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Abstract. In this paper, we define the direct sum (⊕n
i=1Xi)cesp of Banach spaces X1, . . . ,Xn

and consider it equipped with the Cesàro p-norm when 1 ≤ p <∞. We show that (⊕n
i=1Xi)cesp

has the H-property if and only if each Xi has the H-property, and (⊕n
i=1Xi)cesp has the Schur

property if and only if each Xi has the Schur property. Moreover, we also show that (⊕n
i=1Xi)cesp

is rotund if and only if each Xi is rotund.

1. Introduction. The geometric properties of direct sums of Banach spaces has been

studied by many mathematicians (see [5, 9]). It is well-known that the direct sum

(⊕n
i=1Xi)2 of normed spaces Xi (i = 1, 2, . . . , n) equipped with the 2-norm ‖ · ‖2 given by

‖(x1, x2, . . . , xn)‖2 =

√

√

√

√

n
∑

i=1

‖xi‖
2

is rotund if and only if each Xi is rotund and (⊕n
i=1Xi)2 is uniformly rotund if and

only if each Xi is uniformly rotund (see [6]). Let X1, X2, . . . , Xn be Banach spaces and

p ∈ [1,∞]. We use (⊕n
i=1Xi)p to denote the product space ⊕n

i=1Xi equipped with the

norm ‖(x1, x2, . . . , xn)‖p = (
∑n

i=1 ‖xi‖
p)

1

p (1 ≤ p < ∞) and ‖(x1, x2, . . . , xn)‖∞ =

max1≤i≤n ‖xi‖. ,
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In 1984, Landes [3, 4] showed that if X1 and X2 has weak normal structure (WNS),

then (X1 ⊕ X2)1 need not have WNS.

In 2001 Marino, Pietramala and Xu [5] showed that if X1 and X2 has property (K)

and the non-strict Opial property, then for each p ∈ [1,∞), (X1⊕X2)p has both property

(K) and the non-strict Opial property.

The concept of Ψ-direct sum of Banach spaces X and Y equipped with the norm

‖(x, y)‖Ψ = ‖(‖x‖, ‖y‖)‖Ψ for x ∈ X and y ∈ Y was introduced by Saito and Kato. Note

that the Ψ direct sum X ⊕Ψ Y is a generalization of the p-direct sum (X ⊕Y )p, and they

proved that X ⊕Ψ Y is strictly convex if and only if X and Y are strictly convex and Ψ

is strictly convex. Building on this result, Saito and Kato [7] also proved that X ⊕Ψ Y is

uniformly convex if X and Y are uniformly convex and Ψ is strictly convex.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball

of X, respectively. A point x0 ∈ S(X) is called

a) an extreme point of the unit ball of X if for y, z ∈ S(X) the equation 2x0 = y + z

implies y = z,

b) an H-point if for any sequence (xn) in X such that ‖xn‖ → 1 as n → ∞, the weak

convergence of (xn) to x0 (write xn
w

−→ x0) implies that ‖xn − x0‖ → 0.

A Banach space X is said to be rotund if every point of S(X) is an extreme point of

B(X). It is well-known that X is rotund if and only if ‖x+y
2 ‖ < 1 whenever x, y ∈ S(X)

with x 6= y. If every point in S(X) is an H-point of B(X), then X is said to have the

H-property.

For p ∈ [1,∞), the Cesàro sequence space cesp is defined as the space of all real

sequences x = (x(j))∞i=1 such that

‖x‖p =

( ∞
∑

n=1

(

1

n

n
∑

i=1

|x(i)|

)p)1/p

< ∞ and ‖x‖∞ = sup
n∈N

1

n

n
∑

i=1

|x(i)| < ∞.

For n ∈ N, cesn
p is the space R

n equipped with the norm

‖x‖p =

( n
∑

k=1

(

1

k

k
∑

i=1

|x(i)|

)p)1/p

.

It is well-known that cesp (1 < p < ∞) is rotund, and so is the space cesn
p . For p ∈

[1,∞], we use (⊕n
i=1Xi)cesp

to denote the product ⊕n
i=1Xi equipped with the Cesàro

p-norm ‖(x1, x2, . . . , xn)‖cesp
= (

∑n
k=1(

1
k

∑k
i=1 ‖xi‖)

p)1/p and ‖(x1, x2, . . . , xn)‖ces∞ =

max1≤k≤n
1
k

∑k
i=1 ‖xi‖.

2. Main results. We first show that(⊕n
i=1Xi)cesp

has the Schur property if and only if

each Xi has the Schur property. To do this, we need the following lemmas.

Lemma 2.1. Let X1, X2, . . . , Xn be Banach spaces and p ∈ [1,∞), and let (x
(k)
1 , x

(k)
2 ,

. . . , x
(k)
n )∞k=1 be a sequence in (⊕n

i=1Xi)cesp
. Then (x

(k)
1 , x

(k)
2 , . . . , x

(k)
n ) → (0, 0, . . . , 0) as

k → ∞ if and only if x
(k)
i → 0 as k → ∞ for all i = 1, 2, . . . , n.
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Proof. Since

‖(x
(k)
1 , . . . , x(k)

n )‖cesp
=

(

‖x
(k)
1 ‖p + · · · +

(

‖x
(k)
1 ‖ + ‖x

(k)
2 ‖ + · · · + ‖x

(k)
n ‖

n

)p)1/p

,

it follows that (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ) → (0, 0, . . . , 0) as k → ∞ if and only if x

(k)
i → 0 as

k → ∞ for all i = 1, 2, . . . , n.

Lemma 2.2. Let X1, X2, . . . , Xn be Banach spaces and let fi ∈ X∗
i (i = 1, 2, . . . , n).

For each i ∈ {1, 2, . . . , n} define f ′
i : ⊕n

i=1Xi → R by f ′
i(x1, x2, . . . , xn) = fi(xi). Then

f ′
i ∈ (⊕n

i=1Xi)
∗
cesp

for each i = 1, 2, . . . , n.

Proof. It is easy to see that f ′
i is linear. We will show that f ′

i is continuous at zero. To do

this, suppose that (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ) ∈ (⊕n

i=1Xi)cesp
such that (x

(k)
1 , x

(k)
2 , . . . , x

(k)
n ) →

(0, 0, . . . , 0). By lemma 2.1, x
(k)
i → 0 as k → ∞, hence fi(x

(k)
i ) → 0 as k → ∞. It follows

that f ′
i(x

(k)
1 , x

(k)
2 , . . . , x

(k)
n ) → 0 as k → ∞. Hence f ′

i is continuous at zero. Therefore

f ′
i ∈ (⊕n

i=1Xi)
∗
cesp

.

Lemma 2.3. Let X1, X2, . . . , Xn be Banach spaces and let (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n )∞k=1 be a

sequence in (⊕n
i=1Xi)cesp

and let (x1, . . . , xn) ∈ (⊕n
i=1Xi)cesp

. If (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n )

w
−→

(x1, x2, . . . , xn) as k → ∞, then x
(k)
i

w
−→ xi as k → ∞ for each i = 1, 2, . . . , n.

Proof. Let fi ∈ X∗
i (i = 1, 2, . . . , n). Define f ′

i : ⊕n
i=1Xi → R by f ′

i(x1, x2, . . . , xn) =

fi(xi). By Lemma 2.2, f ′
i is a bounded linear functional on ⊕n

i=1Xi, so f ′
i(x

(k)
1 , . . . , x

(k)
n )

−→ f ′
i(x1, x2, . . . , xn). Thus fi(x

(k)
i ) → fi(xi) as k → ∞, hence x

(k)
i

w
−→ xi as k → ∞ for

all i = 1, 2, . . . , n.

Lemma 2.4. Let X1, X2, . . . , Xn be Banach spaces and p ∈ [1,∞). Then Xi is isometri-

cally isomorphic to a subspace of (⊕n
i=1Xi)cesp

.

Proof. For each i = 1, 2, . . . , n, let X ′
i = {(0, . . . , 0, xi, 0, . . . , 0) ∈ (⊕n

j=1Xj) : xi ∈ Xi}.

It is clear that X ′
i is a subspace of ⊕n

i=1Xi. We define Ti : Xi → X ′
i by

Ti(xi) = (0, . . . , 0, αixi, 0, . . . , 0) where αi =

(

1
∑n

j=i(
1
j )p

)
1

p

.

Then Ti is linear and

‖Tix‖ = ‖(0, . . . , 0, αix, 0, . . . , 0)‖ =

((
∥

∥

∥

∥

αix

i

∥

∥

∥

∥

)p

+

(
∥

∥

∥

∥

αix

i + 1

∥

∥

∥

∥

)p

+ · · · +

(
∥

∥

∥

∥

αix

n

∥

∥

∥

∥

)p

)
1

p

=

(

‖αix‖
p

[

1

ip
+

1

(i + 1)p
+ · · · +

1

np

])
1

p

= ‖x‖,

hence Ti : Xi → X ′
i is isometrically isomorphic from Xi onto X ′

i.

Theorem 2.5. Let X1, X2, . . . , Xn be Banach spaces and p ∈ [1,∞). Then (⊕n
i=1Xi)cesp

has the Schur property if and only if each Xi has the Schur property.

Proof. Necessity is obvious, since each Xi is isometrically isomorphic to a subspace of

(⊕n
i=1Xi)cesp

and every subspace of a normed space with the Schur property has also the

Schur property.
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Sufficiency. Suppose that each Xi has the Schur property for i = 1, 2, . . . , n.

Let (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ), (x1, x2, . . . , xn) ∈ (⊕n

i=1Xi)cesp
such that (x

(k)
1 , x

(k)
2 , . . . , x

(k)
n )

w
−→ (x1, x2, . . . , xn). By Lemma 2.3, we have x

(k)
i

w
−→ xi as k → ∞. Since Xi has the

Schur property, x
(k)
i → xi as k → ∞. That is, ‖x

(k)
i − xi‖ → 0 as k → ∞ for each

i = 1, 2, . . . , n. Since

‖(x
(k)
1 , . . . , x(k)

n ) − (x1, . . . , xn)‖cesp

= ‖(x
(k)
1 − x1, x

(k)
2 − x2, . . . , x

(k)
n − xn)‖cesp

=

(

‖x
(k)
1 − x1‖

p +

(

‖x
(k)
1 − x1‖ + ‖x

(k)
2 − x2‖

2

)p

+ . . .

+

(

‖x
(k)
1 − x1‖ + ‖x

(k)
2 − x2‖ + · · · + ‖x

(k)
n − xn‖

n

)p) 1

p

,

it follows that ‖(x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ) − (x1, x2, . . . , xn)‖cesp

→ 0.

Thus (x
(k)
1 , x

(k)
2 , . . . , x

(k)
n ) → (x1, x2, . . . , xn) as k → ∞. Hence (⊕n

i=1Xi)cesp
has the

Schur property.

If X1, X2, . . . , Xn are Banach spaces and p ∈ [1,∞), we will show that (⊕n
i=1Xi)cesp

has the H-property if and only if each Xi has the H-property. To do this, it is enough

to show only that (X1 ⊕ X2)cesp
has the H-property if and only if X1 and X2 has the

H-property.

Theorem 2.6. Let X1 and X2 be Banach spaces and p ∈ [1,∞). Then (X1⊕X2)cesp
has

the H-property if and only if X1 and X2 have the H-property.

Proof. Necessity follows from the fact that each Xi is isometrically isomorphic with

a subspace of (X1 ⊕ X2)cesp
(Lemma 2.4) and every subspace of the space having the

H-property has also the H-property.

Sufficiency. Let (x
(k)
1 , x

(k)
2 ), (x1, x2) ∈ S(X1⊕X2)cesp

such that (x
(k)
1 , x

(k)
2 )

w
−→ (x1, x2)

as k → ∞. By Lemma 2.3, we have x
(k)
i

w
−→ xi as k → ∞ for each i = 1, 2. Next we shall

show that ‖x
(k)
i ‖ → ‖xi‖ as k → ∞ for i = 1, 2. We have ‖xi‖ ≤ lim infk→∞ ‖x

(k)
i ‖. We

will show that lim supk→∞ ‖x
(k)
i ‖ ≤ ‖xi‖ for i=1,2. If not, we get that lim supk→∞ ‖x

(k)
1 ‖

> ‖x1‖ or lim supk→∞ ‖x
(k)
2 ‖ > ‖x2‖.

Case 1: lim supk→∞ ‖x
(k)
1 ‖ > ‖x1‖. Then there exists a subsequence (mk) of (k) such

that ‖x
(mk)
1 ‖>‖x1‖+ǫ1 for some ǫ1 >0 for all k∈N. Now we consider lim supk→∞ ‖x

(mk)
2 ‖.

Case 1.1: lim supk→∞ ‖x
(mk)
2 ‖ > ‖x2‖. Then there exists a subsequence (m′

k) of (mk)

such that ‖x
(m′

k)
2 ‖ > ‖x2‖ + ǫ2 for some ǫ2 > 0 for all k ∈ N. Hence, we have

1 = ‖(x
(m′

k)
1 , x

(m′

k)
2 )‖cesp

=

(

‖x
(m′

k)
1 ‖p +

(

‖x
(m′

k)
1 ‖ + ‖x

(m′

k)
2 ‖

2

)p) 1

p

>

(

(‖x1‖ + ǫ1)
p +

(

‖x1‖ + ǫ1 + ‖x2‖ + ǫ2

2

)p) 1

p

>

(

‖x1‖
p +

(

‖x1‖ + ‖x2‖

2

)p) 1

p

= 1,

which is a contradiction.
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Case 1.2: lim supk→∞ ‖x
(mk)
2 ‖ ≤ ‖x2‖. Since

‖x2‖ ≤ lim inf
k→∞

‖x
(mk)
2 ‖ ≤ lim sup

k→∞

‖x
(mk)
2 ‖ ≤ ‖x2‖,

we get that limk→∞ ‖x
(mk)
2 ‖ = ‖x2‖. Therefore, there exists ko ∈ N for each k ≥ ko,

‖x2‖ −
ǫ1
2 ≤ ‖x

(mk)
2 ‖. Hence, for each k ≥ ko we have

1 = ‖(x
(mk)
1 , x

(mk)
2 )‖cesp

=

(

‖x
(mk)
1 ‖p +

(

‖x
(mk)
1 ‖ + ‖x

(mk)
2 ‖

2

)p) 1

p

>

(

(‖x1‖ + ǫ1)
p +

(

‖x1‖ + ǫ1 + ‖x2‖ −
ǫ1
2

2

)p) 1

p

=

(

(‖x1‖ + ǫ1)
p +

(

‖x1‖ + ‖x2‖ + ǫ1
2

2

)p) 1

p

>

(

‖x1‖
p +

(

‖x1‖ + ‖x2‖

2

)p) 1

p

= 1,

which is a contradiction.

Case 2: lim supk→∞ ‖x
(k)
2 ‖ > ‖x2‖. The proof of this case is analogous to that of case 1

which leads to a contradiction.

Hence we obtain that lim supk→∞ ‖x
(k)
i ‖ ≤ ‖xi‖ for all i = 1, 2. This implies ‖x

(k)
i ‖ →

‖xi‖ for each i = 1, 2. Since Xi has the H property, we have x
(k)
i → xi as k → ∞. By

lemma 2.1, we get that ‖(x
(k)
1 , x

(k)
2 ) − (x1, x2)‖cesp

→ 0.

Theorem 2.7. Let X1, X2, . . . , Xn be Banach spaces and p ∈ (1,∞). Then (⊕n
i=1Xi)cesp

is rotund if and only if each Xi is rotund.

Proof. If (⊕n
i=1Xi)cesp

is rotund, then each Xi is also rotund since Xi is isometrically

isomorphic to a subspace of (⊕n
i=1Xi)cesp

. Conversely, assume that each Xi is rotund. Let

(x1, x2, . . . , xn) and (y1, y2, . . . , yn) be different elements in S(⊕n
i=1Xi)cesp

. The proof

will be finished if we show that ‖ 1
2 (x1 + y1, x2 + y2, . . . , xn + yn)‖ < 1. Notice that

(‖x1‖, ‖x2‖, . . . , ‖xn‖)and (‖y1‖, ‖y2‖, . . . , ‖yn‖) ∈ S(cesn
p ). If ‖xi‖ 6= ‖yi‖ for some i =

1, 2, . . . , n, then it follows from the rotundity of cesn
p that

∥

∥

∥

∥

1

2
(x1 + y1, x2 + y2, . . . , xn + yn)

∥

∥

∥

∥

=
1

2

(

‖x1 + y1‖
p +

(

‖x1 + y1‖ + ‖x2 + y2‖

2

)p

+ . . .

+

(

‖x1 + y1‖ + ‖x2 + y2‖ + · · · + ‖xn + yn‖

n

)p) 1

p

=
1

2
‖(‖x1 + y1‖, ‖x2 + y2‖, . . . , ‖xn + yn‖)‖cesn

p

≤
1

2
‖(‖x1‖ + ‖y1‖, ‖x2‖ + ‖y2‖, . . . , ‖xn‖ + ‖yn‖)‖cesn

p
< 1.
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Thus, it may be assumed that ‖xi‖ = ‖yi‖ for all i = 1, 2, . . . , n. It may be assumed

that xi 6= yi for some i. Then ‖ 1
2 (xi + yi)‖ < ‖xi‖ = ‖yi‖ = 1

2 (‖xi‖ + ‖yi‖) by the

rotundity of Xi. Therefore
∥

∥

∥

∥

1

2
(x1 + y1, x2 + y2, . . . , xn + yn)

∥

∥

∥

∥

=
1

2

(

‖x1 + y1‖
p +

(

‖x1 + y1‖ + ‖x2 + y2‖

2

)p

+ . . .

+

(

‖x1 + y1‖ + ‖x2 + y2‖ + · · · + ‖xn + yn‖

n

)p) 1

p

=
1

2
‖(‖x1 + y1‖, ‖x2 + y2‖, . . . , ‖xn + yn‖)‖cesn

p

<
1

2
‖(‖x1‖ + ‖y1‖, ‖x2‖ + ‖y2‖, . . . , ‖xn‖ + ‖yn‖)‖cesn

p

=
1

2
‖(2‖x1‖, 2‖x2‖, . . . , 2‖xn‖)‖cesn

p
= 1.
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