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Abstract. In this report we discuss the applications of the strong unicity constant and highlight
its use in the minimal projection problem.

Let X be a Banach space and let V' C X be a nonempty subset. An element vy € V
is called a strongly unique best approximation to x € X if there exists r > 0 such that for
any v € V
(1) [z —vll = llz = voll + rl[v = voll.

The biggest constant r satisfying (1) is called the strong unicity constant. This notation
was introduced by D. J. Newman and H. S. Shapiro (see [20] and [21]).

EXAMPLE 1. Let X = 2 with unit ball U (pictured below). Let = (0,1), vo = (1,0)
and

V={:eX|z=(0), 1<t<2}.

Then it is easy to see that, in this case, the strong unicity constant is equal to 1. We
note the constant r from (1) belongs to the interval (0, 1] and our example attains this
greatest value.

There exist two main applications of the strong unicity constant:
1. the error estimate of the Remez algorithm,
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2. the Lipschitz continuity of the best approximation mapping at o (if there exists a
strongly unique best approximation to ).

The error estimate of the Remez algorithm is based on an iteration process for finding
the constant r from (1) (see [27], [28]). First this algorithm was used for Chebyshev
approximation ([10], [11]). Now it is used for filter design in Digital Signal Processing (see
[1]). Currently, in numerical methods of Chebyshev approximation, the strong unicity
constant is used in conjunction with the metric projection with Lipschitz continuity
property (see e.g., [7], [2], [6], [22], [8], [9], [16]).

The aim of this report is to present a third application of the strong unicity constant
in the case of projections from 7 onto some n — k dimensional subspace (n > 3, 1 <
kE <n —1).In this case X = L(I%), (equipped with the operator norm),

V=P, W)={Lec L(IL, W) : L, =idw},

the set of all linear projections from [, onto n — k dimensional subspace W, x = 0 and
vo = Pp € P(I%,W). Thus in the case of projections, (1) reduces to
(2) 1Pl = [Boll + [P = Pol|.

The problem considered in our report may be treated as a development of the results
initiated by G. Lewicki in [15].

A projection is called minimal if
(3) [1Poll = A(Y, X) = inf{||[P[| | P € P(Y, X)}.

It is worth noting that there exist a large number of papers concerning minimal projec-
tions. Mainly the problems concern existence (see e.g., [5], [13]), uniqueness (see e.g., [4],
[23]) and formulas for minimal projections (see e.g., [3], [24]).

A projection mg € P(Y, X) is called the strongly unique minimal projection (or SUM-
projection) if there exists a constant s € (0, 1] such that the inequality

(4) [Imoll + sllm — mol| < I

holds for each m € P(Y, X) (see, for example, [12] for results involving SUM-projections
onto hyperplanes).



STRONG UNICITY CONSTANT 169

It is easy to prove that the SUM-projection 7 is the unique minimal projection in
P(Y, X). The largest possible constant for which the inequality in (4) holds is called the
strongly unique projection constant (or SUP-constant).

It is known (see for example [3]) that if Y =17 and X C Y is of dimension n — 1
(n > 3) with X = f~1(0) where

f=U )€Y, iflh=>Y_Ifil=1
=1

and
1 1
(5) O<fi<fo<--<for<g fazjg
then the minimal projection 7y from [’ onto X has norm one and is unique. Moreover,
in this case, my is the SUM-projection and the SUP-constant, sg = so(mg) is equal to
1—2f,-1 ([14], Theorem 2.3.1).
If a minimal projection 7% from [ onto f~!(0) has norm u > 1 then 7% is the
SUM-projection and the SUP-constant is equal to
1-2f
© N5
where f = (f1,...,fn) and 0 < f; < fo < --- < f,, < 1/2 (in this case we note that as
u — 1 we find that (6) approaches f; tgﬁ,
expression of 1 — 2f1, [17]).
In our report we consider subspaces X = X,,_, C I, 1 <k <n-1n > 3, such
that dim X = n — k. Note that this consideration is quite general due to the following

which in general is not equal to the above

proposition.

PROPOSITION 1. Let B be an n-dimensional Banach space with unit ball U. Let U be
a polytope with m (n — 1)-dimensional faces. Then B is isometrically isomorphic to an
n-dimensional subspace of ["F™~1.

Proof. This follows immediately from Theorem 1 by G. V. Epifanov in [12]. =

Since we are interested in situations for which the minimal projection onto X, _j is
unique, we may assume without loss generality that (see [24])

(7) X =((")"}(0)

p=1
where the hyperplanes {(f®)~! (O)}’Ij:1 are given by the linearly independent functionals
{f(p)}’zf:1 € (I%)* such that, for p=1,...,k, we have

8) IFP =1, f@ = (P, fP)
1
9) 0< i<’ < << 3
(1) L (2 1 1
(10) Salker = 5 Jolkie 2 §,~~~,f7(Lk) > >

(11) fi(p)ZOifp—i—i;én,i:n—k+1,...,n.
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Moreover, if conditions (8)—(11) hold then the unique minimal projection from I onto
X, —k has norm one (see [3], Thm. 1; [26], Lemma 2.4.1 and [24], Chp. 2).

THEOREM 1. Let Y =1 (n>3) and X = X,,_;, CY be a subspace of dimension n —k
given by

k
(12) X = () (SP)7H(0)
p=1
where {f(p)}’;:1 satisfies (8)—(11). Let my be the minimal projection from Y onto X.
Then mg is the SUM-projection with norm one and for the SUP-constant so = s(my) we
have the inequality

1 1 2 2 k k

win (RN P Ty U ey
) PR k k

frgljk+1 + f’r’(LIJk f7§23k+2 + fﬁ)k AR f’r’(LJk

REMARK 1. This result extends the results of O. M. Martynov ([18] and [19]) regarding
two and three dimensional subspaces of I and IS respectively. (see Remark 2 below)

(13) } < s, < 1.

REMARK 2. In general

/S\:

1 1 k k
nf Bt )
1 1) k k
SRR A R A
is not equal to the SUP-constant; indeed in the case k = 1, n > 3 we have
T(Ll) f(l) B f7(11) f(l) (fnl)Q 4t f(l))
+ £ f“> B (B2 4+ 1)
and, by [14] (Thm 2.3.1) 1- 2f ; is the SUP-constant.

=1- 2f7(1131

/S\:

COROLLARY 1. If k =n —1, n > 3, then under the hypotheses of Theorem 1 we have
§=min{fy" — iV, fn0 = f0YY
CONJECTURE 1. Let fO ... f("=F) ¢ (I")*, where
FO =(f1s s frs Ogas -, 0n),
O =(01,...,05,1,0542,...,0,),
P = (01,0541, 1, 043, .., 0,),

f‘(nfk) = (01’ ey On—la 1)

where Zf 1fi=land0< fi < fo < < fro1 < fi. Let F=(fio fu) € (15)" and
let w5 be the unique minimal projection onto (f)~X(0) from 1%, . Let
H— ﬂ (F®))~
p=0

and g be the unique minimal projection onto H from I . Then the SUP-constant s(my)

is equal to the SUP-constant s(75).
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