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Abstract. We generalize and improve in some cases the results of Mahapatra and Chandra [7].
As a measure of Holder norm approximation, generalized modulus-type functions are used.

1. Introduction. Let f be a continuous and 27-periodic function and let

ap = .
f(z) ~ 5> + Z(an cosnz + by, sinnx) (1.1)

n=1

be its Fourier series. Denote by S, (z) = S, (f, x) the n-th partial sum of (1.1).

The usual supremum norm will be denoted by ||-|| .

Let w be a nondecreasing continuous function on the interval [0, 27r] having the prop-
erties

w(0) =0, w(d;+ ) <w(d1)+ w(d2).
Such functions will be called moduli of continuity. If
w(f,0) = sup |[f(z) = f(y)|
le—y|<o
denotes the modulus of continuity of f € Cy,, then the class of functions f € Cs, for
which
w(f,0) <Aw(d) if0<§<2m,

will be denoted by H“, and equipped with the norm
11, == lflle + sup |A% f (2, y)],
aj’ y
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where

st < LDIOL

In the case w(d) = 6% (0 < o < 1) we write, as usual, H*, A® f(x,y) and | f||,, instead
of H*", A% f(z,y) and || f||5a» respectively.

Let A = (an) be an infinite matrix. The A-transform of the Fourier series (1.1) is
given by

(o)
An(fa J)) = Z a’nkSk:(x)'
k=0
Series (1.1) is said to be A-summable to s if
lim A, (f,z) =s.

If ape, = (1)g" "1+ ¢)™ (¢ = 0, k < n) and anr = 0, (k > n), then the matrix

k
A = (any) is called the Euler matrix. If (a,x) is given by the formula
(-0 S
W = Zan;ﬂk (0 S r < 1, |7’9| < 1)
k=0

then the matrix A is called the Taylor matrix. We shall write EZ(f,z) or T, (f,z) for
Ay (f,z) according as A is the Euler or the Taylor matrix, respectively.
We shall also consider the Borel transform of the series (1.1) defined by

o
B =Y B
for p > 0.

The series (1.1) is summable by the Borel method to s if
lim BP(f,x) = s.

p—00

We shall use the additional notations:

Pu(t) = flz + 1) + [z —t) = 2f(2), (1.2)
IR 1
M(p,t)=e ;%sm(nwL 5)75, (1.3)

n

E(nt)=(1+q) "> (Z) ¢" " sin <k + ;) t, (1.4)

k=0

L(n,r,t,0) = (1 ;r)nﬂ sin ((n + %) t+ (n+ 1)9) , (1.5)

for 0 <r<1,|rf] <1and 1—re® = he .
By K, K1, K,, ... we shall designate either an absolute constant or a constant de-

pending on the indicated parameters, not necessarily the same at each occurrence.
In [7] Mahapatra and Chandra proved the following theorems:
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THEOREM 1. Let 0 < 3 < . Then, for f € H?,

IBL(f) — fllg = O(n~ 2= (logn)?/*), (1.6)

where EL(f,x) is the FEuler mean of the series (1.1).
THEOREM 2. Let 0 < 3 < . Then, for f € H®,

1B”(f) = flls = O(p~ 2> (log p)*/*), (1.7)

where B(f,x) is the Euler mean of the series (1.1).
THEOREM 3. Let 0 < 3 < a. Then, for f € H?,

I75(f) = flls = O(n=2(*= (log n)/®), (18)
where T} (f,x) is the Euler mean of the series (1.1).

In the present paper we extend the validity of Theorems 1, 2 and 3 to the class H“.
In some cases the present results are improvement of these theorems.

Let us define @ = a(w) as the infimum of those o’ for which there exists a natural
number p = p(a’) such that

210 (27T > 2w (277 (1.9)

for all n.

Let €, denote the set of the moduli of continuity w, (d) having the following additional
property besides (1.9): For any natural number p there exists a natural number N (u)
such that if n > N(u) then

2M%wa (277TH) < 2w, (27M).

2. Main results. Our main results are the following.

THEOREM 4. If we, € Q4 and wg € Qg where 0 < § < a < 1, then for f € HY> and
n — 0o,

O<M> ifa<lorg>0,
1ES(S) — o, = zﬂgjﬁ; 2.1)
O(wﬁ(w/\/_)( —i—log\/_)) fora=1and 3=0.

THEOREM 5. If we € Q4 and wg € Qg where 0 < 3 < a < 1, then for f € HY> and
P — o0,
(G
wg

19 (‘*’“
W™

) ifa<lorf>0,

o(7//P)
IBY(f) — fllo, = " jQ (22)
r /\/_)(1+10g\/1_9)) fora=1and 3 =0.
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THEOREM 6. If w, € Q4 and wg € Qg where 0 < 3 < a < 1, then for f € HY> and

n — 00,

O(wa(ﬂ-/\/_)) ifa<lor(B3>0,
1) — oy = WBEZQ 23)
O(wﬁ(ﬂ_/\/_)(l—l—log\/ﬁ)) fora=1 and 3 =0.

REMARK 1. It is clear that Theorems 3, 4 and 5 include Theorems 1, 2 and 3, respectively
and moreover if &« < 1 or 3 > 0 then (2.1), (2.2) and (2.3) give a better approximation
order than (1.6), (1.7) and (1.8) do.

3. Lemmas. To prove our theorems we need the following known lemmas.

LEMMA 1 ([4]). f0<B<a <1, wg € Qg and wy € Qq, then for any n,

2 wa(27F) wa(27M)

2 L m <Ko (3.1
and

n w —k w —-n

Sy ey

k
LEMMA 2 ([4]). f0<B<a <1, wg € Qg, wy € Ny, and f € HY> then

16a(t) — by (8)] < Kl — ) 221 (3.3)
wgs(t)

for any x, y and positive t.

LEMMA 3 ([8]). If 0 < a <1 and w, € Qq, then

Z 2Wwe(277) < K2Mw, (27™) (3.4)
and .
D2 (wa(27M) T S K27 (wa(27) T (3.5)
LEMMA 4 ([7]). If ¢ > 0 and 0 < t < 7, then
(14 q)"E(n,t) = [P(q,1)]"/? sin(% +nQ(q, t)), (3.6)
—ongt?
E(n,t)=0 (exp(ﬁ%)) (3.7)
and
E(n,t) = O(%), (3.8)
where

t
Plgt)=1+¢>+2 t t) = tan~ ! sin —— .
(q,t) =14 ¢ +2qcost, Q(g,t) =tan (qu+cost)
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LeEMMA 5 ([3]). For 0 <r <1, |rf] <1 and h given by 1 —re'* = he™ (0 <t <),

<3%1> < exp(—Knt?) (0 <t <) (3.9)
and )
1—r\" —nr 4
— - ) = <t<m). .
( A ) exp<2(1_r)2> Ont*) (0<t<m) (3.10)
LEMMA 6 ([5]). If0<r <1, |rf| <1, then
rt ™
- <Kt <t< ). .
0 1—r_Kt (0_t_2) (3.11)

4. Proofs of Theorems
Proof of Theorem /. Using the notations (1.2) and (1.4), a standard computation gives
that
" (1)
7 Jy sini

5
> L (0 <t <m) we obtain

In(z) == Ej(f,2) — f(z) =

FE(n,t)dt.

13
2

o) ~ (o) < £ [ 2= 20O

S11 5

i TIE TN [ (t) — ¢y (1) _
< </0 +/ﬁ/n +/ﬂ/ﬁ>f|E(n,t)|dt—Il+12+I3.

Since |E(n,t)| < 3/2nt for 0 < ¢t < 7 and |E(n,t)| < 1, by (3.3), (3.1) and (3.2) the
terms I; and I> can be estimated as follows:

Applying the inequality sin

w/n w/n
B gn [ bonte) = oy 0l < Ko =yl [ Z55at < Kyl - o) 270
and
©/VE _ e
e [0 8 < Kooy [T

t log(n/m) w (2—m)
< _ < _ Zoa®  J
Kaws (= =yl Z /Tr/<k+1> twp(t) dt Keoallo—yh) > wg(27™)

m=log(+/n/)
wa (/1)
wp(m/v/n)

< Kywg(lo — y) 200

By (3.8) and (3.3), we get

LT 16— 6,0) i " )
I3 < K5%/ﬂ\/— t—det < Kﬁﬁwg(x—yD/w/ﬁ t2w5(t)dt

<Kﬁ—w (lx =y /
N Z 7/ (k+1) t%ﬁ

log(x/f_l/Tr)

1 wa(27T

m=0
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We estimate the last sum separately in different cases. Namely, if o < 1, then by (3.4)
we obtain

log(v/n/m) _ log(v/n/m)
(27 K _
§ : 2mw ( ) < 8 2mwa(2 m) SK (ﬂ—/\/_)
w

B(27™) T Weeyvm) A wa(m/\/n)’

m=0

If « =1 and 8 > 0, using the monotonicity of the sequence 2m(1+§)wa (27™), we get

log(v/n/m) m 1+3/2 log(y/n/m)
wa(27™) (ﬁ) ( ™ ) m& !
E gm&els ) < Ko — Wo | — E 273 (wg(27™)) .
L wg(amm) ™ NV g

A standard calculation and (3.5) show that

log(v/n/m) —B/2
n 1
doo2mer(wy(27m) 7 < m(—{)

lex

= wp(m/\/n)
whence
wa(m/y/n)
I3 < Kypwg(|z — y|)
’ walm/\/n)’
In the case @« = 1 and = 0, we have
log(v/n/) _
wa(2™) _ o walr/vi)
2m L < Ky3———"Y—2(1 +logv/n).
2 e < e :
Consequently, collecting the partial results, we obtain
Ky wa(ﬁ/\/_) ifa<lorfg>0,
B RN
ln(z) = In(y)] < ol /)
K~ (1+1logy/n) ifa=1and 3=0.
Ywg(r/vn)

Next, we have

@)l = 183(0) = ) < 1 2

sn2

YT () _
< + + ——=|E(n,t)|dt = J; + J2 + Js.
0 w/n /1 t

An elementary calculation shows that if f € H“> then

T/n
Jy < §n/ | (£)]dt < K15n/ wa(t)dt < Kigwa (3>
2 0 0 n

w/n

and

)\ log(n/m)
Jy < K17/ \%t( Wit < 1y S w2
/n m=log(y/7/m)
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Using (3.1) we obtain
J2 < Kaowa(m/V/n).

Applying the same considerations as in the estimate of I3 we can show that

Ka1wa(m/Vn) if a < 1,
Wa(m/v/n) .
g < v fa<lor§>0,
K21M(1+10g\/5) ifa=1and g =0.

Now, collecting our partial results we obtain that (3.8) holds, and this completes the
proof. m

Proof of Theorem 5. Using the notations (1.2) and (1.5), we can write

1 (™ ¢ (t
(@) = B (f.0) — 1) = = [ 2D arp,pyar.
7 Jo sing
Since
—2psin? £ _. 3 :
M(p,t) = e “P%™ 2 gin §+psmt
we have

() — 1 (y)| < 1 /07r w ’e—stinz 5 sin(; +psint> ‘ dt

s sin §
=1+ I, + I,

where for p > 1

1 m/p _ . t
I, = _/ M ‘621151112 z sin(% —|—psint> ‘ dt,
0

t

T sin 3
1 7/\/P t) — t L2t t
I = _/ 1:(2) = 94 ()] fby( ) }emm?z sin<— +psint>‘dt
T Jr/p S 5 2
and
1 T z(t) — 3 i t
= [ OOt (L)
T Jr)sp sin & 2
Since sing > £ (0 <t <), [sin(5 +psint)] <pt+ 5 (0 <t < T)and [M(p,t)] < 1, by

1
(3.3), (3.1) and (3.2) the quantities I; and I3 can be estimated as follows:
~/p _
e [ 16—t
0

. [t .
s1n(§ +psmt) ‘ dt

t
/P we (T
<8 (ot g Jonllo—oh) [ S < Koo - ) 2700
and
N _ "IVE
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losle/m) (o m)
< Kswg(lz —yl) Z / t < Kyws(|z —y) Z m
m/ (k1) m=log(p/m) "

< Koo~ o) 22 PE.

Using the inequality sin% > % (0 <t <) we obtain

e 5 < o %gﬁ(oqgw).
t\/p

From this and (3.3) we have

e [ LAl < K7%wﬁ(x - y|>/” enlt)

/P t2 =/ vp Pws(t)
N
< Kr—=wp(lz ~ o) /
VP Z 7/ (k+1)
log(v/n/m)
1 wa(27™)
< Ks—=ws(lz —yl) et L
v’ 2 e
The last sum we can estimate similarly like in the proof of Theorem 4. Thus
Kowg(|z — |)wa(ﬂ-/\/_) ifa<lorp>0,
. 25(n//P)
e wa(m/ D)
Kows(Jz — y|) ——Y=L(1+log\/p) ifa=1and3=0.
e = s e VP
Consequently, collecting the partial results, we obtain
war;g; ifa<lorfg>0,
walm™
« .
10 (1+log p) ifa=1and 8=0.
walrfyp) VP

Applying the same considerations as in the proof of Theorem 4 we can show that if
f € H¥ then

o(m/\/P) :
0] ifa<lorfg>o0,
gl = (& o %9 (42)
O( o /\/_)(1+log\/;z_9)> ifa=1and §=0.
From (4.1) and (4.2) we obtain (2.2). This completes the proof of Theorem 5. m

Proof of Theorem 6. Denoting
In(z) :=T5(f, z) — ()
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and using the definition of the Taylor transform of the Fourier series of f and the notations
(1.2) and (1.5), we get

1 & > ha(t) . 1 1 [ ¢u(t)
In(z) = - kX_:Oank/O sin% sm(k—l— §>tdt == —5 L(n,rt,0)dt

T Jo sing

with 1 — rett = he=%,

Using the inequality sin% > L (0<t<m) we have

o) -t < [ 2O o)t =+ 1+

where
m/n _
L :/ 92(8) = ¢,(1)] t ICINy—
0
"IN | () —
L= // 0o =0 1 1, 1 6) a
and

Iz = /ﬂjﬁ 9a(t) — &4 (1)] ; ¢4(0) |L(n,r,t,0)]|dt.

Since |1 — 7| < h and [sin((n+ 3)t+ (n+ 1)0)| < |(n+ 3)t+ (n+1)0] for 0 <t < I, by
(3.3), (3.11) and (3.1) the term I; can be estimated as follows:

I /0“/” |¢z(t);¢y(t)| |<1 ;r>"+1sm<(n+ %)H (n+1>9)

</O7T/nw‘<n+%>t+(n+l)0‘dt

dt

< K1w5(|:cy|)/0ﬂ/n ::;((?) (<n+ %>t+ (n+1) <K2t3+ 17jr)>dt

" wa(t)

wg(t)

wa (/M)
wg(m/n)

n/
< Koo+ Doplle —yl) [ 2t < Kawn(le ~ o)
0

Further, we observe that

|L(n,rt,0)] = ‘(1gr>n+1sm(<n+ %)t—k <n+1>9>
(s B)o+ e ) <3

since |1 — r| < h. From this and by (3.3), (3.1) and (3.2) we get

/v 2 (t) — t /v ot
IQS/W 0 ()t%()'dtﬁf{wﬂ'x‘y)/ﬁ/n Zﬁ(@))dt

<
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log(n/m)

o () wa(27™)
< Kswg(|lx — < Kgwg(|x — e —
swsllz — ) Z / P T CE I S =

m=log(v/7i/7)
wa(ﬁ/ V)
wp(m/v/n)

< Krwp(lz —yl)

By (3.9) we obtain
e / )~y ¢ g, L[ 60—t
~Japvm : - Vrdym
since e~ "’ < = for t > 0. Using (3.3) we have

3

1 T wel(t)
< il _
I3 < Kig \/ﬁw,@(kﬁ' y|)/7r/f tza)g(t)

7l

K— —
sl =) 3 L o t%ﬂ

1 log(v/n/) (2 m)
< Kio—=wp(|z — yl) g L
Vi 2 Yo
The last sum can be estimated as in the proof of Theorem 4. Thus

Kuw(lfc—yl)%

ifa<lorfg>0,
I3 <

Kwg(|lz — y|)%(l +logy/n) ifa=1and 3=0.

Applying the same considerations as in the proof of Theorem 4 we can show that if
f € H¥= then

wa(ﬂ/\/ﬁ) if o or
. o) s torg=0
! wa(ﬂ/\/_) o) ifa=1an =
O<w5(7r/\/_)(1+lg\/_)> fa=1and g=0.

Now, collecting our partial results we obtain that (2.3) holds, and this completes the
proof. m
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