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Abstract. We study linear operators from a non-locally convex Orlicz space L% to a Banach
space (X, | - ||x). Recall that a linear operator T : L* — X is said to be o-smooth whenever
Un £ 0in L? implies || T'(un)||x — 0. Tt is shown that every o-smooth operator T : L — X
factors through the inclusion map j : LT — La, where ® denotes the convex minorant of ®. We
obtain the Bochner integral representation of o-smooth operators T : L® — X. This extends
some earlier results of J. J. Uhl concerning the Bochner integral representation of linear operators
defined on a locally convex Orlicz space.

1. Introduction and preliminaries. The theory of linear operators on Banach func-
tion spaces (in particular, LP-spaces and Orlicz spaces L) has been developed by many
authors (see [D], [G], [DP], [Ph], [Z], [DS], [D4], [D2], [Ds], [U], [C], [W]). Linear operators
on non-locally convex Orlicz spaces L® have been studied in [P], [T4], [T2], [K].

We denote by o(L, K) and 7(L, K) the weak topology and the Mackey topology on
L with respect to the dual pair (L, K). Given a topological vector space (L, 7) we will
denote by (L,7)* its topological dual. For terminology concerning vector lattices and
function spaces we refer to [AB], [KA], [Z].

Let (9, %, 1) be a o-finite atomless measure space, and let L° denote the set of u-
equivalence classes of real valued measurable functions defined on €. Then L? is a super
Dedekind complete Riesz space under the ordering u < v whenever u(w) < v(w) p-a.e.
on . By §(X) we will denote the set of all X-simple functions defined on .

Now we recall notation and some basic results concerning Orlicz spaces (see [MO;],
[MaO], [M], [RR]). By an Orlicz function we mean here a mapping ¢ : [0,00) —
[0,00) that is non-decreasing, left continuous, continuous at 0, vanishing only at 0 and
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liminf;_ Tt) > 0. By ®* we denote the convex Orlicz function complementary to

® in the sense of Young, i.e., ®*(s) = sup{st — ®(¢) : t > 0} for s > 0. Note that

%t) = oo and jumps to oo whenever

liminf; & < oo (see [N3, Lemmas 2.2 and 2.3]). The function ®(¢) = (®*)*(t) for
t > 0 is called the convex minorant of ®, because it is the largest convex Orlicz function
smaller than ® on [0,00). Recall that ® satisfies the Ay-condition (in symb. & € A,) if
®(2t) < c®(t) for all ¢ > 0 and some ¢ > 0. An Orlicz function ® determines a functional
0g : L° — [0, 0] by

®* takes only finite values whenever liminf; .,

eafu) = [ B(ju(e)) d
The Orlicz space L® is an ideal of L° defined by
*={ueL’: gp(au) < oo for some o > 0}
and equipped with the complete topology 7¢ of the F-Riesz norm
|ulg == inf{a > 0: ps(u/a) < a}.

The space (L%, 73) is locally convex if and only if L? = L®° for some convex Orlicz
function @ (see [MaO]). In case ® is a convex Orlicz function 7g can be generated by
two Riesz norms:

lul|o :=inf {a > 0: go(u/a) <1}
and

ull —sup{/|u W) dpive L% oor(u >g1}.

Let (L®) stand for the Kithe dual of L®. Then (L®)" = L®" (see [N3, Theorem 3.3|,
[MW]). Let (L?)7 denote the order continuous dual of L®. Then (L®)7’ can be identified
with L®" through the mapping: L®" 3 v ¢, € (L®)7, where

p(u) = /Qu(w)v(w) dp  forallue LY.

The functional pg restricted to L® is a modular (see [MO;], [MOs], [M]). Recall that
a sequence (u,) in L® is said to be modularly convergent to u € L® (in symb. u,, =% u)
if oo (a(uy, —u)) — 0 for some a > 0.

For e > 0 let Ug(e) = {u € L? : pp(u) < €}. Then the family of all sets of the form:
Uo—1 (>0, Us(ei)), where (g;) is a sequence of positive numbers, forms a local base at
0 (consisting of solid subsets of L®) for a topology 7' on L?, and called the modular
topology (see [N1], [N2], [N4]). The basic properties of 7¢' are included in the following
theorem (see [Ny, Theorem 1.1], [Ng, Theorem 2.5 and 3.2|, [Ny, Theorem 2.2]).

THEOREM 1.1. Let ® be an Orlicz function. Then the following statements hold:

(i) 74 is the finest of all linear topologies & on L% for which u, =% 0 implies
Uy, £> 0.
ii) 7 is the finest Lebesgue topology on L®.
o
iii) 74 C 7o, with equality if and only if ® € As.
o
(iv) (L*,78)" = (L*)y ={p,: v € L*"}.
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(v) 7(L®,L®") is equal to the restriction of the modular topology Té\ i.e., T(L®,L*")

= ’Tg ILe. In particular, T(L®, L®") = T whenever ® is conver.
In view of [O] the dual space (L®)*(= (L®,73)*) is a Banach space under the norm

lelle = sup{lp(u)] : u € LT, 0p(u) < 1}
for p € (L®)*. Moreover, by [0, 1.31] the following inequality holds:

(1.1) ()| < ||l¢lle(os(u)+1) forallue L®.

From now on we assume that (X, || - ||x) is a real Banach space, and X* stands for
its Banach dual. We distinguish two classes of linear operators 7' : L? — X (see [OW]).

DFINITION 1.1. A linear operator T : L® — X is said to be o-smooth (resp. modularly
continuous) if u, © (resp. u, =2 0) in L® implies || T (uy,)||x — 0.

In Section 2, we study a relationship between o-smooth operators, modularly contin-
uous operators and (72, || - || x)-continuous linear operators 7' : L? — X. It is shown
that every o-smooth linear operator T : L® — X factors through the inclusion map
j: L — La, where @ stands for the convex minorant of ®. In Section 3, we obtain a
Bochner integral representation of o-smooth operators T': L® — X. This extends some

earlier results due to J. J. Uhl [U, Theorem 1], where ® is supposed to be convex and
D e A,.

2. Smooth operators. We first establish a relationship between different classes of
linear operators T : L® — X.

THEOREM 2.1. Let ® be an Orlicz function. Then for a linear operator T : L® — X the
following statements are equivalent:

(i) T is modularly continuous.
(ii) T is o-smooth.
(iii) z* o T € (L®)y for all z* € X*.
(iv) T is (o(L®,L*"),0(X, X*))-continuous.
(v) T is (7(L®,L®"), | - ||x)-continuous.
(vi) T is (T2 e, | - | x)-continuous.
(vii) T is (’Tqﬁ\, I - | x)-continuous.

Proof. (i)=-(ii). Assume that 7" is modularly continuous and let u,, ), 0in L®. Then by
the Lebesgue dominated convergence theorem wu, <% 0, so | T(u,)||x — 0. This means
that T' is o-smooth.

(ii)=>(iii). Assume that 7T is o-smooth. Hence z* o T € (L®)> = (L®)y for every
e X*.

(iii)<(iv). See [AB, Theorem 9.26].

(iv)<(v). See [Wi, Corollary 11-1-3, Corollary 11-2-6].

(v)e(vi). Tt is obvious, because 7(L®, L®") = T Ipe (see [Ny, Theorem 2.2]).

(vi)=(vii). Clear, because T [+ C Tg .

(

vii)=(i). It is obvious, because u, <% 0 in L implies u,, — 0 for 7. =
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Now, we consider the problem of extension of linear operators T': L? — X.

THEOREM 2.2. Let ® be an Orlicz function. Assume that T : L® — X is a (T3, - | x)-

continuous linear operator. Then there exists a (/%\7 I - [ x)-continuous linear operator
T:L® — X such that T(u) = T(u) for all u € L®.
Proof. In view of Theorem 2.1, T' is (7' [Le, || - [ x)-continuous. Now let u € L®. Then

there exists a sequence (s,) in S(X) such that s,(w) — u(w) p-a.e., and |s,(w)| < |u(w)|
p-a.e., that is, s, o), 0 in L?. Hence Sp — u for Té\, because Té\ is a Lebesgue topology
on L. Then (s,) is a Cauchy sequence in (L®, 71 [pe), 50 (T'(sn)) is a Cauchy sequence
in (X,| - |lx). Let us put T(u) := limT(s,) in (X, | - ||x). Note that if u € L®, then
T(u) =limT(sy,) in (X, ||| x) and T'(u) = T(u).

(o)

Now we shall show that if (s.) and (s2) are sequences in S(X) such that s, —> u

and s2 ©, 4 in L?, then im T(s}) = lim T'(s2) in (X, || - || x)- Indeed, we have s. — u
for 7' and 52 — u for T2, so st —s2 — 0 for T [pe. Hence IT(sL) —T(s2)|lx — O.

? n

Set r1 = limT'(s}) and x5 =1im T'(s2) in (X, | - | x). Then
o1 — w2l x < flon = T(sp)llx + 1T () — Tsn)llx + 1 T(s7) — 22 x,
and it follows that ||z1 — x2||x =0, so z1 = z».

We shall now show that a linear operator T : LT — X is (7L, || - [|x)-continuous.
Indeed, let B%A stand for the local base at 0 for ’Z%\, and let € > 0 be given. Since T
is (71 Ipe,| - [|x)-continuous, there exists W € Bz, such that T(L®* N W) C Bx(e)
(={r € X :|z|x <e}). It is enough to show that T(W) C Bx(e). In fact, let w € W.
Then there exists a sequence (s,) in S(X) such that s, — w for IEA' Hence there exists
no € N such that s, € LT "W for all n > ng; so T(s,) € Bx(g) for n > ng. It follows
that T'(w) € Bx(e), as desired. m

As a consequence of Theorem 2.1 and Theorem 2.2 we obtain the following factoriza-
tion of o-smooth operators T': L® — X.

COROLLARY 2.3. Let ® be an Orlicz function and let T : L® — X be a o-smooth linear
operator. Then T' may be factorized: T' = Toj, where j : L® — L® is the inclusion map
and T : L® — X is a o-smooth linear operator.

3. Integral representation of smooth operators. In this section we obtain a Boch-
ner integral representation of o-smooth linear operators T : L® — X, where ® is an Orlicz
function (not necessarily convex) and X has the Radon-Nikodym Property. We extend
some earlier results due to J. J. Uhl (see [U, Theorem 1]), where ® is supposed to be
convex and ® € A,y. The problem of Bochner integral representation of linear operators
T:L? — X (p>1) has been studied in [DU, Theorem 3.4.8], [D4], [D2], [Ds].

For terminology concerning vector measures and Banach-space valued function spaces
we refer to [DU, Chap. 3.1], [L]. Denote by L°(X) the set of u-equivalence classes of all
strongly ¥-measurable functions g : @ — X. For g : Q@ — X let us put g(w) = ||g(w)||x
for w € Q. For an Orlicz function ® the Orlicz-Bochner space L*(X) is defined by

L*(X)={geL’(X):ge L%}
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A linear operator T : L® — X is said to be regular if there exists 0 < v € L® such
that |T'(u)||x < @u(ul) = [, [u(w)|v(w) du for all u € L? (see [Bu, Def. 1.2]).

From now on we will assume that (Q, 3, p) is a finite atomless measure space. Recall
that a Banach space X has the Radon-Nikodym property (with respect to u) (briefly
X € RNP(u)) if for each p-continuous vector measure m : 3 — X of bounded variation
(i.e., |m|(Q) < oo) there exists g € L'(X) such that

m(A) = /Ag(w) dp  forall AeX.

Then |m|(A) = [, lg(w)|lx du for all A € X. Motivated by the variation |m|() and
following [Dl] [D3] we can define a norm functional of operators T : L* — X by

Il :=sup{2||az (La)lx ¢ s—zazu € S(%). oals) <1f.

Now we are in a position to state our main result.

THEOREM 3.1. Let ® be an Orlicz function and let X € RNP(u). Then for a linear
operator T : L® — X the following statements are equivalent:

(1) IT)le < oo and T is modularly continuous.
(ii) |Tlle < oo and T is o-smooth.
(iil) [T)le < oo and T is (r(L®, L®"),]| - ||x)-continuous.
(iv) |Tlle < o0 and T is (74", || - || x)-continuous.
)

(v) There exists g € L® (X) such that

T(u) =Ty(u) = /ﬂ u(w)g(w)dy  for all u e L*®

and
17,0 = lesle =sup {| [ a(@ge)du - ue L%, galu) <1},
In particular, if ® is a convexr Orlicz function, then
ITylle = 19115+ = llglZe- x)-

(vi) T is regular.

Proof. (1)< (ii)<(iii)<(iv) follow from Theorem 2.1.

(i)=(v). Assume that |T']|¢ < oo and T' is modular continuous.

Define a vector measure my : 3 — X by mp(A) = T(14) for A € ¥. We shall now
show that my is p-continuous. Indeed, let u(A,) — 0 with A4,, € 3. Then

o0(la,) = /Qq)(lAn (w))dp = ®(1)u(A,) — 0,
[me(An)llx = T(14,)]x — 0.

It follows that my is countably additive and p-continuous. Now, choose a > 0 such that
0a(alg) < 1. For any finite X-partition {A4; : 1 <4 < n} of Q we have alg = > 1, aly,,
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SO

@) lmr(A)lx =Y laT(1a)lx < ITlle.
i=1 i=1
Hence |mz|(2) < oo, and since X € RN P(u) there exists g € L'(X) such that
mrp(A) = / g(w)dp and |mr|(A / llg(w)||x dp  for A € X.
A

Then for s = Y., a;14, € S(X) we have

- ZaiTuAi) — ZaimT(A )
i—1 v
— ;ai /Aig(w)d,u /Qs(w)g(w) dp. (3.1)

We now show that for s =Y.' ;| 14, € S(X) with p(s) < 1 we have

Sl lotlhxdie= X ol rrl(4) < 7o

Indeed, let € > 0 be given. Then for each 1 < ¢ < n there exists a X-partition (Am-)?":l
of A; such that

Imr[(4;) < Z\ImT i)llx + ZIIT (La, x +—— | B
j=1 @i
Hence
> lalfmrl(A:) < 3 (Z aiT(La,,)x) +¢ < ITlle +=,
i=1 i=1 j=1
because
n kg n
S (Sata,) = Saita.
i=1  j=1 i=1
Then
n n n
> lleaT(a)llx =D lailllmr(Ai)llx < ol mr|(As)
i=1 i=1 i=1

:;|ai|[4i ”g(w)”XdM:/Q(;mi1Ai(W))||g(w)||Xdu
= [ s du < T
Q

Taking suprema on the left, we get
ITllo = sup { [ @) dus s € ). aals) < 1}. (3.2)

Now we are ready to show ug € L' for every u € L%, ie., § € (L®)" = L®". Indeed,
let u € L®. Then there exists a sequence (s,,) in S(¥) such that 0 < s, (w) T |u(w)| for
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w € Q (see [KA, Corollary 1.6]). Choose o > 0 such that pg(cu) < 1. Then by Fatou’s
lemma and (3.2) we get

/ afu(w)]g(w) dp < Sup/ asn(W)g(w) dp < |Te,
Q n

Q
and this means that § € (L®) = L* and ug € L'(X). Thus we can define a linear
operator T} : L® - X by

Ty(u) = /Qu(w)g(w) dpu  forue L.

We shall now show that T,(u) = T(u) for u € L?. Indeed, let u € L® and choose
a > 0 such that pg(2au) < co. Then there exists a sequence (s,) in S(X) such that
$n(w) = u(w) pra.e. and |s,(w)| < |u(w)| p-a.e. ([KA, Corollary 1.6]). By the dominated
convergence theorem pg(a(s, — u)) — 0, and since T' is modularly continuous, we get
1T (sn) = T(u)llx — 0.

On the other hand, s, (w)g(w) — u(w)g(w) p-a.e. and |s,(w)|g(w) < |u(w)|g(w) p-a.e.,
where ug € L'. Using (3.1) we get

IT(s0) - Ty(w)llx H [ sn)9@)dn= [ utrg(o) duHX

< [ 1s2) = u@)e) du—o.
It follows that
T(u) =Ty(u) = /Qu(w)g(w) du  forue L.

Now assume that @ is a convex Orlicz function. Then pg(u) < 1if and only if ||jul|le <1
and it follows that | T,[le = ||g]|% = HgHLq*(X

(v)=(vi). Assume that there exists g € L® (X) such that
T(u) =Ty(u) = / uw(w)g(w)dp for all uw € L®.
Q
Then for u € L* we have

IT(w)]x < [ ()] llg(@)llx dpt = g(lul),

where g € L®", i.e., T is regular.
(vi)=(ii). Assume that T is regular, i.e., there exists 0 < v € L®" such that

17w < /Q u(@)lv(w) du = @, (jul)  for all u € L°.

Let s => 1" a;la, € S(X) with pg(s) < 1. Then using (3.1) we get

S T (14,) —Z|az|||T 14) <Z|al| / La(w
=1

-/ (im<1Ai><w>)v<w>du=sov<|s|>

< llpglle(oa(s) +1) < 2llpglle-
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(o)

Hence ||Ty[le < 2[/¢g/le. Now assume that u,, — 0 in L*. Since ¢, € (L®);, we obtain
that | T (un)||x — 0, i.e., T is o-smooth.

[AB]
[Bu]
[C]

[D1]
[D2]

[Ds]

DU]
D]
[DP]
[Ds]
[c]
K]
[KA]

1]
[MW]

[MaO]
[M]

[MO+]
[MO2]

[N1]
[N2]

[Ns]

References

C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, Orlando,
1985.

A. V. Bukhvalov, On an analytic representation of linear operators using vector-valued
measurable function, Izv. Vyssh. Ucheb. Zaved. 7 (1977), 21-31.

J. Chaney, Banach lattices of compact maps, Math. Z. 129 (1972) 1-19.

N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.

N. Dinculeanu, Integral representation of linear operators, I, II, Stud. Cerc. Mat.
(1966), 349-385, 483-536.

N. Dinculeanu, Linear operators on LP-spaces, in: Vector and Operator Valued Mea-
sures and Applications (Proc. Sympos., Utah 1972), Academic Press New York, 1973,
109-124.

J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977,
Providence, RI.

N. Dunford, Integration and linear operators, Trans. Amer. Math. Soc. 40 (1936) 474~
494.

N. Dunford and J. Pettis, Linear operations on summable functions, Trans. Amer.
Math. Soc. 47 (1940), 323-392.

N. Dunford and J. Schwartz, Linear Operators, Part I, General Theory, Interscience
Publ. Inc., New York, 1958.

I. Gelfand, Abstrakte Funktionen und Lineare Operatoren, Mat. Sbornik, N.S., 4 (46)
(1938), 235-238.

N. Kalton, Compact and strictly singular operators on Orlicz spaces, Israel J. Math.,
26 (1977), 126-136.

L. V. Kantorovich and A. V. Akilov, Functional Analysis, 3rd ed., Nauka, Moscow,
1984 (in Russian).

P.-K. Lin, Kdthe-Bochner Function Spaces, Birkhaiiser, Boston, 2003.

L. Maligranda and W. Wnuk, Landau type theorem for Orlicz spaces, Math. Z. 208
(1991), 57-64.

S. Mazur and W. Orlicz, On some classes of linear spaces, Studia Math. 17 (1958),
97-119.

J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer
Verlag, Berlin, 1983.

J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49-65.

J. Musielak and W. Orlicz, Some remarks on modular spaces, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 7 (1959), 661-668.

M. Nowak, On modular topology on Orlicz spaces, Bull. Pol. Acad. Sci. Math. 36 (1988),
553-562.

M. Nowak, Orlicz lattices with modular topology I, Comment. Math. Univ. Carolinae
30 (1989), 261-270.

M. Nowak, Order continuous linear functionals on non-locally convexr Orlicz spaces,
Comment. Math. Univ. Carolinae 33 (1992), 465-475.



[N4]

[O]

[OW]
[P]
[Ph]
[RR]
[T1]
[T2]
(U]
[Wi]
(W]

7]

LINEAR OPERATORS ON NON-LOCALLY CONVEX ORLICZ SPACES 165

M. Nowak, On the strongest locally convexr Lebesgue topology on Orlicz spaces, Results
Math. 33 (1998), 134-138.

W. Orlicz, On integral representability of linear functionals over the space of -
integrable functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 7 (1959),
661-668.

W. Orlicz and W. Wnuk, Absolutely continuous and modularly continuous operators
defined on spaces of measurable functions, Ricerche di Matematica 60 (1991), 243-258.
D. Pallaschke, The compact endomorphism of the metric linear space L&, Studia Math.
47 (1973), 123-133.

R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516-541.
M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991.
Ph. Turpin, Opérateurs linéaires entre espaces d’Orlicz non localement converes, Studia
Math. 46 (1973), 153-165.

Ph. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissert. Math.
131 (1976).

J. J. Uhl, On a class of operators on Orlicz spaces, Studia Math. 40 (1971), 17-22.
A. Wilansky, Modern Methods in Topological Vector Spaces, McGraw-Hill, 1978.

T. K. Wong, On a class of absolutely p-summing operators, Studia Math. 39 (1971),
181-189.

A. C. Zaanen, Linear Analysis, North-Holland, Amsterdam, 1953.






