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Abstract. The present paper is devoted to the study of the “quality” of the compactness of the
trace operator. More precisely, we characterize the asymptotic behaviour of entropy numbers of
the compact map

trr Bglyq(anwg) — Ly, (T),
where T is a d-set with 0 < d < n and w. a weight of type wk (z) ~ dist(z, ") near T' with

» > —(n — d). There are parallel results for approximation numbers.

1. Introduction. The aim of this paper is to study the compactness of the trace op-
erator acting between a weighted Besov space and an approximation space on a fractal
d-set I'. More precisely, we use known results on entropy numbers in unweighted settings

to investigate the behavior of entropy and approximation numbers of compact embed-

T

5 is a function that measures

dings between weighted Besov spaces B, (R™, wl), where w

the distance of a given point z € R" to a certain fractal set I', wl (z) = dist(z,T)*.

I
x

In particular, we consider the trace operator from spaces B, (R",w ) into Lebesgue
spaces L,(I'), where I' is a d-set. Furthermore, we generalize this concept to so-called
(d, ¥)-sets. We will study the weight function vL(z) = (dist(x,T))*¥(dist(z,T')), where
U is an admissible function, see (2.7), and ' a corresponding (d, ¥)-set. Moreover, we
compute approximation numbers of the embeddings between function spaces of the above
type.

The paper is organized as follows. In the next section we collect some notation and
recall definitions and known results on Muckenhoupt weights. In particular, we define

the weighted Besov spaces By (R",w) with w € A.. Moreover, we give the definition

2000 Mathematics Subject Classification: Primary 46K35; Secondary 42B35, 47B06.

Key words and phrases: entropy numbers, approximation numbers, weighted function spaces,
Muckenhoupt weights, d-sets, (d, ¥)-sets.

Research supported by Junior Research Team “Fractal Analysis”.

The paper is in final form and no version of it will be published elsewhere.

[173] © Instytut Matematyczny PAN, 2008



174 I. PIOTROWSKA

of Besov spaces of generalized smoothness and related (d, ¥)-sets with an admissible
function W. The third section is devoted to traces of weighted spaces on d- and (d, ¥)-
sets. We first give classical statements of the trace problem on R™!. Subsequently we
describe extensions of this problem to an arbitrary closed set I' C R™ with |I'| = 0. We
conclude this section by presenting recent results on traces of weighted Besov spaces on
d- and (d, ¥)-sets [Pio] which are the main tool in prove our further results. The fourth
section contains results on entropy numbers of the trace operator between weighted Besov
spaces. More precisely, we investigate the asymptotic behavior of the entropy numbers of
the compact embedding
id: B!, (R",wl) — B2, (R", w),).

Here T denotes a d-set or (d, ¥)-set. In the final section we give estimates of approximation

numbers of a trace operator of weighted Besov spaces, e.g.
n4se

er(trr : B3, (R™,wh) — Ly(T)) ~ k157975 ~ ay(trp - BE,(R™, wh) — Ly(I).

k3

2. Function spaces and weights

2.1. Definitions. In this section we collect some notation that remains fixed through-
out this paper. As usual, R™ denotes the n-dimensional real Euclidean space and the
Euclidean scalar product of © = (z1,...,2z,) and y = (y1,...,¥yn) is given by zy =
X1y1 + -+ + TpYn, as usual. Let Ny = N U {0} stand for the non-negative integers.

We denote by S(R™) the Schwartz space of all complex-valued rapidly decreasing in-
finitely differentiable functions and by &’(R"™) its dual space of all tempered distributions
on R™. As usual, the Fourier transform defined on &'(R™) is given by

(2.1) FIEO = F©) = @m™" | fla)e*da.

Here dx denotes the n-dimensional Lebesgue measure. The Fourier transform is a one-to-
one mapping from S(R") onto S(R™). As usual, F~! f or fV, stands for the inverse Fourier
transform, given by the right-hand side of (2.1) with ¢ in place of —i. Let ¢ € S(R™)
with suppp C {y € R" : |y| < 2} and ¢(x) = 1 if |z| < 1. Furthermore, let ¢y = ¢ and
for each j € N we put

(2-2) (@) = p(277z) — p(277 " a).

Then

(2.3) i(pj (x) =1 forall z € R
j=0

The system of functions {¢; 72 is called a smooth dyadic resolution of unity.
We will also need the following definition from fractal geometry.

DEFINITION 2.1. Let 0 < d < n. A set I' C R"™ is called d-set if there exists a Borel
measure g in R™ such that supppy = I' and there are constants c¢1,co > 0 such that for
arbitrary v € ' and all 0 < r < 1,

ar? < w(B(y,r)NT) < cor?.
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REMARK 2.2. Note that self-similar fractals are outstanding examples of d-sets. For in-
stance, the Cantor set in R! is a d-set for d = In2/In 3, and the Koch curve in R? is a
d-set for d =1n4/1n3.

Let I' be a d-set and let 0 < p < oco. Then L,(I') are the usual complex L,-spaces
with respect to the Borel measure p, quasi-normed by

I 1200 = ([ 1600 M(dv))l/p,

with usual modification for p = oo

2.2. Muckenhoupt weights and Besov spaces. We recall some known facts and definitions
on A, Muckenhoupt classes.

We say that w belongs to the Muckenhoupt class A, with 1 < p < oo if there exists
a constant 0 < A < oo such that for all balls B the following inequality holds

(2.4) (% /B w(z) dx>l/p- <|;T| /B w(z) PP dx)w < A,

where p’ is the dual exponent to p given by 1/p'+1/p = 1 and | B| stands for the Lebesgue
measure of the ball B.
Futhermore, let M be the Hardy—Littlewood maximal operator given by

M = )|d R"
f(x) ascli”I))EB |B Z, T ‘/ xr) ‘ howe ,

where B is the collection of all open balls B(z,r) = {y € R" : |y — x| <r}, r > 0. A
weight w belongs to the Muckenhoupt class A; if there exists a constant 0 < A < oo such
that the inequality

Muw(z) < Aw(z)

holds for almost all x € R™.
We also consider the Muckenhoupt class A, defined by

(2.5) A= J 4,

p>1

REMARK 2.3. The class of A, weights was introduced by B. MUCKENHOUPT in [Muc72a]

A systematic treatment of these classes of weights functions may be found, in particular,
in the monographs [GR85], [ST89], and [Ste93, Chapter V].

The most famous example of a Muckenhoupt weight w € A,, 1 < p < oo, is given
by w(z) = |z|® with —n < § < n(p — 1). In the sequel, we are more interested in the
following example.

EXAMPLE 2.4. Let I be a d-set with 0 < d < n introduced in Definition 2.1 and let
» € R. We study the weight w! (z), 2 € R", given by

L) = dist(x,T)*, dist(z,T) <1,
T, otherwise.
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Note that the weight function w’, belongs to the Muckenhoupt class A, forl <p < oo
if, and only if, —(n — d) < s < (n — d)(p — 1). For the proof and more details we refer
the reader to [HP].

Let w € A, according to (2.5). We define the weighted Lebesgue space L,(R™, w) with
0 < p < oo as the collection of all measurable functions such that

i@l = ([ eraee)

is finite. Note that corresponding space for p = co coincides with the unweighted space
Lo (R™).

DEFINITION 2.5. Let 0 < p < 00, 0 < g < 00, s € R and let {p;}32, be a smooth
dyadic resolution of unity. Assume w € As. The weighted Besov space B, (R",w) is
the set of all distributions f € §’(R™) such that

> . /a
(2.6) 17 1By (& w)] = (302 (0, F) Ly (B w)])
§=0

is finite. In the limiting case ¢ = oo the usual modification is required.

REMARK 2.6. The above definition does not depend on the choice of the resolution of
unity {¢;}3%o. The spaces By, (R",w) are quasi-Banach spaces (Banach spaces for p,q >
1). Furthermore, it is clear that F~!(p,;Ff) is an entire analytic function on R" for any
f € 8’'(R™). We have, in particular, that F~1(¢;F f)(x) make sense pointwise. One can
also consider the weighted Triebel-Lizorkin spaces F;q(R",w), 0<p<oo,0<qg< oo,
s € R, by interchanging the order of {,- and L,-quasi-norms in (2.6), see [Bui82|, [Bui84]
and also [HP], [Pio06] and references therein. Moreover, for the weight function w = 1
we obtain classical (unweighted) versions of these spaces. The best references here are
the monographs by H. Triebel [Tri83], [Tri92] and [Tri06]. A systematic treatment of the
Besov spaces with weights from the class Ao is due to H. Q. Bui in [Bui82|, [Bui84] with
subsequent papers [BPT96] and [BPT97].

2.3. Besov spaces of generalized smoothness and (d, V)-sets. Now, we recall definitions
and results on spaces of generalized smoothness and related (d, ¥)-sets that will be of
importance in the next section.

DEFINITION 2.7. A positive monotone function ¥ on the interval (0, 1] is called admissible
if

(2.7) W(27F) ~ w(272F), k € No.
ExXAMPLE 2.8. Let b € R. Then
Wy(x) = (14 |log(z)|)’, = € (0,1],

where the log is taken with respect to base 2, is an admissible function according to the
above definition.
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DEFINITION 2.9. Let I' be a non-empty closed subset of R™.

(i) Let 0 < d < n and let ¥ be an admissible function according to Definition
2.7. Then T is called a (d, ¥)-set if there exist a Radon measure p on R™ with
supp ¢ = I' and two positive constants c¢; and ¢y such that

(2.8) errdW(r) < w(B(y,r)) < cordW ()

for any ball B(y,r) in R™ centered at v € T and of radius r € (0, 1).

(ii) Let ¥ be a decreasing admissible function according to Definition 2.7 with ¥(z) —
00, if # — 0. Then T is called an (n, ¥)-set if there is a Radon measure p in R™
with the above properties and d = n in (2.8).

REMARK 2.10. Obviously, for ¥ = 1 we obtain d-sets with 0 < d < n as introduced in
Definition 2.1. Let 0 < d < n and let ¥ be an admissible function, then for any couple
(d, ) there exists a (d, U)-set in R™, see [ET99, Proposition 2.8]. Furthermore any (d, ¥)-
set in R™ with d < n satisfies the so-called ball condition, for more information see [Tri01,
Proposition 22.6(iv)].

Let {p;}52, be a smooth resolution of unity given by (2.2) and (2.3).

DEFINITION 2.11. Let 0 < p,q < oo and s € R. Moreover, let ¥ be an admissible function
according to Definition 2.7. Then Bf;q‘l' (R™) is the collection of all tempered distributions
f € §'(R™) for which

> . . ~ " 1/q
(2.9) 1 183" R = (02w @)l (es )Y L, (™))

=0
(with the usual modification for ¢ = 00) is finite.

REMARK 2.12. The spaces B;;J‘I’ (R™) were introduced by D. E. Edmunds and H. Triebel
in [ET98]. For a complete treatment of these spaces we refer the reader to the work of
S. D. Moura, [Mou01], see also [ET96], [Tri97] and [Tri01] for more details. One may also
consider the Triebel-Lizorkin spaces of generalized smoothness F;;I\P (R™), 0 < p < oo,
0 < g < o0, s € R, by interchanging the order of ¢,- and L,- quasi-norms in (2.9).
The spaces B;&‘P(R") are quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1). It is

s
p

{¥j}520 (in the sense of equivalent quasi-norms). Taking ¥ = 1 we obtain the classical

known that the space B E;P (R™) does not depend on the chosen smooth resolution of unity

Besov spaces B, (R").
We give an extension of Example 2.4 to (d, ¥)-sets.

EXAMPLE 2.13. Let I be a (d, ¥)-set, 0 < d < n, ¥ an admissible function, » € R, and

L(z) = (dist(z,T))” ¥(dist(z,T)), for dist(z,T) <1,
Vael®) = U(1), otherwise.

Analogously to the d-set case we obtain that vl € A, if, and only if, —(n — d) < » <
(n—d)(p—1), see [Pio06, Proposition 5.6].
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3. Traces on fractals of weighted Besov spaces

3.1. Preliminaries. This section gives a brief survey of the results on trace problems
of Besov spaces on fractals. Our choice of fractal sets are d- and (d, V)-sets. Let z =
(2',x,) € R™ with 2/ € R"~1. Recall that the trace of f on R"~! is the mapping

(3.1) trpe—1 @ f(z) — f(2',0).

In other words, trg.—1 restricts functions on R™ to the hyperplane H = {z € R" : z,, =
0}. Given a function space X C D’'(R"), the trace problem consists in finding a space
Y C 8’'(R"!) such that trg.—1 is a bounded linear surjection from X to Y. We refer
to [Tri92, Section 4.4.1 and 4.4.2] for the classical trace problem. We shall explain the
meaning of the trace (3.1) if we consider a suitable compact d-set instead of R"~*, We will
interpret any function fU' € L,(I'), 1 < p < oo, as a tempered distribution f € S'(R")
given by

f(o) = / L (@D u(dy), @ € S®™),

where the restriction |I" of ¢ is understood pointwise and p is a Radon measure on T
Let T" be a closed set in R™ with |T'| = 0. We assume that there exists a Radon measure p
on R"™ with supp 1 = I". The restriction trr ¢ = @|I" understood pointwise is well-defined
for any ¢ € S(R™). Moreover, let us suppose that for s > 0 and 0 < p,¢q < co there is a
constant ¢ > 0 such that for all ¢ € S(R™),

(3-2) Itrr | Ly (D) < cllo| By (R, w3,)].

Since the Schwartz class S(R™) is dense in B3 (R", wy,), the inequality (3.2) may be
extended by completion to all f € B;q(R",wE). The resulting limit of trr ¢ will be
denoted by trr f. Note that it is independent of the approximation of f € B, (R", wh)
by S(R™)-functions due to (3.2).

3.2. Traces of weighted Besov spaces on d-sets. In this subsection we present recent
results for the trace problem of weighted Besov spaces. For proofs and more details from
this and the next subsection we refer the reader to [Pio], [Pio06].

THEOREM 3.1. Let 0 <d <mn, > —(n—d), 0 < p < o0, 0 < qg<min(l,p) and let T be
a d-set. Then we have

2 n—d
(33) e By (R ) = Ly(D),
2 n—d
in the sense that trp f € L,(T) for any f € Bp”q+ ? (R™,wl) and any f'' € L,(T) is a
x  n=d
trace of a suitable g € BppqJr P (R™,wl) on T and
(3-4) £ 1Lp(D)|l ~inf [lg [Bgy 7 (R™, wl)],
n—d

where the infimum is taken over all g € BgﬁT (R™,wl) such that trr g = fT.

Motivated by the quasi-norm (3.4) we introduce the following trace spaces.
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DEFINITION 3.2. Let I" be a d-set in R™ according to Definition 2.1 with 0 < d < n. Let
s>0,0<p<oo,and 0 < g <oo. Let us define

s S+n77d n
(3.5) qu(l") = trr Bpg (R™).
We equip this space with the quasi-norm
S : 8+n77d n
(3.6) If 1By (D)l =infllg| Bpg " (R™)],

n—d
where the infimum ranges over all g € B;; P (R™) with trpr g = f.

THEOREM 3.3. Let 0 < d <n, s >0,0<p<o00,0<qg<o0and —(n—d) < x<
sp— (n—d). Then

n—d __ x

trp B3, (R",wh) =By, 7 7 (D).

3.3. Traces of weighted Besov spaces on (d,V)-sets. We begin with the counterpart of
Definition 3.2 for the trace spaces with respect to the Besov spaces of generalized smooth-
ness.

DEFINITION 3.4. Let 0 < p,g < 00, s > 0, ¥ be an admissible function and let I" be a
(d, ¥)-set in R™ with 0 < d < n. We define

R S+";d1\1,1/17 n
(3.7 B, (T) :=trr Bpg * (R™).
We equip this space with the quasi-norm

s . s+n=d gl/r "
(3.8) 1 1B (D) = inf [lg |Bpg * R™)],

"_*dyq;l/p .
where the infimum is taken over all g € B;;r v (R™) with trr g = f.
Note that for ¥ = 1, I is a d-set according to Definition 2.1, and then the above defini-
tion covers Definition 3.2. Let v, be the Muckenhoupt weight introduced in
Example 2.13. We have the following generalization of Theorem 3.3.

THEOREM 3.5. Let 0 < d <n, s€eR, —(n—d) <, 0<p<o0,0<qg<o0, ¥ be an
admissible function and let T be a (d, ¥)-set according to Definition 2.9(i). Then

S,K’\pl/p

(3.9) trp Bs (R™, v},) = trp Bpg © (R™),

whenever these spaces exist. Moreover, when —(n — d) < » < sp — (n — d), then

»x _ n—d

(3.10) trp B3, (R™,vL) =B, * 7 (D).

Y Yot

4. Entropy numbers of embeddings between weighted Besov spaces

4.1. Definitions. Let X and Y be quasi-Banach spaces and let T' : X — Y be a bounded
linear operator. Let
Ux ={zeX: |z|X|| <1}

be the unit ball in the quasi-Banach space X. An operator T is called compact if for any
given € > 0 we can cover the image of the unit ball Ux with finitely many balls in ¥ of
radius e.
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DEFINITION 4.1. Let X, Y be quasi-Banach spaces and let T' € L(X,Y). Then for all
k € N, the kth dyadic entropy number ex(T) of T is defined by

2k—1
(4.1) ex(T) = inf{s >0: T(Ux) C U (y; + eUy) for some y1,...,ys-1 € Y},

j=1

where Ux and Uy denote the unit balls in X and Y, respectively.

These numbers have various elementary properties partly recalled in the following
lemma.

LEMMA 4.2. Let X,Y and Z be quasi-Banach spaces, let ST € L(X,Y) and R €
L(Y, 2).

(i) (Monotonicity): |T|| > e1(T) > e2(T) > -+ > 0. Moreover ||T| = e1(T), pro-
vided that'Y is a Banach space.
(i1) (Additivity): If Y is a p-Banach space (0 < p < 1), then for all j,k € N

(S T) < () + (T,
(iii) (Multiplicativity): For all j,k € N
ej+k—1(RT) < e;(R)ex(T).
(iv) (Compactness): T is compact if, and only if, limy_, o ex(T) = 0.

Proofs of the above properties may be found for instance in [ET96, Lemma 1.3.1/1].
For more information, we recommend the monographs [ET96] and [CS90].

REMARK 4.3. Let us briefly discuss the connection between eigenvalues of a compact
linear map and its entropy numbers, though applications of that kind are out of the
scope of this paper. Let T': X — X be a compact linear operator in a quasi-Banach space
X and let (A,(T")) be the sequence of all nonzero eigenvalues of T, repeated according
to algebraic multiplicity and ordered so that |Ay(T)] > |A2(T)| > ... > 0. Then Carl’s
inequality states

An(T)| < V2e,(T), neN.

General references here are again [ET96] and [CS90]. Based on this inequality, and having
in mind application to spectral theory of certain pseudo-differential operators, there was
initiated a program to investigate the behavior of the entropy numbers in the context
of weighted function spaces of Besov and Triebel-Lizorkin type, see [ET96] and [HT94a],
[HT94b]. For a recent account we refer to the series of papers by T. Kiihn et al. [KLSS06a],
[KLSS06b], [KLSS].

4.2. Results and proofs. Let us first recall a result for entropy numbers in the corre-
sponding unweighted situation, see [Tri97, Theorem 20.6].

THEOREM 4.4. Let I be a compact d-set in R" with 0 < d < n according to Defini-
tion 2.1. Let ng(l") be the spaces introduced in Definition 3.2, notationally complemented
by ng(f‘) = Ly(T") for any 0 < p < oo and 0 < g < co. Let

0§82<31<OO, 0<p1,p2§00, 0<Q1a‘]2§00,
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and

1 1
81—52—d<———) > 0.
b1 P2/

id: B, (') — B2, (T

Pp1q1 P2q2

Then the embedding

18 compact and the related entropy numbers satisfy
(4.2) er(id) ~ k=775, keN.

REMARK 4.5. Recall that equivalence ~ in (4.2) means that there exist two positive
numbers ¢; and ¢y such that for all £ € N,

S1 S1—952

c k™ T <eg(id) < k™4

1 1
s—d(———) >0
p1 b2 +

Then (4.2) with s; = s and sy = 0 can be rewritten in the form

Assume that 0 < ¢ < oo and

(4.3) en(trr : Byja™ (R") — L, (T)) ~ k™, keN.

For more details, see [Tri97, Chapter IV, p.172].
We can now present results on entropy numbers for weighted Besov spaces.

THEOREM 4.6. Let ' be a d-set in R™ with 0 < d < n according to Definition 2.1. Let

H%§82<51<oo,0<p1,p2<oo,0<q1,qz§oo, and
(4.4) —(n —d) < 3 < min(s1p1, s2p2) — (n — d).
Let
(4.5) 81—32>(%—|—n—d)<pi1—pi2)+d<pi1—pi2)+.
Then for the weight wY, introduced in Example 2.4 the embedding
(4.6) id: trp B, (R, wh,) — trr B2, (R", w),)
is compact for the related entropy numbers satisfy
(4.7) enlid) ~ kTN GR) | pew

Proof. The proof is a simple consequence of Theorem 3.3 and Theorem 4.4. We have

(4.8)  ex(id: trrBE, (R, wl) — trr B2, (R™,w,))

P1q1 > P2q2
_n—d > n—d

er(id: Byt 7 (T) — Bpog? 2 (I)).

By virtue of (4.2) with §; — 52 — d (i - L) > 0 we obtain
P1 P2/

x _n—d » _n—=d

51—59

er(id: Bpg,™ ' (T) — Bpog® 2 (D)) ~k 77, k€N,

where
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S; =8 —— — d for i =1,2.
bi bi
One immediately checks the compatibility of (4.4) and (4.5). This finishes the proof. =

REMARK 4.7. Let s =§ + ”p—jd + pil. From Theorem 3.3 we conclude that

S
trFqu

R™,wl) =B ('), §>0.

P1q
Furthermore, by Definition 13 we get

sS4 n=d
BS (T) = trr By, " (R™).

p1gq

Comparing this with (4.3) and the above theorem we obtain the following result.

PROPOSITION 4.8. Let I' be a d-set in R™ with 0 < d < n according to Definition 2.1.
Let 0 < p1,p2 < 00, 0< qg< 00, —(n—d) <2< sp — (n—d), and let w', be a weight
function given by Example 2.4. Moreover, let

1 1 1
e Lesnea-a(E 1) o
p1 p1 D2 +

r

el

The trace operator trr of B, (R™,w,) into L,,(T) is compact and the related entropy

numbers satisfy

(4.9) ex (trr : B3, (R”,wh) — L,, () ~ k() =3

One can extend this result to the (d, ¥)-sets, where ¥ is an admissible function ac-
cording to Definition 2.7. In [ET99, Theorem 2.24] there is a generalization restricted to
1 < p1,p2 < oo and the target spaces L,. The case 0 < p < 1 has been considered by
S. D. Moura in [Mou01,Theorem 3.3.2]. She dealt with target spaces of Besov type. Let ¥
be an admissible function according to Definition 2.7 and let I" be a (d, ¥)-set according
to Definition 2.9. Let now By (I') be the trace spaces introduced in Definition 3.4. By
assumption we have 0 < p1,p2 < 00, 0 < q1,¢q2 < 00, and s1 > s2 > 0 with

1 1
5152d<——) > 0,
pr P2/

id: B, (') — B2, (I

P141 P2q2

such that the embedding

is compact. Furthermore, the related entropy numbers satisfy
(4.10) ex(id) ~ [RU(k™)] " 7, keN

(Note that we take a; = az = 0 in the original version of Theorem 3.3.2 in [Mou01],
such that Definition 2.2.7 in [Mou01] of B-spaces covers Definition 3.4.) The best general
reference here is [Mou01, Chapter 3] and also [ET98] and [ET99].

We can now give an extension of Theorem 4.6 to (d, ¥)-sets.

PROPOSITION 4.9. Let ¥ be an admissible function, and let " be a (d, V)-set according
to Definition 2.9. Let 0 < p1,p2 < 00, 0 < q1,q2 < 00, and

(4.11) —(n —d) < 3 < min(s1p1, s2p2) — (n — d).
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n—d+x

oy Then for the weight vL, introduced in

Moreover let s1, so be as in (4.5) with sg >
Ezxzample 2.13 the embedding

(4.12) id: trrByl, (R",0)) — trrBg2,,

(R", v},)

4

is compact and the related entropy numbers satisfy

(4.13) enlid) ~ [ku(k-1)] TG | pen

Proof. We follow the proof of Theorem 4.6. We consider Theorem 3.5 and Definition 3.4
and arrive at

(414) ek(id : tl"szl

n I’ So
P1q1 (R ) ’U%) trFBPQsz

(R", v3,))

? Y

x _n—d P n—d

g— = —

=ep(id: Bpg" () — Bpog? 7 (D).

Combining this with (4.10) completes the proof. =

5. Approximation numbers of embeddings between weighted Besov spaces

5.1. Definition and results. In this section we recall the basic definitions and properties
concerning approximation numbers and present the results on approximation numbers of
the compact trace operator.

DEFINITION 5.1. Let T € L(X,Y), k € N. The kth approzimation number a, of T is
defined by

(5.1) ap(T)=inf {||T - L|| : Le L(X,Y), rankL < k},
where rankL is the dimension of the range of L.

The approximation numbers have properties analogous to those of the entropy num-
bers. We present them in the following lemma.

LEMMA 5.2. Let X,Y and Z be quasi-Banach spaces, let S,T € L(X,Y) and R €
LY, Z).

(i) (Monotonicity): ||T|| = a1(T) > a2(T) > --- > 0.
(i1) (Additivity): If Y is a p-Banach space (0 < p < 1), then for all j,k € N

aly 1 (S+T) < af(S) +ai(T).
(iii) (Multiplicativity): For all j,k € N
aj+k-1(RT) < a;(R)ar(T).
(iv) (Rank property):
an(T) =0 if, and only if, rankT < n.

The best general references here are [CS90] and [ET96]. In the sequel, we restrict our-
I’ is a weight introduced

selves to d-sets to formulate our result. Recall that the function w;,
in Example 2.4. We now state the main result for approximation numbers.

THEOREM 5.3. Let 0 < d < n, 1 <p < o0, 3 + 7 = 1, ”‘d% < s < M2 and
—(n —d) < . Let T be a d-set according to Definition 2.1. Then the trace operator

(5.2) trr : By, (R™, w},) — Ly ()

Fl
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is compact and the related approrimation numbers a; satisfy

n+

(5.3) ar(trr : B3, (R wh) — Ly(D)) ~ ki7" 7975 ke N,

F

Proof. As a consequence of Theorem 3.3 and Definition 3.2, from embedding (5.2) we get
trr @ By, (R"™) — Ly(T).

Combining this with Theorem 2 and Remark 9 (Example) in [Tri04] we obtain the desired

estimate (5.3). The compactness is covered by Proposition 4.8 with p; = ps =¢. m

REMARK 5.4. Note that (4.9) coincides with (5.3) for p; = ps = ¢ = p. One should
expect a different behaviour of ey (trr) and ay(trr) for p; # po. This study is postponed
to a later occasion, as is the counterpart of Proposition 4.9 for approximation numbers.
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