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Abstract. Let X be a partially ordered real Banach space, a,b € X with a < b. Let ¢ be a
bounded linear functional on X. We call X a Ben-Israel-Charnes space (or a B-C' space) if the
linear program defined by Maximize ¢(z) subject to a < x < b has an optimal solution for any ¢,
a and b. Such problems arise naturally in solving a class of problems known as Interval Linear
Programs. B-C' spaces were introduced in the author’s doctoral thesis and were subsequently
studied in [8] and [9]. In this article, we review these results, study their implications to certain
positive operators over partially ordered Banach spaces and obtain some new ones.

1. Introduction. Let X and Y be real Banach spaces with Y partially ordered (Defi-
nition 2.1 below), A: X — Y be a linear map and a,b € Y with a < b. Let ¢ be a linear
functional on X. A class of linear programs studied rather extensively known as interval
linear programs (ILP) denoted by ILP(a,b, ¢, A) are problems of the form:

Maximize ¢(x)
subject to a < Az <b.

Ben-Israel and Charnes were the first to investigate ILP’s [1]. They considered the
case X = R™ and Y = R™ where they assumed that the matrix A is of full row-rank.
Explicit optimal solutions for such problems were given in terms of generalized inverses
of A. Kulkarni and Sivakumar [3, 4, 5] investigated interval linear programs in the infinite
dimensional setting and showed how some of the results in the finite dimensional case
can be extended, [8] and [9].

The study of ILP over infinite dimensional spaces naturally leads to the abstract
notion of a class of Banach spaces with a certain optimization property. Such spaces were
called Ben-Isreal-Charnes spaces (or B-C' spaces, for short), ([7]) in recognition of the
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work of these authors on finite interval linear programs. Specifically, a partially ordered
real Banach space X is called a B-C space if ILP(a,b,1,I) has an optimal solution for
all a,b € X with a < b and for all bounded linear functionals ¥ on X.

A systematic study of B-C spaces was carried out in [8] and [9], where new B-C
spaces were identifed from old ones. These were achieved by applying nonnegativity of
certain operators concerned. In this article our objective is to first provide an exposition
of these results. Turning around these statements lead to questions of nonnegativity of
certain operators over partially ordered Banach spaces, perhaps hitherto unheard of. The
second aim of this article is to pose these questions and also to consider answers to some
of them. These lead to new points of view into classical results in the literature. New
results in this article are given in Theorem 2.15 and Theorem 2.16.

2. Ben-Israel-Charnes spaces. In this section first we develop the terminology and
review the notions of cones. We then review the existing results in the literature. We then
consider questions arising out of these results. Two specific questions are answered in the
affirmative and are presented in Theorem 2.15 and Theorem 2.16.

DEFINITION 2.1. Let X be a real vector space. Then X is called a partially ordered vector
space if X has a partial order < defined on it satisfying the following: For x,y € X with
x <y, wehave x +u < y+wu for all u € X and az < ay for all a > 0.

DEFINITION 2.2. Let X be a partially ordered real vector space. Then the subset C :=
{z € X : & > 0} is called the positive cone of X.

Note that C is a pointed cone i.e., C N —C = {0}.

DEFINITION 2.3. A Banach space which is partially ordered is said to be a partially
ordered Banach space. It is said to be a partially ordered Hilbert space, if in addition, it
is a Hilbert space.

EXAMPLE 2.4. R™ the Euclidean space is a partially ordered real Banach space with
R? = {z = (z1,22,- - ,2,) €ER" :2; >0 Vi =1,2,--- ,n} as a pointed positive cone.

EXAMPLE 2.5. Let i be a o-finite positive measure on a ¢g-algebra in a nonempty set
Y and for 1 < p < oo, let X = LP(Y, ) denote the space of (equivalent classes of)
measurable p-integrable functions on Y. Then X is a partially ordered Banach space with
the pointed positive cone C := {f € X : f > 0 a.e.(1)}. In particular I?,1 < p < oo is a
partially ordered Banach space with the pointed positive cone P := {z € IP : x; > 0Vi}.

DEFINITION 2.6. Let X; be a real Banach space and X be a partially ordered real
Banach space. Let A : X; — X5 be linear, ¢ be a bounded linear functional on X; and
a,b € Xy with a < b. Consider the problem denoted by ILP(a,b, ¢, A):

Maximize ¢(x)
subject to a < Az < b
A vector z* € X is said to be feasible for the problem ILP(a,b, ¢, A) if a < Az* <b.
The problem ILP(a,b,¢, A) is said to be feasible if there exists a feasible vector for it.

A feasible vector z* is said to be optimal if ¢(z*) > ¢(x) for every feasible vector x. The
problem ILP(a,b, ¢, A) is said to be bounded if sup {¢(z) : a < Az < b} < 0.
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DEFINITION 2.7. Let X be a partially ordered real Banach space. Let I denote the iden-
tity map on X. We say that X is a Ben-Israel-Charnes space or a B-C' space for short
if ILP(a,b,,I) has an optimal solution for all a,b € X with a < b and for all bounded
linear functionals 1) on X.

The next result is a consequence of the fact that in a Banach lattice with order
continuous norm, intervals of the form [a,b] := {x € X : a < z < b} are weakly compact.
For the notions of a Banach lattice and order complete norms, we refer to the book by

Schaefer, [6].

THEOREM 2.8. Let X be a Banach lattice with order continuous norm. Then X is a B-C
space.

The next result collects a class of Hilbert spaces that are B-C spaces.

THEOREM 2.9 (Lemma 4, [3]). Let H be a partially ordered real Hilbert space with P as
the positive cone such that there exists an orthonormal basis {u® : o € J}, J an indez

set, of H with u® € P Ya € J. Then H is a B-C space.
The next Theorem is a trivial consequence of Theorem 2.9.

THEOREM 2.10. Let H be a partially ordered real Hilbert space with P as the positive
cone such that there exists an orthonormal basis {u® : « € J}, J an index set, of H with
either u* € PVa € J oru® € =P Va € J. Then H is a B-C space.

EXAMPLE 2.11. Consider the vector space H = SR™*"™ of real n x n symmetric matrices
with the cone PSD of positive semi-definite matrices. Identifying SR”*" with R™* (n+1)/2
it follows that SR™*™ is a Banach lattice with order continuous norm. Hence by Theorem
2.8, it follows that any I LP posed over SR™*™ has an optimal solution. Thus SR™*" is
a B-C' space.

REMARK 2.12. It has been shown (Theorem 3.13, [9]) that the Hilbert space H = SR™"*™
with the cone PSD does not satisfy the conditions of Theorem 2.9. It is not clear if this
same conclusion can be arrived at, using Theorem 2.10. This leads us to the following
open question:

PROBLEM 1. Does R™*("+1)/2 haye an orthonormal basis {EF}, k = 1,2,...,n x
(n+1)/2, where E¥ € PSD or —E* € PSD?

We turn our attention to the idea of constructing new B-C spaces from old.

Let X7 and X, be partially ordered vector spaces with positive cones P; and P,,
respectively. Recall that a linear map A : X; — X5 is called nonnegative if AP; C Ps. In
the rest of the paper we will use the notation A > 0 to denote this fact. Let A : X; — Xo
be linear. A linear map T : X5 — X is called a left-inverse of A if T'A = I, the identity
map on Xj.

We now consider the following problem:

PrROBLEM 2. Let X; be a B-C space, X5 be a partially ordered Banach space, A : X; —
X2 be bounded linear with R(A) closed and A > 0. When is R(A) a B-C space?
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Theorem 2.13 gives a sufficient condition ensuring an affirmative answer. This ap-
peared in [9] and a sketch of its proof is given here for the sake of completeness.

THEOREM 2.13 (Theorem 3.26, [9]). Let X1 be a B-C' space and X5 be a partially ordered
real Banach space. Let A € BL(X1, X3) be nonnegative and R(A) be closed. Suppose that
A has a nonnegative left-inverse. Then R(A) is a B-C' space.

Proof. Let y',y? € R(A) with y! < y? and ¢, be a bounded linear functional on R(A). Let
T be a nonnegative left-inverse of A. Set 2! = Ty! and 22 = Ty2. Let 1) be a bounded
linear extension of ¢ to Xs. Then ILP(y',y% ¢,I) can be shown to be equivalent to
ILP(x', 22, A*4, I) which has an optimal solution, as X; is a B-C' space. =

We next present a new application of Theorem 2.13 (Theorem 2.15 to follow). Prior
to that we first quickly review the notion of the Moore-Penrose generalized inverse of an
operator T

Let T € BL(H;,Hsy) with closed range and let T* denote the adjoint of 7. Then the
Moore-Penrose inverse of T' is the unique operator T in BL(Hsy, H;) which satisfies the
following equations (See [2], Chapter II, Sec.2):

(2.1) TT'T =T,
(2.2) Tt = 7',
(2.3) (TT)* =TTT,
(2.4) (TTT)* =T'T.

The following properties of TT are well known ([2]): If z € R(T*) then x = T'Tz;
R(T*) = R(T"); T'T = Pr(r-y; N(T*) = N(TY); TTt = Pp(ry, where T* is the adjoint
of T, N(T) denotes the null space of T, R(T') denotes the range space of T and Py, the
orthogonal projection of a Hilbert space onto a closed subspace L.

REMARK 2.14. Let Le denote the lexicographic cone in R™. It can be shown that (R™, Le)
is not a B-C' space. In the light of Theorem 2.13 it now follows that there cannot exist
a nonnegative matrix A (i.e., A(R"}) C Le) having a nonnegative left-inverse T" (i.e.,
T'(Le) € R%) from (R™,R") into (R™, Le), n < m. This leads us to the following open
question:

PROBLEM 3. Let A € R™*" be such that A(R?) C Le. When is Af(Le) CR%?

Next, we review the notion of a cone and its dual. A cone P in a Hilbert space H is
said to be acute if (z,y) > 0 for all z,y € P. For a cone P in a Hilbert space H, the dual
cone P* is defined by

P :={xecH:(z,y) >0y € P}
A cone P is said to be self-dual if P* = P.
THEOREM 2.15. Let P be a closed positive self-dual cone in a real Hilbert space H which

is also a B-C space. Let A : H — H be a nonnegative injective bounded linear operator
with R(A) closed. Suppose that (AT)*P is an acute cone. Then R(A) is a B-C space.



APPLICATIONS OF NONNEGATIVE OPERATORS TO OPTIMIZATION 201

Proof. In view of Theorem 2.13, it is sufficient to demonstrate that A has a nonnegative
left inverse. In fact we show that (A*A)~1A* > 0. (Note that (A*A)~! exists as A is
injective. Also AT = (A*A)~'A* so that AT(AT)* = (A*A)~!.) So, let € P and set
y=(A*A)"1A*z = (A*A)~1z, 2 = A*x. Since P is self-dual and A > 0 we have Az € P*.
Therefore, (x, A*u) = (Az,u) > 0 for any u € P. Consequently, A*u € P* = P for any
u € P. Now we see that A* > 0 and z > 0. Next, we must show that y € P. We show
that if r € P, then (y,r) > 0. Since P is self-dual the result would then follow. Consider
(1) = ((A"A)~1z,7) = (AT(AT)"2,1) = ((AT)2, (AT)'7) = (u,0), where u = (AT)"2
and v = (AT)*r. Since (AT)*P is acute, we have (u,v) > 0, completing the proof. =

Next, we study:
PROBLEM 4. Can the existence of a nonnegative left-inverse of A in Theorem 2.13 be
replaced by AT > 0?

The answer is in the affirmative for Hilbert spaces, as we prove next.

THEOREM 2.16. Let Hy and Hy be real Hilbert spaces with positive cones P and Ps,
respectively. Let A € BL(Hy, Hy) such that A > 0, AT > 0 and R(A) be closed. Then
R(A) is a B-C space iff R(A*) is a B-C space.

Proof. We will show that if A >0, Af >0 and R(A*) is a B-C space, then R(A) is a
B-C space. This would complete the proof. For 4!, y? € R(A) and ¢ a bounded linear
functional on R(A), consider the problem ILP(y!,y?, ¢,I) defined on R(A):

Maximize ¢(y)
subject to y' <y <y?,  y € R(A).
Let o', 22 € H; such that Az’ = y' and Ax? = y2. Define the sets
Sy:={reX;: At Az' < ATAz < ATAJ,‘Q}
Sy:={x e X;: Azl < Az < sz}.
Since A > 0, and AT > 0, it follows that S; = S,. Setting y = Az, it can be seen that
ILP(y', 42, ¢,1) is the same as
Maximize (A*¢)(x)
subject to Az! < Az < Ax
a problem over H;. This is equivalent to
Maximize (A*¢)(x)
subject to ATAz' < AT Az < ATA:UQ,
since S7 = Ss.

Set u = AtAxz. Then z = (AtA)Tu + 2, with z € N(ATA) = N(A). Also, we
have (A*¢)(z) = ¢(A(z)) = ¢(A(ATA)Tu) = (A*¢)((ATA)tu), as 2 € N(A). Set v =
(AtA)Tu, u' = AT Az' and u? = ATA2?. Then v,u',u? € R(A*) and the problem above
is equivalent to:

Maximize (A*¢)(v)

subject to u <u< u2,
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an ILP posed over R(A*). This has an optimal solution, as R(A*) is a B-C space. This
concludes the proof. m

The following example demonstrates that the condition A > 0 (or AT > 0) is indis-
pensable in Theorem 2.16.

EXAMPLE 2.17. Let X; = Xs = R? with P; the usual cone in R? and P, be the lexico-
graphic cone in R?. Then X is a B-C space and X3 is not a B-C space. The identity
matrix is nonnegative but its inverse is not nonnegative as P; C Po.
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