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Abstra
t. This paper deals with fun
tion spa
es of varying smoothness B

S,s0
p (Rn), where thefun
tion S : x 7→ s(x) determines the smoothness pointwise. Those spa
es were de�ned in [2℄and treated also in [3℄. Here we prove results about interpolation, tra
e properties and presenta 
hara
terization of these spa
es based on di�eren
es.1. Introdu
tion. The idea of fun
tion spa
es where the smoothness 
an vary from pointto point has quite a ri
h history. We des
ribed it in [2℄ and [3℄ with many referen
es.There we presented our approa
h to a Besov-type fun
tion spa
e of varying smoothness

BS,s0
p (Rn). We re
all the de�nition here. Let us denote by Bx,r the open ball in Rn
entered at x with radius r > 0.Definition 1. Let 1 < p ≤ ∞ and let S : x 7→ s(x) be a bounded lower semi-
ontinuousfun
tion in Rn with smin ≥ s0 for a real number s0. Then

BS,s0
p (Rn) = {f ∈ S′(Rn) : ‖f |BS,s0

p (Rn)‖ < ∞},normed by
‖f |Bs0

p (Rn)‖ + sup
K∈N,x∈Rn

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖,(1)where

sK,x = inf
|y−x|≤2−K+2

s(y).Here s0 ≤ smin = infy∈Rn s(y) plays the role of a global smoothness index but now
omplemented by the fun
tion s(x), that gives for every point x ∈ Rn a possibly di�erent2000 Mathemati
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188 J. SCHNEIDERsmoothness value. By Bs
p(Rn) we denote the usual Besov spa
e Bs

p,q(R
n) in the 
ase p = qand by Bs

p(Ω) we mean its restri
tion to the domain Ω.Let us des
ribe what happens in the norm (1). The �rst term 
he
ks the global smooth-ness s0 of a given fun
tion f , whereas the supremum term 
on
erns lo
al improvementsby the following pro
edure. For a �xed point x ∈ Rn we 
onsider a ball 
entered in xwith radius 2−K and ask if f belongs to the Besov spa
e with smoothness sK,x ≥ s0 inthis ball. Now we in
rease K and therefore shrink the ball around x and ask the samequestion again with respe
t to a possibly higher degree of smoothness. We 
ontinue thispro
edure for all K, then all x, and �nally 
he
k if the supremum over all these normsmultiplied by the weight fa
tor 2−K(sK,x−s0) is �nite. This fa
tor appears in a naturalway when we 
ompare Besov spa
e norms on balls with di�erent smoothness levels, formore details we refer to [2℄ and [3℄.In [2℄ we proved that BS,s0
p (Rn) is a Bana
h spa
e and some basi
 properties for

s0 < 1/p like a pointwise multiplier assertion and an embedding theorem. One mainresult was a 
hara
terization by the following wavelet-expansion. An arbitrary fun
tion
f belonging to a Besov spa
e 
an be written as

f(x) =

2n−1
∑

l=0

∞
∑

j=0

∑

m∈Zn

λl
j,m(f)Ψl(2jx − m),where Ψl are �xed fun
tions with 
ompa
t support and λl

j,m(f) are 
omplex numbers
ontaining all the information about f , for details we refer to [8℄. By means of thisexpansion we stated in [2℄ (se
tion 5) the wavelet 
hara
terization of BS,s0
p (Rn) with thehelp of weighted sequen
e spa
es.This result was the starting point for further investigations, for example, we provedan interesting 
onne
tion to the so-
alled 2-mi
rolo
al spa
es Cs,s′

(x0), see [2℄ (se
tion6.3) and [1℄ for more details.In the 
ase of negative smoothness the whole theory is published in [3℄. For positivesmoothness the theory is not yet satisfatory but we postpone this dis
ussion to anotherpaper.In the next se
tion we 
olle
t some new results on interpolation and tra
es of the spa
es
BS,s0

p (Rn) whi
h are not 
ontained in [2℄ or [3℄. In se
tion 3 we dis
uss a 
hara
terizationof BS,s0
p (Rn) by di�eren
es. Now we list two older results on Besov spa
es that we willneed later on.Proposition 2. Let 1 < p ≤ ∞, −∞ < s < 1/p and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ∼ λs−n/p‖f |Bs

p(Bλ)‖,(2)where the equivalen
e 
onstants are independent of f ∈ Bs
p(Bλ) and λ.This has been formulated brie�y in [7℄, se
tion 5.20, p. 69, and proved in [6℄, 3.9(iii).Proposition 3. Let 1 < p ≤ ∞, s ∈ R and 0 < λ ≤ 1, then

‖f(λ·)|Bs
p(B1)‖ ≥ cλs−n/p‖f |Bs

p(Bλ)‖,(3)where the equivalen
e 
onstants are independent of f and λ.This has been stated as Proposition 2.4 in [2℄.



FUNCTION SPACES OF VARYING SMOOTHNESS 189These two homogeneity properties were essential for the methods of the proofs in [2℄and [3℄, they also will be important for our purpose in this paper.2. Supplements to the spa
e BS,s0
p (Rn). In this se
tion we treat two standard ques-tions in the theory of fun
tion spa
es, whi
h are quite di�erent from ea
h other: interpo-lation and tra
es.2.1. Interpolation. We restri
t ourselves to the 
ase p1 = p2 = p and the same basi
 levelof smoothness s0 in both spa
es of the interpolation 
ouple (BS

1,s0
p (Rn), BS

2,s0
p (Rn)). Thenby means of the well-known K-method we 
an state the following.Theorem 4. Let 1 < p < ∞ and let S1, S2 be negative lower semi-
ontinuous fun
tionsin Rn with s0 ≤ (s1

min, s
2
min). Then
(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p →֒ BS,s0

p (Rn),if s(x) = (1 − Θ)s1(x) + Θs2(x) for 0 < Θ < 1.Proof. Let f ∈ (BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p and
‖f |(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p‖ =

(
∫ ∞

0

t−ΘpK(t, f)p
S1,S2

dt

t

)1/p

,where the K-fun
tional is de�ned by
K(t, f)S1,S2 = inf

f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(‖f1|B
S
1,s0

p (Rn)‖ + t‖f2|B
S
2,s0

p (Rn)‖).

Now we estimate the K-fun
tional
K(t, f)S1,S2 ≥ inf

f=f1+f2

f1,f2∈B
s0
p (Rn)

(‖f1|B
s0
p (Rn)‖ + t‖f2|B

s0
p (Rn)‖)

+ inf
f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(sup
x,K

2−K(s1
K,x−s0)‖f1|B

s1
K,x

p (Bx,2−K )‖

+t sup
x,K

2−K(s2
K,x−s0)‖f2|B

s2
K,x

p (Bx,2−K )‖).The �rst in�mum is the de�nition of K(t, f)s0
in obvious notation. The se
ond in�mumis estimated further with the help of homogeneity:

inf
f=f1+f2

fi∈B
Si,s0
p (Rn),i=1,2

(sup
x,K

2−K(s1
K,x−s0)‖f1|B

s1
K,x

p (Bx,2−K )‖

+t sup
x,K

2−K(s2
K,x−s0)‖f2|B

s2
K,x

p (Bx,2−K )‖)

≥ c sup
x,K

2−K(n/p−s0) inf
f=f1+f2

fi∈B
si

K,x
p (B

x,2−K ),i=1,2

(‖f1(2
−K ·)|B

s1
K,x

p (Bx,1)‖ + t‖f2(2
−K ·)|B

s2
K,x

p (Bx,1)‖)

= c sup
x,K

2−K(n/p−s0)K(t, f(2−K ·))s1
K,x

,s2
K,x



190 J. SCHNEIDERagain in obvious notation. Therefore, we get for the K-fun
tionals
K(t, f)S1,S2 ≥ K(t, f)s0

+ c sup
x,K

2−K(n/p−s0)K(t, f(2−K ·))s1
K,x

,s2
K,x

.Inserting this estimate into the norm of the interpolation spa
e, we have
‖f |(BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p‖

p

≥ c

∫ ∞

0

t−ΘpK(t, f)p
s0

dt

t
+ c sup

x,K
2−K(n/p−s0)p

∫ ∞

0

t−ΘpK(t, f(2−K ·))p
s1

K,x
,s2

K,x

dt

t

= c‖f |(Bs0
p (Rn), Bs0

p (Rn))Θ,p‖
p

+c sup
x,K

2−K(n/p−s0)p‖f(2−K ·)|(B
s1

K,x
p (Bx,1), B

s2
K,x

p (Bx,1))Θ,p‖
p.By well known interpolation results on Besov spa
es, see 
hapters 2.4.1. and 4.3.1. in [4℄,we 
an further write

‖f |(BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p‖
p

≥ c‖f |Bs0
p (Rn)‖p + c sup

x,K
2−K(n/p−s0)p‖f(2−K ·)|BsK,x

p (Bx,1)‖
p.Finally, by homogeneity we arrive at

‖f |(BS
1,s0

p (Rn), BS
2,s0

p (Rn))Θ,p‖
p

≥ c‖f |Bs0
p (Rn)‖p + c sup

x,K
2−K(sK,x−s0)p‖f |BsK,x

p (Bx,2−K )‖p ≥ c‖f |BS,s0
p (Rn)‖p,whi
h proves the theorem.Remark 5. The interpolation meets exa
tly our expe
tations and is a generalization ofwell-known 
lassi
al results. Of 
ourse, it is desirable to have also the 
onverse embedding,that would mean (BS

1,s0
p (Rn), BS

2,s0
p (Rn))Θ,p = BS,s0

p (Rn), but unfortunately the methodof the above proof does not 
arry over to the opposite dire
tion. The reason is that thein�mum appearing in the de�nition of the K-fun
tional 
an be moved inside of the normin BS,s0
p (Rn) only by making the term smaller.2.2. Tra
es. Let us �rst provide an older result that is needed in this subse
tion.Proposition 6. Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-
ontinuousfun
tion in Rn. Then for K0 ∈ N

‖f |Bs0
p (Rn)‖ + sup

x∈Rn

sup
K≥K0

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖is an equivalent norm in BS,s0

p (Rn).A proof of this proposition 
an be found in [3℄ (Proposition 3.7). It tells us that onlylarge values of K, 
orresponding to small balls, are of interest in the norm of BS,s0
p (Rn).Now we are interested in the tra
e of a fun
tion f on the hyperplane yn = 0, whi
h weidentify with Rn−1. We de�ne the operator Tr : f(y) 7→ f(y′, 0) with y = (y′, yn) ∈ Rn,where the ′ always indi
ates a 
oordinate in R

n−1. For the expressions sK,x and Bx,r wedenote the (n − 1)-dimensional 
ounterparts with s̄K,x′ and B̄x′,r.



FUNCTION SPACES OF VARYING SMOOTHNESS 191Theorem 7. Let 1 < p ≤ ∞ and let S be a positive lower semi-
ontinuous fun
tion in
R

n with s0 > n/p. Then
Tr : BS,s0

p (Rn) → Bs(x′,0)−1/p,s0−1/p
p (Rn−1)is a bounded linear operator if

s(x′, xn) ≥ s(x′, 0) for all |xn| ≤ ε for an ε > 0.(4)Remark 8. The 
ondition we a
tually need in the following proof is
sK,x′ = s̄K,x′ for all x′ ∈ R

n−1 and all K ≥ K0 ∈ N.But 
ondition (4) is su�
ient for that and means that the fun
tion s(x) has a lo
alminimum along the hyperplane yn = 0, whi
h is not really natural but on the other handnot very restri
tive.Proof. We have to show
‖f(y′, 0)|Bs(x′,0)−1/p,s0−1/p

p (Rn−1)‖ ≤ c‖f |BS,s0
p (Rn)‖.(5)The global part of (5) is 
lear by 
hapter 2.7.2 in [5℄. The lo
al part reads as follows

(6) sup
K,x′

2−K(s̄K,x′−s0)‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖

≤ c sup
x,K

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖.We start to estimate the norm on the left-hand side. By de�nition we have

‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖ = inf ‖g|B

s̄K,x′−1/p
p (Rn−1)‖,(7)where the in�mum is taken over all fun
tions g with g|B̄

x′,2−K
= f(y′, 0). By the wellknown tra
e result for Besov spa
es (we refer again to 
hapter 2.7.2. in [5℄) we know thatfor every su
h fun
tion g there is an extended fun
tion G living on R

n with
‖g|B

s̄K,x′−1/p
p (Rn−1)‖ ≤ c‖G|B

s̄K,x′

p (Rn)‖.Be
ause of our assumption (4) together with Remark 9 we 
an write sK,x′ instead of
s̄K,x′ on the right-hand side for large K. If we now restri
t the in�mum in (7) onlyto those fun
tions g su
h that for the 
orresponding extended fun
tion G the equality
G|B

x′,2−K
= f holds, whi
h we denote by ∗, then we �nd

‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖ ≤ c inf

∗
‖G|B

sK,x′

p (Rn)‖ = c‖f |B
sK,x′

p (Bx′,2−K )‖.Inserting this into the left-hand side of (6) we �nally get with Proposition 6
sup
K,x′

2−K(s̄K,x′−s0)‖f(y′, 0)|B
s̄K,x′−1/p
p (B̄x′,2−K )‖

≤ c sup
K>K0,x′

2−K(s̄K,x′−s0)‖f |B
sK,x′

p (Bx′,2−K )‖

≤ c sup
K>K0,x′

2−K(sK,x′−s0)‖f |B
sK,x′

p (Bx′,2−K )‖

≤ c sup
K,x

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖,where we used sK,x′ = s̄K,x′ for large K again. This is the desired inequality (6).



192 J. SCHNEIDERRemark 9. The 
ondition s0 > n/p in Theorem 8 stands somehow in 
ontrast to the
ondition s0 < 1/p whi
h appears almost in the whole theory be
ause in the proofs thehomogeneity property (2) is always needed, see [2℄. But talking about tra
es we need a
ontinuous representative in BS,s0
p (Rn) and so the range of parameters is restri
ted to

s > n/p. That means that the Theorem is in some sense still isolated from the rest of thetheory.Remark 10. To prove that B
s(x′,0)−1/p,s0−1/p
p (Rn−1) is the exa
t tra
e spa
e, we haveto show that there exists a bounded linear extension operator

Ext : Bs(x′,0)−1/p,s0−1/p
p (Rn−1) → BS,s0

p (Rn).Unfortunately, no su
h result is available yet.3. Chara
terization by di�eren
es. In [2℄ we developed the theory of BS,s0
p (Rn) forgeneral smoothness. But it turned out that for positive smoothness the arguments werenot straightforward. We always had to 
ompensate the la
k of homogeneity for the Besovspa
e norm. H.-G. Leopold suggested substituting the lo
al term in (1) by a semi-normbased on di�eren
es in su
h a way that the homogeneity would be provided for positivesmoothness. To present the essen
e of this idea is the aim of this se
tion.3.1. Preliminaries. First we make some preparations and �x the notation here. For h ∈ Rand M ∈ N we put

∆M,i
h f(x) =

M
∑

l=0

(

M

l

)

(−1)lf(x + (M − l)hei)and set
∆M,i

h f(x, Ω) =

{

∆M,i
h f(x), x + (M − l)hei ∈ Ω ∀ l = 0, . . . , M,

0, otherwise,for a domain Ω in Rn. Now we de�ne the following semi-norm for s < M :
‖f |Bs

p(Ω)‖∆M =

(

n
∑

i=1

∫

|h|

|h|−sp‖∆M,i
h f(·, Ω)|Lp(Ω)‖p dh

|h|

)1/p

.Here the integration is meant to be over |h| ≤ dist(Ω). We denote by Bx,r the ball withradius r > 0 
entered at x ∈ Rn. In the 
ase x = 0 we omit it and write only Br.Proposition 11. Let 1 < p ≤ ∞ and M > s > 0, then
‖f(λ·)|Bs

p(B1)‖∆M = λs−n/p‖f |Bs
p(Bλ)‖∆M .(8)Proof. We prove the assertion for M = 1 be
ause for di�eren
es of higher order the proofis analogous. Putting f(λ·) = g we have ∆kg(y) = ∆λkf(λy). Now we 
a
ulate with

λk = h

‖f(λ·)|Bs
p(B1)‖

p
∆ =

n
∑

i=1

∫

|k|≤2

|k|−sp‖∆i
kg(·, B1)|Lp(B1)‖

p dk

|k|

=
n
∑

i=1

∫

|k|≤2

|k|−sp‖∆i
λkf(λ·, B1)|Lp(B1)‖

p dk

|k|
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=

n
∑

i=1

∫

|k|≤2

|k|−spλ−n‖∆i
λkf(·, Bλ)|Lp(Bλ)‖p dk

|k|

=

n
∑

i=1

∫

|λ−1h|≤2

|λ−1h|−spλ−n‖∆i
hf(·, Bλ)|Lp(Bλ)‖pλ−1 dh

|λ−1h|

= λsp−n
n
∑

i=1

∫

|h|≤2λ

|h|−sp‖∆i
hf(·, Bλ)|Lp(Bλ)‖p dh

|h|

= λsp−n‖f |Bs
p(Bλ)‖p

∆.Inspe
ting the proof one easily veri�es that
‖f(λ·)|Bs

p(R
n)‖∆M = λs−n/p‖f |Bs

p(Rn)‖∆M(9)holds as well.We add here the following fa
t be
ause we shall need it in the sequel.Proposition 12. Let 1 < p ≤ ∞, s > 0, s ≥ s0 ∈ R and Ω ⊆ Rn. Then
‖f |Bs

p(Ω)‖ ∼ ‖f |Bs0
p (Ω)‖ + ‖f |Bs

p(Ω)‖∆M .(10)The proof is left to the reader.3.2. Equivalen
e theorem. First we need an older equivalen
e assertion to prove the newone.Theorem 13. Let 1 < p ≤ ∞ and S : x 7→ s(x) be a bounded lower semi-
ontinuousfun
tion in Rn with smax − m < 1/p for a natural number m. Then for s0 < 1/p

‖f |Bs0
p (Rn)‖ + sup

K∈N,x∈Rn

2−K(sK,x−s0)
∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖(11)is an equivalent norm in BS,s0

p (Rn).This was proved in [2℄, se
tion 3.2.Now we provide our main result in this se
tion and dis
uss its history afterwards.Theorem 14. Let 1 < p ≤ ∞ and let S be a positive lower semi-
ontinuous fun
tion in
Rn with s0 < 1/p. Then

‖f |Bs0
p (Rn)‖ + sup

K,x
2−K(sK,x−s0)‖f |BsK,x

p (Bx,2−K )‖∆M(12)is an equivalent norm in BS,s0
p (Rn).Proof. We have to handle the supremum term only. For one dire
tion we start withfomula (3) and get by (10)

‖f |BsK,x
p (Bx,2−K )‖

≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x
p (Bx,1)‖

≤ c2K(sK,x−n/p)(‖f(2−K ·)|Bs0
p (Bx,1)‖ + ‖f(2−K ·)|BsK,x

p (Bx,1)‖∆M ).Now the formulas (2) and (8) provide homogeneity for both terms in the bra
kets and wearrive at the desired estimate for one dire
tion. For the opposite dire
tion we start withformula (8) and get by (10)
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‖f |BsK,x
p (Bx,2−K )‖∆M ≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x

p (Bx,1)‖∆M

≤ c2K(sK,x−n/p)‖f(2−K ·)|BsK,x
p (Bx,1)‖.Now we are in the same situation as in the proof of Theorem 13, see step 2 of the proofof Theorem 3.2 in [2℄. Just like there we arrive by homogeneity at

‖f |BsK,x
p (Bx,2−K )‖∆M

≤ c2K(sK,x−s0)‖f |Bs0
p (Rn)‖ + c

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖and with Theorem 13 
an 
on
lude

sup
K,x

2−K(sK,x−s0)‖f |BsK,x
p (Bx,2−K )‖∆M

≤ c‖f |Bs0
p (Rn)‖ + c sup

K,x
2−K(sK,x−s0)

∑

|α|=m

‖Dαf |BsK,x−m
p (Bx,2−K )‖

≤ c‖f |Bs0
p (Rn)‖ + c sup

K,x
2−K(sK,x−s0)‖f |BsK,x

p (Bx,2−K )‖,whi
h is the se
ond dire
tion.One 
an take the �niteness of (12) for the de�nition of a spa
e of varying smoothness,say ∆

BS,s0
p (Rn). Now one 
an ask whether the results in [2℄ for positive smoothness 
analso be obtained for this spa
e dire
tly, be
ause the lo
al part of the norm de�ned bydi�eren
es is easier to handle than the Fourier-analyti
al one de�ned via restri
tion. Onegoal would be to prove a wavelet 
hara
terization as in Theorem 6.3 in [2℄ without anyrestri
tions on s0. In fa
t, the homogeneity (8) make things mu
h simpler, but the proofswould often have to use the equivalen
e (10), 
onsequently they need also the homogeneityof the global term in (12) and therefore, by (2), we still must keep the 
ondition s0 < 1/pin 
ru
ial 
ases. That is the reason why the spa
e ∆

BS,s0
p (Rn) would not yet yield anessential progress for the theory of varying smoothness.A
knowledgements. The author thanks Prof. H.-G. Leopold and Prof. D. D. Haroske(both University of Jena) for their support.
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