semicontinuous for almost all (a.a.) s € Q and f is (A x B(F), B(R)) (mod 0)-measurable
on Q X F.If F is a Lusin space, then [7, Lemma 1.2.3] every Carathéodory function on
Q x F' is a normal integrand. If f is a normal integrand on 2 x E, then the dual convex
normal integrand f*: Q x E. — R is defined by f*(s,u*) = sup{(u,u*) — f(s,u) :
u € E}. Denote by X the space of singular linear functionals on X = X (0, E) (see
[20, 22, 33]). Lemma 2.4 is taken from V. Levin [20, Corollary 1 of Theorem 6.7, p. 216],
A. Kozek [19] (X = LM (9, FE) with E* being separable), [8] (see also the references cited

therein; in [20] this result is valid for a more general space X ). Given a Banach space E
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and a convex function ¢ : E — R, the subdifferential of ¢ is defined by
Op(u) ={€ € E": ({,v—u) < p(v) —p(u) for all v € E)}.

LEMMA 2.4. Let f be a normal conver integrand on € X E and the functional I;,
Ip(x) = [ f(s,2(s))du(s), be considered on X with (M) or (Ms). Suppose that
the set domIy := {x € X : If(x) < oo} is nonempty. Then for every xy € dom Iy
the subdifferential 0I7(xo) consists of all linear functionals A € (X (2, E))* of the form
AMz) = (x,y) + As(z) (x € X), wherey € X'(Q, EX.)NSel0fx (-, x0(+)), As € (X (2, E))%,
As € K(dom Iy, zg) :={l € (X(Q,E))* : l(z—z0) <0(Vz € domlyf)}, and Ofx (s, uo)
denotes the subdifferential at ug of the conver function u € vsupp X (s) — f(s,u).

3. Lipschitz integral functionals on non-solid Banach M-spaces. Given a Banach
M, -space X C L°(), E), we say that a multivalued operator M: X — 2" (2R)\{()} has
the U-property if given any x € X for each sequence z, C X with ) ;- [|zx — 2| x < o0
there exists 3 € L'(Q,R) such that |ax(s)] < B(s) a.e. for every ay € M(x)) and for
every k € N. Given a function g: 2 x E — R, define the integral functional

Gla) = [ als.a(s)) (o). (3.1)

LEMMA 3.1. Let g: Q x E — R be a Carathéodory function such that g(s,-) is Lipschitz

continuous on each ball of E for almost all s € Q, and X C L°(Q, E) be a non-solid

Banach M -space with either (Ms) or (M) with m > 2,vsupp X (s) = R™. Suppose

the following conditions:

(N1) 0cg: Q x E— CvCp(EX.) is (A x B(E),B(E%.))(mod 0)-measurable;

(N2) The multivalued superposition operator Na.q: X — 2X'\{0} is bounded on each
ball of X, and:

1) for each x,v € X the function s € Qs g°(s,x(s);v(s)) belongs to L' (), R),
2) the operator M,: X — L' () \ {0} has the U-property, where M,(x) =
{ae LHQR) s a() = (¢(),v(-)), ¢ € Nocg(2)}-
If G is finite at least for one x, € X, then G is Lipschitz on each ball of X and
DeG(x) C Nowy(w). (32)

i.e. v € 0cG(x) = () = (¢,") for some ¢ € X' with ((s) € Ocyg(s,xz(s)) a.e. If
additionally the function g(s,-) is reqular (in Clarke’s sense) at x(s) for almost all s € Q,
then the functional G is reqular at x and 0cG(x) = Np,4(z).

Proof. We shall mimic Clarke’s proof of his Theorem 2.7.5/(B) in [12] but new moments
in our proof will be emphasized and given in detail. We divide our proof into Steps 3.1-3.4.

Step 3.1: We claim that the functional G is Lipschitz continuous on every ball of X. To
prove this, we fix y, z € Bx(0,r). By the condition (N1), dcg: 2 x E — CvCp(E}.) is
(AxB(E),B(EZ.)) (mod 0)-measurable, and so we can apply Lemma 2.3 (the parametric
version of Lebourg’s theorem). We can then find some measurable functions £y: Q — EZ .,
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up: @ — E and 6p: Q — [0, 1] such that
up(s) = bo(s)z(s) + (1 — Oo(s))y(s),
9(s,2(s)) = g(s,y(s)) = (§o(s), 2(s) — y(s)),
&o(s) € Ocg(s,un(s)) a.e.
Since X is a Banach M -space, we have that v € X and
lluollx < lfozlx + I(1 = bo)yllx < llzllx + llyllx <2 (3.3)

By the condition (N2), C(2r) := sup{||v|]|xs : v € Npog(w),w € Bx(0,2r)} < oo.
Therefore ||&o]|x: < C(2r) follows. Hence, by the definition of the associate space X', we
deduce that

G(2) = G(y)| < /Q l9(s, 2(s)) — g(s,y(s))ldp(s)
< /Q (€0 (5), 2(s) — y(s))|du(s) < [[Sollxllz = yllx < CCr)lz —ylx

for z,y € Bx(0,r). Since G(x,) € R, the claim of Step 3.1 follows.

Step 3.2: We shall prove that G°(z;v) < [, 9°(s, z(s); v(s))du(s) for z,v € X. From the
definition of the Clarke derivative in the direction v € X we have

0 : (s,y(s) + Av(s)) — g(s,y(s))
G°(x;v) = limsup g du(s). (3.4)
o /Q A

Let us choose arbitrary sequences A, in R and y; in X such that Ax | 0, ||yx — 2||x — 0
and the limit

k—oo

b:= lim /F;C Ydu(s (3.5)

9(s, yk(3)+/\w;( s)=9(s,9x(s))  Under (Myo) or (M,,), by [22, 41] for

= 1 and by [29, Theorem 2.1] for m > 1 together with Riesz’s theorem, we can choose a
subsequence kj and Do with 1(Q2\Dg) = 0 such that yy, (s) — x(s) as j — oo (Vs € Dy),
lyk, — 2|lx < 1/27 and Ay, < 1/27.

We claim the ezistence of 3 € L'(Q,R) and of Dy C Dy with u(Q\D1) = 0 such that
|Fy, (s)] < B(s) on Dy for all j € N. To prove this, by the condition (N1) together with
Lemma 2.3 there exist measurable functions & € Np.q(ur) and uy such that ug(s) €
[yr(s) + Arv(s), yr(s)] and Fi(s) = (€k(s),v(s)) a.e., and so Fj, € M,(uy). Since X is a
Banach M -space, we get, by an analogous argument to that for (3.3) in Step 3.1, that
up € X and

exists, where Fy(s) :=

lur, =l x < lyr, —llx + A, llollx < 1/27 4+ (1/27)[|ollx = Y Jug, =[x < oo. (3.6)
j=1

Since M, has the U-property due to the condition (N2), there exist 3 € L'(2,R) and
Dy C Dy with u(Q2\Dy) = 0 such that |F,(s)| < 8(s) (Vs € Dy).

Using the above claim together with the measurability of the function s — ¢°(s, z(s);

v(s)) (see Lemma 2.1), we can apply the Fatou lemma for the functions s € Dy —
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B(s) — Fy,(s) € [0,00), and by (N2) we deduce then

b = lim sup Fy; (s)du(s) < / lim sup Fy, (s)du(s)
Dy D

j—o0 1 J—oo

glsut ) —glsw) [ e
gLﬁ@g : uls) = [ 4 (s.a(s)50(s))dn(s) < .
10

Therefore,

G°(x;v) = sup{b = klim / Fr(s)du(s) : |lyx — x|lx — 0,\x | 0}
—o0 /o

géf@mwme@<m.

Step 3.8: We mimic Clarke’s argument in the proof of [12, Theorem 2.7.2]. We know
(see Lemma 2.1) that the function (s u) € Q x E — ¢°(s,z(s);u) is a Carathéodory
convex integrand, and v € X — G(v = [ 9°(s,z(s);v(s))du(s) is a convex functional
on X such that G0) = 0. If v € BCG( ), then by Step 3.2 for every v € X we have
v(v) < G°(z;0) < ng s,2(s);v(s))du(s) = G(v) — G(0), and so 7 is an element, of
the subdifferential G(0). By Lemma 2.4 together with dom I = X from the condition
(N2) we can deduce that dG(0) consists of linear functionals v € X* of the form (v,v) =
Jo(¢( s))du(s) (v € X) with ¢ € X’ and ((s) € dcyg(s,z(s)) a.e. on Q. Hence, the
1nclu510n ( 2) follows.

Step 3.4: Suppose that g(s,-) is regular (in Clarke’s sense [12, Section 2.3]) at z(s) for
almost all s € Q. Fix v € X. For an analogous reason and by an analogous argument as
in Step 3.2, we can apply the Fatou lemma for the functions s — ((s) + Fy,(s) € [0,00)
and deduce

o Gled ) = G(z) o g, 2(s) + Au(s)) — g(s, 2(s))
hr;\lilonf 3 > /Q hr{lllonf 5y du(s)

= [ g alio@)dut) = [ o (sale)so(s)dnts) > 62 (aiv).
Now we can deduce by Clarke’s argument in the proof of [12, Theorem 2.7.3, p. 87] that
G is regular at = and Ny_,(z) C 0cG(x). =
By Lemma 3.1 we can prove the following Theorems 3.2-3.3.

THEOREM 3.2. Let g: Q x R™ — R be a Carathéodory function such that g(s,-) is
Lipschitz continuous on each ball of R™ for almost all s € Q, and X C L°(Q,R™) be
a non-solid Banach M-space with m > 2,vsupp X (s) = R™. Suppose that Ocg satisfies
(N1) and there exists H: Q x R™ — Cp(R™) satisfying the following conditions:

(N3) The multivalued superposition operator Ng: X — 2Xl\{@} 1s bounded on each ball
of X;
(N4) There exists Qo € A with u(Q\Qy) = 0 such that

1) dcg(s,u) C beo H(s,[~1,1]u) for all s € Qo and for all u € R™,
2) H(s,C) € Cp(R™) for C' € Cp(R™) for all s € Qy,
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3) H is multi-superpositionally measurable,
4) H has the Filippov implicit function property.
Then, the statement of Lemma 3.1 is valid for G defined on X.

Proof. 1t suffices to check the condition (N2), and then Theorem 3.2 follows from Lemma
3.1. We divide this proof into Steps 3.5-3.9. We need the following technical notion from
[27, 28]. Given Y C L°(Q2,R™) with m > 2, denote by Arm(Y) the set of all infra-semi-
units for Y, i.e. measurable multifunctions b: Q — 28"\ {0} such that b(s) € CvCp(R™)
is balanced in R™ a.e. and Selb C Y.

Step 3.5: We claim that a € Arm(X") for each b € Arm(X), where
a(s) := bco H(s, b(s)).
To prove this claim, by the technical theorem 3 of [28] (see also [27, Theorem 4.2]), there

exist Z1,..., T, € X such that
> [-1,1)3(s) C b(s) C D(s) := (m+1/2) Y [~1,1]i;(s) a-e. (3.7)
j=1 j=1

Put c(s) := bco H(s, D(s)). Fix y € Selc = Selbco H(-, D(+)). By the condition (N4)
together with the parametric version [8, Theorem IV.11] of Carathéodory’s theorem, the
multifunctions s — H(s, D(s)) € Cp(R™), s+ c(s) € Cp(R™) are measurable and there
exist measurable functions «;, & such that y(s) = Z:n—il-l a;(8)&(s), Zm+1 | (8)] = 1,
&i(s) € H(s,D(s)) a.e.; then there exist some measurable functions z; such that z;(s) €
D(s) and &;(s) € H(s, z(s)) a.e.

Then (e.g., by [29, Lemma 3.1/(2)]), for z; € Sel D, there exist functions a;; € L™
such that z;(s) = (m + 1/2) Z] 1 @i(5)Z;(s) and |lagj]|~ < 1. Since X is a Banach
M-space, we obtain

m m
lzillx < (m+1/2) ) llai@sllx < (m+1/2) Y [|F]x = & < co. (3-8)
Jj=1 j=1
By the condition (N3), r(k) := sup{||{||x’ : £ € Nu(2),||z||lx < Kk} < oo for k € (0, 00).
Since X' is a Banach M-space and &; € Ny (z;), (3.8) implies that

m+1 m—+1
lyllx: <D leatillx < D7 ll€llxe < (m+1)r(x) < oc. (3.9)
i=1 =1

Hence Selc C X', and so Sela C X'. By the condition (N4), a(s) is a balanced convex
compact set and a is measurable, and hence the claim follows.

Step 3.6: We claim that given a € Arm(X’) and v € X, there exists 3, € L(9, (0,00))
such that |[(v(s),d(s))| < Ba(s) a.e. for any d € Sela. By the technical theorem 3 of [28]
(see also [27, Theorem 4.2]), there exist g1, ...,Jm € X’ such that

m m

S L 1J55(5) € a(s) € (m+1/2) S -1, 1]35(s) ae.

Jj=1 j=1
Then (e.g., by [29, Lemma 3.1/(2)]), for a fixed d € Sel a, there exist m functions n; € L™
such that d(s) = (m+1/2) Z;nzl n;(s)y;(s) a.e. and n;(s) € [—1,1]. Then, for a.a. s € Q
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we get

NE

[v(s), d()) < (m+1/2) D Inj(s)|I{v(s), 55 (s))]

<.
Il
—

Ms

< (m+1/2) ) [{v(s),4;(s))] = Pals).

<.
Il
—

Since v € X and §; € X', we have 3, € L'({},R).

Step 3.7: We claim that for each ¢ € (0, 00) there exists 7(d) € (0, 00) such that ||z]|x < ¢
implies ||y||x» < 7(4) for y € Npg4(x). We deduce this from the proof of Step 3.5. Fix
z € X with ||lz[x < 4. Put b(s) = [~1,1]a(s). Then b(s) = 377", [~1,1]7;(s) C D(s) =
[—1,1]D(s), where Z1(s) = z(s), Z;(s) = 0 (j > 2). By the conditions (N3)—(N4) together
with (3.8)—(3.9), for a fixed y € Ny, 4(x) C Selc we have that

[zillx < (m+1/2)[[Z:1]x < (m+1/2)6:= k(5) < o0
and |lyllx < (m+1/2)r(k(9)) :=7(5) < oo.

Step 3.8: We shall check the U-property for the multivalued operator M, : X — oL’ (Q’R)\
{0} defined such as in condition (N2) at a fixed z € X. Fix v € X and a sequence
{z;}ien C X such that Y ;o [lz; — x| x < oo. Fix a; € My, (x;); then oy (s) = (v(s), & (s))
a.e. on § for some §; € Np4(x;). By the technical theorem 7 of [28] (see also [27, Theorem
4.1]) we get some Q1 C Qo with p(Q\21) = 0 such that the series of compact sets

8) + [ 1 (@i(s) —a(s))
i=1

converges in the space Cp(R™) for all s € 1; moreover, putting b(s) := {0} for s € Q\Qy,
we get b € Arm(X). By Step 3.5 we get that a(-) := bco H(-,b(+)) € Arm(X"). Due to
the condition (N4) we get that

zi(s) € b(s) = [~1,1]b(s), dcg(s,zi(s)) C bco H(s,b(s)) (Vs € )
and §; € Na_q(x;) C Sela. Hence, by Step 3.6, the U-property for M, follows.
Step 3.9: We claim that the function s € Q — ¢°(s,z(s);v(s)) belongs to L'(Q,R) for
any z,v € X. Since X C L°(Q,R™) is a Banach M-space, by [29, Theorem 3.2, Lemma
3.2], there exist o € L°(€2,(0,00)) and m functions g1, ..., g, € X such that the linear
hull of {g1(s),...,gm(s)} = vsupp X(s) = R™ a.e., and v(s) := > [~1,1]g; satisfies
v € Arm(X) with a(s)Bgm=(0,1) C v(s) a.e. Then,

19°(s,2(s);v(s))|
< Sup{ g(s, a4 () —g(s,8) |y (0,1, @ — (s)|[pm < a(s)}

= sup

| /\

{ N : A€ (0,1],a € 2(s) + a(s) Ben (0, 1)}
o

9(s, 0+ () =98 |y ¢ 0.1),3 € 2(s) + v(s)} :
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By Lebourg’s Theorem 2.2 and (N4), we deduce that

19° (s, z(s); v(s))]

< sup{|{v(s),u™)| : u* € Ocg(s,u),u € [@, a4+ Mv(s)], A € (0,1}, € x(s) + v(s)}
< sup{|(v(s),u")| : u* € Dcg(s,u),u € [—1,1]v(s) + z(s) + v(s)}
< sup{|{v(s),u™)| : u* € Ocg(s,u),u € bo(s)}
< sup{|(v(s),u™)| : u* € ag(s)} a.e.,
where

bo(s) :=wv(s) + [—1,1]z(s) + v(s), ag(s):=bcoH(s,bg(s)).
Then, by € Arm(X), and so by Step 3.5, ag € Arm(X’). Since ag is measurable, by
[8] there exists some Castaing representation {u; : ¢ € N} for ag, i.e. u; € Selag and
ag(s) = the closure of {u;(s) : ¢ € N} a.e. Hence,
19°(s, 2(s); v(s))| < sup{[(v(s), ug(s))| : ¢ € N} ae.

By Step 3.6 for ay, there exists fa, € L'(Q,R) with [(v(s),u}(s))| < Ba,(s) a.e. So, the
above claim follows. m

THEOREM 3.3. Let g: Q x R™ — R, a non-solid Banach M-space X C L°(Q2,R™)

with m > 2 be such as in Theorem 3.2. Suppose that Ocg satisfies (N1) and for every
R € (0,00) there exists Hr: Q x R™ — Cp(R™) satisfying the following conditions:

(N5) The multivalued superposition operator Ny, : Bx (0, R) — 2X\{0} is bounded;
(N6) dcg(s,z(s)) C beco Hr(s,[~1,1]z(s)) a.e. for each x € Bx (0, R), and there exists
Qo € A with p(Q\Qo) = 0 such that

1) Hgr(s,C) € Cp(R™) for C' € Cp(R™) for all s € Qy,

2) Hp is multi-superpositionally measurable,

3) the Filippov implicit function property is valid for Hpg.
Then, the statement of Lemma 3.1 is valid for G defined on X.

Proof. 1t suffices to check the condition (N2), and then Theorem 3.3 follows from Lemma
3.1. Hence, it suffices to modify Steps 3.5, 3.7-3.9.

Modification of Step 3.5: Let b € Arm(X) with ||z||x < 0 (Vo € Selb) for some § € (0, 00).
Then we claim that ap, €Arm(X’), where ag,(s) := bco Hg, (s,b(s)) and Ry := (m +
1/2)md. The proof of this claim is analogous to the proof of Step 3.5. Here, (3.7)—(3.8)
imply that ||Z;|| < ¢ and ||z;|| < R;. So, it suffices to substitute Hg, for H, agr, for a,
and cg, (s) := bco Hg, (s, D(s)) for c(s).

Modification of Step 3.7 It suffices to substitute cg, for ¢, where R; = (m + 1/2)mJd,
then given y € Ny, 4(z) with ||z[|x < & we get y € Noy(z) C Selcg, .

Modification of Step 3.8: We observe that by the technical theorem 7 of [28] (see also [27,
Theorem 4.1]) together with [29, Lemma 3.1] we get

o0
1Z]x < 02 = flallx + Y llei —zflx < o0

i=1
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for every Z € Selb. Then, it suffices to substitute Hr, for H and apr, for a with Ry :=
(m+1/2)mds.

Modification of Step 3.9: Observe that by [29, Lemma 3.1], we have

m
7 € Selby = ||7]|x < 05 := [[v]lx + [|lzllx + ) llgillx < oo.
i=1
It suffices to substitute Hg, for H and ag, for a, where R3 := (m + 1/2)mds. m

REMARK 3.4. The statements of Lemma 3.1 and Theorems 3.2-3.3 remain valid for the
non-solid Banach space X C L°(Q,R) with the arbitrary vector support vsupp X, but
then we need to substitute g% (s, ug; v) for g°(s, up; v) as well as dcgx (s, uo) for dcg(s, uo),
where g% (s, ug; v) denotes the Clarke derivative at ug in direction v € vsupp X (s) for the
function u € vsupp X (s) — g(s,u), and dogx(s,ug) denote the generalized gradient at
ug of the function u € vsupp X (s) — g(s,u).

4. Lipschitz integral functionals on Kéthe—Bochner spaces. Given a Banach lat-
tice K C LY(2,R), we say that an operator Q: K, — K’ has the U-property if given
any a € K for each sequence a;, C K1 with >, ||ax — al|x < oo there exists d € K’
such that |Q(ax)(s)| < d(s) a.e. on Q for every k € N.

LEMMA 4.1. Let g: Q x E — R be a Carathéodory function such that g(s,-) is Lipschitz
continuous on each ball of E for almost all s € Q, and K C L°(Q,R) be a Banach lattice.
Suppose the following conditions hold:

(K1) There exists h: Q x [0,00) — [0,00) such that

sup{[|u*|| - : u” € Dog(s, u), [up < a} < h(s, @)

for almost all s € Q and for all a € [0, 00);
(K2) The superposition operator Ny : Ky — K’ is bounded on each ball of K. and has
the U-property.

Then, the statement of Lemma 3.1 is valid for G defined on X = K(F).

Proof. We shall mimic Clarke’s proof of his Theorem 2.7.5/(B) [12] but new moments in
our proof will be emphasized and given in detail. We divide our proof into Steps 4.1-4.5.

Step 4.1: We claim that the functional G is Lipschitz continuous on every ball of X. In
fact, let y, z € Bx(0,r). By Lebourg’s Theorem 2.2 for g(s, -) on some open ball containing
the convex interval [z(s), y(s)], we can find y(s) € E., ug(s) € FE and 0y(s) € [0,1] such
that
uo(s) = o(s)z(s) + (1 = bo(s))y(s),
9(s,2(s)) — g(s,y(s)) = (So(s), 2(s) — y(s)),
&o(s) € Dcg(s,up(s)) a.e.
We point out that the functions &gy, ug, 0y are not, in general, all measurable. Since X is

a Ko6the-Bochner space, we get

Izl +lyOllellx < HzOlelx +llyOlelx = lzl1x + lyllx < 2r
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Note that
luo(s)l & < [160(s)2(s) & + [[(1 = Oo(s))y(s)l 2 < lz(s)ll 2 + [ly(s)l| & ae.
By &o(s) € 0cg(s,uo(s)) a.e., from the condition (K1) we obtain
1€0(s)ll = < R(s, [12(3)ll e + ly(s) [l ) :=0(s) ae.

Due to the condition (K2), we obtain C'(2r) := sup{ || Nn (@) : |&]|x < 2r} < oo. Since
20(5) = Nu (=)l + 19() 1) (5), hence ol cr < C(2r) follows. Since

lg(s,2(s)) — g(s,y(s))] < [|€(s)]

g [2(s) —y(s)lle ae.,

we get
|G(2) — G(y)| S/ng(svz(S))—g(s,y(S))lduéAvo(S)IIZ(S)—y(S)IIEdu

< ollg () —yOllellx < C@2r)llz —ylx-
for z,y € Bx(0,r). Since G(z.) € R, the claim of Step 4.1 follows.
Step 4.2: We shall use the notations from the beginning of Step 3.2 of the proof of
Theorem 3.2, in particular, Fi(s) := g(s’y’“(S)Jr)‘“j\(j))*g(s’y’“(s)). We can choose k; and Dy
with p(Q\Dg) = 0 such that yy, (s) — x(s) as j — oo (Vs € Dy), |lyx, — z||x < 1/27 and
Ak, <1727,

We claim the existence of 3 € L'(Q,R) and of Dy C Do with u(Q\D1) = 0 such
that |Fy;(s)| < B(s) on Dy for all j € N. To prove this, by Lebourg’s Theorem 2.2 for
g(s,-) on some open ball containing the convex interval [y (s), yx(s) + Axv(s)], there exist
&i(s) € Ef. and ug(s) € E and ag(s) € [0, 1] such that

ug(s) = ar(s)[ye(s) + Aev(s)] + (1 — ar(s))ye(s),
9(5:yr(s) + Awv(s)) — g(s,yx(s)) = (Ex(s), Awv(s)),
&r(s) € Ocg(s,uk(s)) a.e.
So Fi(s) = (¢x(s),v(s)). We point out that the functions &, uy and a4, are not, in general,
all measurable. We have that
[ur; ()& < llz(s)ll & + llaw; ($)yr; (s) + Ae;0(8)] + (1 — ok, (5)) i, (s) — 2(s) &
< lz(3)lle + llyr; () = 2(s)l[E + Mg lo(s) ]| 5 == aj(s) ae.
Hence we obtain, by the condition (K1),
Ik, ()~ < h(s, a5(5)) = Nu(az)(s) ac. (4.1)
Since X is a K6the-Bochner space, for the sequence a; and a, a(s) := ||z(s)| g, we get
lla; —allx = [lllyx; (-) =2l + e [ lv()l2llx
< Mlyw, ) = 2Ol + e, oGl
= llyr; — 2llxe) + e, vl < 1/27 + 1/2) vl ellx,

and so

oo
> lla; — allx < oo
j=1
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By the condition (K1) the operator Ny, has the U-property, and hence we can find d € K’
such that [Ny (a;)(s)| < d(s) a.e. Since |Fy; (s)| < [|&x, ()] &~ [|v(s)||E, by (4.1) we deduce
then the existence of Dy C Dy with p(Q2\D1) = 0 such that [F},(s)| < d(s)||v(s)||e :=
B(s)(Vs € D1). By |lv(-)||g € K, hence 8 € L' (2, R) follows.

Step 4.3: We claim that the function s € Q — ¢°(s,z(s);v(s)) belongs to L'(Q,R) for
any x,v € X. Since K is a Banach lattice, by [22], [41, Theorem 2.2.6], there exists a« € K
with a(s) > 0 for s € supp K = ). Then, by Lebourg’s Theorem 2.2, (K1) implies that

|9°(s, z(s); v(s))|

< Sup{ g(s, + M’(;)) =96 D3 e (0.1], [ — 2(s) |5 < a(s)}

< sup{|{(v(s),u™)| : u* € Ocg(s,u),u € [a,u+ Mv(s)],A € (0,1], ||z — z(s) ||z < a(s)}
< sup{[(v(s), u™)| : u* € Dog(s,u), |ullp < [lx(s)l|le + als) + [lv(s) £}
< lv(s)lle sup{[lu*||z~ : u* € deg(s,u), lulle < p(s)}
< [[v(s)lle h(s, p(s)) a-e.,
where p(s) := ||z(s)||g + a(s) + ||v(s)||g satisfies p € K. Hence, by (K2) together with
lv()||e € K, the above claim follows.

The remaining part of Step 4.2 and Steps 4.4-4.5 for proving Lemma 4.1 are analogous
to Step 3.2 and Steps 3.3-3.4 of the proof of Lemma 3.1. m

By Lemma 4.1 we can prove the following Theorem 4.2.

THEOREM 4.2. Let g: Qx E — R be a Carathéodory function such that g(s,-) is Lipschitz
continuous on each ball of E for almost all s € 2, and K C L°(Q,R) be a Banach lattice.
Suppose that g satisfies the condition (K1) with respect to h: Q x [0,00) — [0,00) and h
satisfies the following condition:

(K3) The superposition operator Ny: K1 — K’ is bounded on each ball of Ky and h(s, ")
is nondecreasing for almost all s € €.

Then, the statement of Lemma 3.1 is valid for G defined on X = K(F).

Proof. It suffices to check the U-property for N, and then Theorem 4.2 follows from
Lemma 4.1. Fix a € K and a sequence a; € K such that ) .° | |la;—alx < co. Then by
the Riesz—Fischer property for the Banach lattice K (see, e.g., [22], [41, Theorem 3.2.1]),
there exists Qo € A with p(Q\Qg) = 0 such that the series ano(s) := > io; |ai(s) — a(s)|
converges for s € g; moreover putting as(s) := 0(s € Q\Qp), we get an, € K. Note
that a;(s) < aso(s) + a(s) a.e., and then by the condition (K3) we have

Np(a;)(s) = h(s,ai(8)) < h(s,a00(8) + a(8)) = Np(as + a)(s) :=d(s) a.e.
Since N maps K into K’, we obtain Np(aoo +a)=d € K'. n

THEOREM 4.3. Let g: Qx E — R and a Banach lattice K be as in Theorem 4.2. Suppose
that for every R € (0,00) there exists a function hr: Q x [0,00) — [0,00) satisfying the
following conditions:
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(K4) sup{||u*||g~ : u* € dcg(s,u),||lulle < a(s)} < hgr(s,a(s)) is valid a.e. for each
a € Bk, (0,R);

(K5) The superposition operator Ny, : By (0, R) — K' is bounded and there exists Qo €
A with w(Q\Qo) = 0 such that hg(s,-) is nondecreasing for s € Q.

Then, the statement of Lemma 3.1 is valid for G defined on X = K(F).

Proof. Tt suffices to modify Steps 4.1-4.3 (in the proof of Lemma 4.1) as well as the proof
of Theorem 4.2.

Modification of Step 4.1: It suffices to substitute ho,.(s, ) for h(s,-).

Modification of Step 4.2 together with the proof of Theorem 4.2: Observe by the Riesz—
Fischer property for the Banach lattice K that we get also ||aco|x < Y ooy llai — al k-
Then, it suffices to substitute h,, (s, -) for h(s, ), where 1 := ||a||k +>_ 5oy [|ai —al| xk < oo.

Modification of Step 4.3: It suffices to substitute h,,(s,-) for h(s,-), where

ra = e sl + ol + o)l < oo

THEOREM 4.4. Let g: 2 x E — R be a Carathéodory function such that g(s,-) is locally
Lipschitz on E for almost all s € 2, and K C L°(Q,R) be a Banach lattice. Suppose the
following conditions hold:

(K6) There exists h: Q x [0,00) — [0,00) such that
l9(s,u) = g(s,0)| < (s, |lull 2+ |[v]l &) |u — vll

for almost all s € Q) and for all u,v € E;
(KT) The superposition operator N; : K — K' is bounded on each ball of K| and h(s,-)
is nondecreasing for almost all s € €.

Then, the statement of Lemma 3.1 is valid for G defined on X = K(FE).

Proof. Observe that if g(s,-) is Lipschitz continuous on each ball of E for almost all
s € §, then by [12, Proposition 2.1.2/(a)], (K6)-(K7) imply (K1) and (K3) for h(s,a) =

h(s,2a), and so Theorem 4.4 follows from Theorem 4.2. In the general case we can give
another direct proof without using Lebourg’s Theorem 2.2 as following.

Modification of Step 4.1: Let y, 2z € Bx(0,7). Then,

G(2) = G(y)] < /QiL(Sv ()l + [ly ()l 2)ll2(s) = y(s)ll & dpals)

< INGUzOle + lyOlle)lx z() —yOllellx < C@r)lz —ylx.
Modification of Step 4.2: Let Fy,yr, k; be as in Step 4.2. Then,

|Fiy ()] < hls, llyn, (3) + Ay o() 5 + Ny, (5)]12) lo(s)l| 2
< h(s, 2y, ()2 + l[o(s)[ ) [lv(s) ]| -
Since 377 [Illyw; (1) —2()llellx < 3252, 2% < o0, by the Riesz—Fischer property for the
Banach lattice K (see, e.g., [22], [41, Theorem 3.2.1]), for some Qg € A with u(Q\Q) =
0 the series Goo(s) = Y=y lyx,(s) — 2(s)||p converges for s € €o; moreover putting
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doo(s) == 0(s € Q\Qo), we get oo € K. Observe that |lyx, (s)llp < Goo(s) + [l2(s)]|E
a.e., and hence

iy (5)] < d)[o(s)ls ae.,
where d(s) := Nj,(2ac0 + 2||z()|| £ + ()| £)(s) with d € K'.
Modification of Step 4.3: Let o be as in Step 4.3. Then,
19° (s, 2(s); v(s))]

< Sul:){ g(S,ﬂ + AU()‘\S)) —

< sup { (s, 2/l + Ale(s)1) [0(s) 1 A € (0,1], 7 — a(s)] & < als) }
< sup {hs, 2l + lo(s) ) o) e : [l < la(s)1 +als) |

< lv(s)lle h(s, B(5)) ace.,

where p(s) := 2[|z(s)| g +2a(s) + ||v(s)|| g with p € K. Then, ¢°(-, z(-),v(:)) € L*(, R).
The remaining part of the proof is analogous to Steps 3.2-3.4 of the proof of Lemma 3.1. m

QGW>:Aewﬂmm—x@mEsa®ﬁ

THEOREM 4.5. Let g: Qx E — R and a Banach lattice K be as in Theorem 4.4. Suppose
that for every R € (0,00) there exists hr: Q x [0,00) — [0,00) satisfying the following
conditions:

(K8) lg(s,u(s)) = g(s,v(s))] < hr(s, [lu(s)|l5 + [0(s)|B)|u(s) —v(s)|p is valid a.c. for
each u,v € Bg (g (0, R);

(K9) The superposition operator N : Bx (0, R) — K' is bounded and there exists Q) €
A with (\Qo) = 0 such that hr(s,-) is nondecreasing for s € Q.

Then, the statement of Lemma 3.1 is valid for G defined on X = K(FE).

Proof. Tt suffices to modify the alternative proof of Theorem 4.4 in the same way as in
the proof of Theorem 4.3. =

5. Lipschitz integral functionals on non-solid generalized Orlicz spaces. Let

m > 2and M: Q x R™ — [0,00) be some generalized Young function (see, e.g., [6, 17,

19, 25]), i.e. M is a normal integrand, M (s, -) is convex even, M (s,0) = 0, and the set

{u: M(s,u) = 0} is bounded for a.a. s € Q. The non- solid generalized Orlicz space is

defined by LM (Q,R™) := {z € LO(Q,R™) : [, M(s,az(s))du(s) < oo for some o > 0}

with the Luxemburg norm.

We shall use the following conditions (A,,) and (B,):

(A,,) There exist some measurable function §: Q — [0,00) and a € (1,00) such that
Josup{M(s,u) : ||ul] < d(s)}du(s) < oo and M(s,2u) < aM(s,u) for a.a. s € Q
and all u € R™ with ||ul] > §(s);

(B,,) There exist ¢ € LM (Q,R™) and b > 0 such that

dcg(s,u) C [—1,1]¢(s) + b becodM (s, [-1,1] )

for almost all s € Q and for all © € R™.
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COROLLARY 5.1 (of Theorem 3.2). Letm > 2, M: QxR™ — [0,00) be aYoung function,
and g be as in Theorem 3.2. Suppose that the conditions (N1), (B,,) are satisfied for Ocg
and (Ap,) s valid for M. If the Filippov implicit function property is valid for OM (in
particular, if grad M (s,-): R™ — R™ is continuous), then the statement of Lemma 3.1
is valid for G defined on X = LM (Q,R™).

Proof. By the known equality X’ = LM~ (with equivalent norms) the assertion of Corol-

lary 5.1 follows immediately from Theorem 3.2 via using the results of the following Steps
5.1-5.3.

Step 5.1: We claim that if M satisfies the condition (A,,), then for every x € (0, c0) there
exists 7(k) € (0,00) such that ||z||px < k = ||€||pmx < r(k), where £ is an arbitrary
measurable selector of the multifunction s — M (s, z(s)). To prove this claim, fix = and
¢ such that ||z]|p; < & and £(s) € M (s, x(s)) a.e. (then [, M(s,z(s)/k)du(s) < 1). By
the definition of the subdifferential of the convex function M(s, ),

M(s,2z(s)) > M(s,2x(s)) — M(s,z(s)) > ({(s),x(s)) a.e.
Since OM (s, z(s)) = {¢ € R™ : M*(s,{) + M (s,z(s)) = (¢, z(s))}, we have
M (5,€(5)) = (€(s), () — M(s,2(s)
< M(s,2x(s)) — M(s,2z(s)) < M(s,2z(s)) a.e.

Let | € N be such that £ < 2!~!. Denote A = {s € Q: ||x(s)|| < kd(s),z(s) # 0}. By the
condition (A,,) we deduce that:

/M* s)§AM(s,2x(s))du(s)+ M(s,2x(s)) du(s)

Q\A

N /AM< 2 ||§((3| u(x%iﬁ)) du(s) + /Q\A M(s, 2n@) dp(s)

<[l aor

o Jawers [ w(52 57ty
o (e ()
o ([ sup0r(s,) sl < 6061} dts) +1) < (74 1),

where I := [, sup{M (s, u) : |lul| < 6(s)}du(s) € (0,00). Since a'(I+1) > 1, by convexity
0?]\)/[* and M*(s,0) =0, [, M*(%)du(s) < 1 follows. Therefore ||¢|ar+ < al(I+1) :=
r(k).

Step 5.2: Put H(s,u) := c(s) + bOM(s,u). Then by the condition (By,), dcg(s,u) C
bco H (s, [~1,1]u) and the Filippov implicit function property for H is valid as this valid
for OM. Fix y € Ng(x) with ||z||zm < k < co. Then (e.g., by [29, Lemma 3.1]), there exist
measurable functions «, d such that y(s) = a(s)c(s) + bd(s) a.e. with «a(s) € [-1,1] and
d(s) € OM (s,[—1,1]z(s)) a.e. By the Filippov implicit function property for M, there
exists some measurable function A such that A(s) € [—1,1] and d(s) € OM (s, A(s)z(s))
a.e. Observe that ||Az|pv < ||z|pv < k < oo and then by Step 5.1 for Az we get

\/\/

IN
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ld|| pa+ < (k) < oo. Hence,
[yl < llacl[pas + [lbd][ pars < lef[paes + D[ pars = 7(k) < o0
for y € Ny (x).

Step 5.3: By [38, Theorem 2W, Theorem 1IN]|, oM : Q x R™ — Cp(R™) is multi-
superpositionally measurable. By [12, Proposition 2.2.6, Proposition 2.1.2/(a)] (for the
convex function M(s,-): R™ — R) together with [2, Lemma 2.9, p. 13], dM(s,C) €
Cp(R™) for C € Cp(R™) a.e. Hence, the condition (N4) follows. m

We shall use the following condition:

(NM) There exist Qp € 2 with u(Q\Qp) = 0 and for every R € (0,00) exist bg,dg €
(0,00) and ar € L'(2,[0,00)) such that

u* € cg(s,u) = M*(s,u*/dr) < ar(s) + bpM(s,u/R)
for all s € Qp,u € R™.

COROLLARY 5.2 (of Theorem 3.3). Letm > 2, M: QxR™ — [0,00) be a Young function
with M*(s,u*) € [0,00), and g be as in Theorem 3.3. Suppose that Ocg satisfies the
conditions (N1) and (NM). If the multifunction

(s,u) € A X R™ — Hyp(s,u) :={u" € R™: M*(s, %) < ag(s) +brM(s, %)}

has the Filippov implicit function property, then the statement of Lemma 3.1 is valid for
G defined on X = LM,

Proof. Tt suffices to check the conditions (N5)—(N6) for X = LM (Q,R™) and Hp :=
Hysr (then Corollary 5.2 follows from Theorem 3.3). Due to the above definition of M,
it is known |17, 19, 10| and easy to check that Hp/r(s,u) € Cp(R™) and Hpg(s,u)
is symmetric and Hy/r(s,C) € Cp(R™) for C € Cp(R™) and for all s € Qy. By [12,
Proposition 2.2.6], both M and M* are Carathéodory, and so (e.g., by [42, Theorem 1])
H\ g is multi-superpositionally measurable. Since bco Hysr(s, [—1, 1Ju) = Hprr(s,u), by
(NM) we deduce (N6).

Fix € X = LM(Q,R™) with ||z||zm < R. Then for any & € Sel Hyg(+, z(+)) we get

[ M (56060 ) (o) < llamll+ b [ M 5250/ ) i)

S H(IRHLl +bR—|-1 = T(R) (1,00)

Hence, [, M*(s ,dRT( ))du() < 1, and so |||y < dr7(R). By (LM(Q,R™)) =
LM™(Q,R™) with equivalent norms, (N5) follows. m

REMARK 5.3. If M: Q x R — [0,+0o0] is such that L£(s) := {u: M(s,u) < 400} is a
linear subspace of R, then X = L (Q, R) has vsupp X (s) = £(s) and the statements of
Corollaries 5.1-5.2 remain valid but in the form of Remark 3.4 together with substituting
M7 for M*, where M} (s, -) is the convex dual on £(s) of the function u € L(s) — M(s,u),
and Np,,(z) C X' = LMz (Q,R) (z € X).
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6. Lipschitz integral functionals on Orlicz—Bochner spaces. Let ®: Qx[0,00) —
[0,00) be some Musielak—Orlicz function (convex in the second variable) and ®*: ) x
[0,00) — [0,00) be the convex dual to ® (see [4, 25, 37]). The generalized Orlicz—
Bochner (Musielak—Orlicz—Bochner) space is defined by L*(E) = {z € L°(Q,E) :
Jo ®(s, al|z(s)||g)du(s) < oo for some a > 0} with the Luxemburg norm.

The following conditions (A) and (B) are taken from [36]:

(A) There exist some measurable function §: @ — [0,00) and a € (1,00) such that
Jo ®(5,0(s))dp(s) < oo and ®(s,26) < a®(s, ) a.e. for 3 > d(s);
(B) There exist ¢ € L* (2, R) and b € (0, 00) such that

u* € dog(s,u) = |lu”]

g <c(8) +bp(s,||lul|g) a.e. on Q
for all u € E, where ¢(s, ) is the right derivative of the convex function ®(s,-).

LEMMA 6.1. Suppose that conditions (A) and (B) are satisfied. Then the conditions
(K1) and (K3) in Theorem 4.2 are valid for h(s,a) := |c(s)| + ble(s, )| with respect to
X = K(E) with K := L*({,R).

Proof. By the condition (B) the condition (K1) follows. By the condition (A) together
with [36, Lemma 1],

€ (0,00) = 7(k) := sup{[lo(-; la())l[ Lo~ = [laflLe < K} < oo

By the equality K’ = L®" with equivalent norms (see, e.g., [4, 25, 37]), | Nu(a)||x <
lell g + b7 (k) < oo follows for every o € K with ||a| x < k < co. By the nondecreasing
property of (s, ), h(s,-) is nondecreasing for a.a. s € Q. Hence (K3) follows. m

By Lemma 6.1 together with (L*(E))" = L (E*.), Theorem 4.2 with its proof implies
an alternative proof for [36, Theorem 2].
We shall use the following conditions (S®1) and (S®2):

(S®1) There exists Qo € A with pu(Q\Q) = 0 and for every R € (0,00) there exist
br,dr € (0,00) and ag € L*(£,]0,00)) such that

u" € dog(s,u) = (s, [[u”[|lp-/dr) < ar(s) + br®(s, [ullz/R)

for all s € Qg, u € E}
(S®2) There exists Qo € A with pu(Q\Q) = 0 and for every R € (0,00) there exist
br,dr € (0,00) and ag € L'(£,[0,00)) such that

l9(s,u) = g(s,0)| < has, lulle + [olle)llu —v]e
for all s € Qy and for all u,v € E, and
®*(s, h(s,a)/dr) < ar(s) + br®(s,a/R)
for all s € Qy,a € [0, 00).

COROLLARY 6.2 (of Theorems 4.3, 4.5). Let g: Q X E — R be a Carathéodory function.
Suppose one of the following conditions holds:
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1) g(s,-) is Lipschitz continuous on each ball of E for almost all s € Q and Jcg
satisfies (SP1);
2) g(s,-) is locally Lipschitz on E for almost all s € ) and g satisfies (S®2).

Then the statement of Lemma 8.1 is valid for G defined on X = L*(E).

REMARK 6.3. It is an easy check that (S®1) implies that Np.,: L®(E) — L* (E%.) is
bounded on Bpe(g) (0, R). On the other hand, it is known (see e.g. [4, 26]) that if the
measure y is continuous and Jog is Carathéodory and Np,,: L®(E) — L® (EX.) is
bounded on Bre(g)(0, R), then (S®1) is true. So, (S®1) is natural for applications.

Proof of Corollary 6.2/(S®1). Let (®*)~1(s,:) be the right pre-image of ®*(s,-). Put
hr(s,a) == dp(®*)"1(s,ar(s) + br®(s,a/R)). Then, (K4) follows. It is easy to check
(see, e.g., [4, 26]) that N, maps boundedly B, (0, R) into L®(Q,R). Since hr(s, ) is
nondecreasing and (L®(Q,R)) = L*"(Q,R) with equivalent norms, (K5) follows. There-
fore, Corollary 6.2/(S®1) follows from Theorem 4.3. m

Proof of Corollary 6.2/(S®2). By analogous arguments to the proof of Corollary 6.2/
(S®1), we deduce Corollary 6.2/(S®2) from Theorem 4.5. m
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