FUNCTION SPACES VIII
BANACH CENTER PUBLICATIONS, VOLUME 79
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2008

SOME RESULTS ON FUNCTION SPACES
OF VARYING SMOOTHNESS

JAN SCHNEIDER
Mazx-Planck-Institute for Mathematics in the Science
Inselstrasse 22, 04103 Leipzig, Germany
E-mail: Jan.Schneider@mis.mpg.de

Abstract. This paper deals with function spaces of varying smoothness Bﬁ’so (R™), where the
function S :  — s(z) determines the smoothness pointwise. Those spaces were defined in [2]
and treated also in [3]. Here we prove results about interpolation, trace properties and present
a characterization of these spaces based on differences.

1. Introduction. The idea of function spaces where the smoothness can vary from point
to point has quite a rich history. We described it in [2] and [3] with many references.
There we presented our approach to a Besov-type function space of varying smoothness
B?*SO (R™). We recall the definition here. Let us denote by B, , the open ball in R"
centered at x with radius r > 0.

DEFINITION 1. Let 1 < p < oo and let S : 2 — s(x) be a bounded lower semi-continuous
function in R™ with sp,;, > sg for a real number sg. Then

By (R") = {f € S'(R") : || f| By (R™)|| < oo},

normed by

(1) I £1Bye (R™) |+ sup 27 Klswams0)| f|Borce (B, 5 ),
KeN,zeR?

where

s(y).

Here sg < Spmin = infyern s(y) plays the role of a global smoothness index but now

SK,o = inf
ly—z|<2-K+2

complemented by the function s(z), that gives for every point z € R™ a possibly different
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smoothness value. By B, (R") we denote the usual Besov space B,  (R") in the case p = ¢
and by B;({2) we mean its restriction to the domain 2.

Let us describe what happens in the norm (1). The first term checks the global smooth-
ness sg of a given function f, whereas the supremum term concerns local improvements
by the following procedure. For a fixed point x € R™ we consider a ball centered in x
with radius 27 and ask if f belongs to the Besov space with smoothness s, > sg in
this ball. Now we increase K and therefore shrink the ball around x and ask the same
question again with respect to a possibly higher degree of smoothness. We continue this
procedure for all K, then all x, and finally check if the supremum over all these norms
multiplied by the weight factor 2~ K(sx.»=50) ig finite. This factor appears in a natural
way when we compare Besov space norms on balls with different smoothness levels, for
more details we refer to [2] and [3].

In [2] we proved that BE’SO (R™) is a Banach space and some basic properties for
so < 1/p like a pointwise multiplier assertion and an embedding theorem. One main
result was a characterization by the following wavelet-expansion. An arbitrary function
f belonging to a Besov space can be written as

2" -1 oo
Fay=223" > NaulH¥' @z —m),
1=0 j=0mezn
where W' are fixed functions with compact support and Aé‘,m (f) are complex numbers
containing all the information about f, for details we refer to [8]. By means of this
expansion we stated in [2]| (section 5) the wavelet characterization of BE’SO (R™) with the
help of weighted sequence spaces.

This result was the starting point for further investigations, for example, we proved
an interesting connection to the so-called 2-microlocal spaces C5* (z°), see 2] (section
6.3) and [1] for more details.

In the case of negative smoothness the whole theory is published in [3]. For positive
smoothness the theory is not yet satisfatory but we postpone this discussion to another
paper.

In the next section we collect some new results on interpolation and traces of the spaces
BS*(R™) which are not contained in [2] or [3]. In section 3 we discuss a characterization
of BIS)’S0 (R™) by differences. Now we list two older results on Besov spaces that we will
need later on.

PROPOSITION 2. Let 1 <p < oo, —c0o < s<1/p and 0 < XA <1, then
(2) 1) By (Bl ~ A~/ I B (BA),
where the equivalence constants are independent of [ € B, (By) and \.
This has been formulated briefly in [7], section 5.20, p. 69, and proved in [6], 3.9(iii).
PROPOSITION 3. Let 1 <p<oo,s€R and 0 < A <1, then
(3) LFOIBABI = X/ BB
where the equivalence constants are independent of f and \.

This has been stated as Proposition 2.4 in [2].
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These two homogeneity properties were essential for the methods of the proofs in [2]
and [3], they also will be important for our purpose in this paper.

2. Supplements to the space BE’SU (R™). In this section we treat two standard ques-
tions in the theory of function spaces, which are quite different from each other: interpo-
lation and traces.

2.1. Interpolation. We restrict ourselves to the case p; = po = p and the same basic level
of smoothness s¢ in both spaces of the interpolation couple (BE1 S0 (R™), B§2730 (R™)). Then
by means of the well-known K-method we can state the following.

THEOREM 4. Let 1 < p < 0o and let S',S? be negative lower semi-continuous functions
in R™ with sq < (st ,s2.). Then

(BE ,80 (Rn),BEZ’SO (Rn))®7p AN Bzg),so (IRn)7
if s(z) = (1 — ©)sl(z) + ©s%(z) for 0 < © < 1.

Proof. Let f € (Bﬁl’SO (Rn)73§2’50 (R"))e,p and

dt 1/p
| = (/ tOPK(t, f)E g ) ,
O t
where the K-functional is defined by

K(t, fsr g2 = inf (111By > R™)[| + ¢ f| By (R

f=f1+r2
ff;eBZz’SO(R”),i=1,2

1 2
I£1(By = (R™), By *(R"))e.p

Now we estimate the K-functional

K(t, sz = nf (/2B (R[] + ¢l f2] By (R™)]])

f=f1+f
f1.f2€Bp O(R")

f=rf1+r2
fIGBE 90 (gny i=1,2

1
+ inf (sup 27K(S}‘11750)Hf1|B;K’m(Bz,2fK)H
o, K

52
e sup 27K a0 || 15| By (B, 5 ).
z, K

The first infimum is the definition of K (¢, f)s, in obvious notation. The second infimum
is estimated further with the help of homogeneity:

1
,nf o (sup2 KT £y B (B )|
; T2 z,K
F,€B5 S0 @) i=1,2

52
it sup 2~ K Ciew 0| £ By (B, 5« )|)
z, K

2
> esmpa KO int (@ OB (B + 22 B (Bl
’ fiEB;k’

—csup2_K("/p SD)K(t f(2- K))
z, K

(B, 5—K)yi=1.2

SK x’sK £
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again in obvious notation. Therefore, we get for the K-functionals

K(t, flsrge > K(t, f)s +esup 2 KPR (1 f(275)) 0 o
z, K T

Inserting this estimate into the norm of the interpolation space, we have
1 2
I£1(By > (R™), By > (R"))e,pl”
* e dt K e K dt
> c/ tTOPK(t, f)8 — + csup2” ("/p_so)p/ TOPK (L f270 ) . —
0 t z,K 0 SK, 25K,z T
= d[f[(By*(R™), B;*(R"))e,p|”
Sl > 52 x
Fesup 2 KO F(2T I (B (Bey), By (Be))es

1;5

P

By well known interpolation results on Besov spaces, see chapters 2.4.1. and 4.3.1. in [4],
we can further write
1 S n 2 S n
1£1(B, > (R™), By *°(R"))e,p|I”
> o fIBye (R™)|[P + esup 2 K (/P f(275.) [ Borce (B, 1) ||P.
z, K

Finally, by homogeneity we arrive at
1 S n 2 S n
I£1(By > (R™), By * (R"))e,p|I”
Z c|| f1B* (R™)[|” + csup 2~ Klsww=sop| £ BoK (By o) > ¢l f1 By (R™)||P,

which proves the theorem.

REMARK 5. The interpolation meets exactly our expectations and is a generalization of
well-known classical results. Of course, it is desirable to have also the converse embedding,
that would mean (BEI’S0 (R™), Biz’sﬂ (R™)e,p = By*°(R™), but unfortunately the method
of the above proof does not carry over to the opposite direction. The reason is that the
infimum appearing in the definition of the K-functional can be moved inside of the norm
in BE’SO (R™) only by making the term smaller.

2.2. Traces. Let us first provide an older result that is needed in this subsection.

PROPOSITION 6. Let 1 < p < oo and S : z +— s(x) be a bounded lower semi-continuous
function in R™. Then for Ky € N

118 (R™)]| + sup sup 2 Keram0)| £ By (B g-rc)|
xT n > 0

15 an equivalent norm in BIS;SU (R™).

A proof of this proposition can be found in [3] (Proposition 3.7). It tells us that only
large values of K, corresponding to small balls, are of interest in the norm of B?*SO (R™).

Now we are interested in the trace of a function f on the hyperplane y,, = 0, which we
identify with R"~1. We define the operator T : f(y) — f(3',0) with y = (¢, yn) € R",
where the / always indicates a coordinate in R”~!. For the expressions s K,z and By, we
denote the (n — 1)-dimensional counterparts with 5y ,» and By .
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THEOREM 7. Let 1 < p < 0o and let S be a positive lower semi-continuous function in
R™ with so > n/p. Then

Ty - BZS),S()(R'IL) N B;(x/,O)—l/p,sU—l/p(Rn—l)
1s a bounded linear operator if
(4) s(@',z,) > s(2',0)  for all |z, < e for ane > 0.
REMARK 8. The condition we actually need in the following proof is
Sk =5k forallz’ € R" ! and all K > Ky € N.

But condition (4) is sufficient for that and means that the function s(z) has a local
minimum along the hyperplane y,, = 0, which is not really natural but on the other hand
not very restrictive.

Proof. We have to show

(5) L (y', 0)| By 071 /moso = (R || < ¢ £ By (R™)]|.

The global part of (5) is clear by chapter 2.7.2 in [5]. The local part reads as follows
—_K(s ,—5 S pr—1 =

(6)  sup 2 K=o 1o/, 0)| By (B )|

< csu}? 9~ K(sx.a—s0) I f1By (By2-x)|

We start to estimate the norm on the left-hand side. By definition we have

S pr—1 . S o —1 —
(") 1 0)By ™ (Byr )| = inf [lg] By~ 7 (7Y,
where the infimum is taken over all functions g with g|z sk = f(y',0). By the well

known trace result for Besov spaces (we refer again to chapter 2.7.2. in [5]) we know that
for every such function g there is an extended function G living on R™ with

5 m/*l/ n— s ! n
lg| B, PR < ellGIBp (R™)]]-

Because of our assumption (4) together with Remark 9 we can write sk, instead of
5k, on the right-hand side for large K. If we now restrict the infimum in (7) only
to those functions g such that for the corresponding extended function G the equality
G|Bm/,271< = f holds, which we denote by *, then we find

Sk o —1/ = . Sk o n Sk o
£/ OBy P (Byr o) < cinf | GIB, " (R™)|| = ell 1By (Byr p-x)-

Inserting this into the left-hand side of (6) we finally get with Proposition 6

—K(8p .1 —s Srar 1
sup 2K Crear =50 £y, 0)| By~ "7 (B 5|

K,x!
S c sup 2_K(§K,z/_50)||f|B;K’m/(BII,Q—K)H
K>Kop,x'
<c sup 27 KEme 0| f B (B k) |
K>Kog,x' ’

< CS;P 27K(SK,.7:750) ||f|BZS)KT (Bw,Q*K)||7
X

where we used sk v = Sk for large K again. This is the desired inequality (6).
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REMARK 9. The condition sg > n/p in Theorem 8 stands somehow in contrast to the
condition sg < 1/p which appears almost in the whole theory because in the proofs the
homogeneity property (2) is always needed, see [2]. But talking about traces we need a
continuous representative in BE’SO (R™) and so the range of parameters is restricted to
s > n/p. That means that the Theorem is in some sense still isolated from the rest of the
theory.

REMARK 10. To prove that B;(x ’0)_1/10’80_1/1)([&"’1) is the exact trace space, we have
to show that there exists a bounded linear extension operator

Ext : Bls)(:c ,0)71/p,5071/p(Rn71) N BE’SO(Rn).

Unfortunately, no such result is available yet.

3. Characterization by differences. In [2] we developed the theory of BZS,’SD (R™) for
general smoothness. But it turned out that for positive smoothness the arguments were
not straightforward. We always had to compensate the lack of homogeneity for the Besov
space norm. H.-G. Leopold suggested substituting the local term in (1) by a semi-norm
based on differences in such a way that the homogeneity would be provided for positive
smoothness. To present the essence of this idea is the aim of this section.

3.1. Preliminaries. First we make some preparations and fix the notation here. For h € R
and M € N we put

M
aese) =3 () s+ o -t
=0
and set

AM f (s Q):{A%f(x), x4+ (M —1Dhe; € QV1I=0,..., M,
h ’ 0, otherwise,

for a domain 2 in R™. Now we define the following semi-norm for s < M:

1B s = (Z /m Bl AR" )Ly (2 >||pd,f|>

Here the integration is meant to be over |h| < dist(§2). We denote by B, the ball with
radius r > 0 centered at x € R™. In the case x = 0 we omit it and write only B,.

PrROPOSITION 11. Let 1 < p < oo and M > s > 0, then
(8) IFO By (B)llare = A7"/P | £ By(B)[| an-
Proof. We prove the assertion for M = 1 because for differences of higher order the proof

is analogous. Putting f(\-) = g we have Agg(y) = Axif(Ay). Now we caculate with
Mk =h

[f(A) By (B1)] Z/k|<2|kspllﬁ?; (- B1)ILy (Bl)\|p|k|

—s 7 dk
Z / k=P Ay f (s B) Ly (By) [P 2
— Jik<2 |K|
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- —s -n i dk
=30 [ AT AL BB
= Jik|<2 ||

- — —spy—"n A — dh
=3[ RN G BB A T
=1 ATth[<2 ‘)\ h|
- : dh
— A / h|=*P|| AL £ (-, By)|Lp(By)|IP—
D IS BB

= NP7 fIBR(BA)IA-
Inspecting the proof one easily verifies that
(9) IFO By R™) [ ane = A*"/P|| £ By (R™)|| an

holds as well.
We add here the following fact because we shall need it in the sequel.

PROPOSITION 12. Let1 <p <00, s>0, 5> 359 €R and Q CR™. Then
(10) 1B () ~ LB () + 1 F1BR ()] an -
The proof is left to the reader.
3.2. Equivalence theorem. First we need an older equivalence assertion to prove the new
one.

THEOREM 13. Let 1 < p < oo and S : x +— s(x) be a bounded lower semi-continuous
function in R™ with spmax — m < 1/p for a natural number m. Then for so < 1/p

(11) IF1Bye (R™)|| +  sup 27 KEmems0) X" DBk (B, 5« )|

KEN,zeR?
|a]=m

is an equivalent norm in B0 (R™).

This was proved in [2], section 3.2.
Now we provide our main result in this section and discuss its history afterwards.

THEOREM 14. Let 1 < p < oo and let S be a positive lower semi-continuous function in
R™ with sg < 1/p. Then

(12) 17185 (R™)]| + sup o~ Kwams0)| £ By (B, 5-xc) || s

is an equivalent norm in BE’SO (R™).

Proof. We have to handle the supremum term only. For one direction we start with
fomula (3) and get by (10)

[ f1By" (B 2-x )|
< C2K(Sx,w—n/p) ‘|f(2—K.)|BZS)K,w (B:vl)H
< @R lamn/e) (|| £ (275 [ B2 (Boy) | + | £ (275 )| B3 (Bap) || am)-

Now the formulas (2) and (8) provide homogeneity for both terms in the brackets and we
arrive at the desired estimate for one direction. For the opposite direction we start with
formula (8) and get by (10)
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| fIB3 (By s )| ane < 2K e=n/P)|| (27K )| BSs (By 1) | ame
< K (sKx.e=n/p) ||f(2—K.)‘B;K,z(BI’1)||.

Now we are in the same situation as in the proof of Theorem 13, see step 2 of the proof
of Theorem 3.2 in [2]. Just like there we arrive by homogeneity at

1By (B s o
< @RCram )| B R + e 3 DB (B, 5x)

lal=m

and with Theorem 13 can conclude

sup 2—K(5K,m_80) ||f|BZS)K,L (BI’27K ) ||AM
K,z

< el f1B R+ esup 2K Cxem) ST D% B (B )
T

lal=m

< |l F1B;° (R?)] + esup g~ Klowamsol|| f|ByKs (B, o),
X

which is the second direction.

One can take the finiteness of (12) for the definition of a space of varying smoothness,

say ézs,’st’ (R™). Now one can ask whether the results in [2] for positive smoothness can
also be obtained for this space directly, because the local part of the norm defined by
differences is easier to handle than the Fourier-analytical one defined via restriction. One
goal would be to prove a wavelet characterization as in Theorem 6.3 in [2] without any
restrictions on sg. In fact, the homogeneity (8) make things much simpler, but the proofs
would often have to use the equivalence (10), consequently they need also the homogeneity
of the global term in (12) and therefore, by (2), we still must keep the condition s < 1/p

A
in crucial cases. That is the reason why the space BE’SU (R™) would not yet yield an
essential progress for the theory of varying smoothness.
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