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Abstract. In this paper, we define the direct sum (®;_;X;)ces, of Banach spaces Xi,..., X,
and consider it equipped with the Cesaro p-norm when 1 < p < co. We show that (@71 Xs)ces,
has the H-property if and only if each X; has the H-property, and (®7=qX)ces, has the Schur
property if and only if each X; has the Schur property. Moreover, we also show that (®;=; X:)ces,
is rotund if and only if each X; is rotund.

1. Introduction. The geometric properties of direct sums of Banach spaces has been
studied by many mathematicians (see [5, 9]). It is well-known that the direct sum
(B, X;)2 of normed spaces X; (i =1,2,...,n) equipped with the 2-norm || - |2 given by

n

2
> Nl
i=1

is rotund if and only if each X; is rotund and (¢}_;X;)2 is uniformly rotund if and

only if each X; is uniformly rotund (see [6]). Let X1, Xs,...,X,, be Banach spaces and

p € [1,00]. We use (®}_,X;), to denote the product space &}, X; equipped with the
1

norm |[[(z1,22,...,2n)|p = (i [JilP)? (1 < p < 00) and |[(z1,Z2,...,2p)||ec =

maxi<i<n ||,

H(‘Tlv'r27 s 7xn)H2 =
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In 1984, Landes [3, 4] showed that if X; and X» has weak normal structure (WNS),
then (X; & X5); need not have WNS.

In 2001 Marino, Pietramala and Xu [5] showed that if X; and X3 has property (K)
and the non-strict Opial property, then for each p € [1, 00), (X1 @ X2), has both property
(K) and the non-strict Opial property.

The concept of W-direct sum of Banach spaces X and Y equipped with the norm
Iz, )|l = (=]l lyD|le for z € X and y € Y was introduced by Saito and Kato. Note
that the ¥ direct sum X @¢ Y is a generalization of the p-direct sum (X @Y),, and they
proved that X @y Y is strictly convex if and only if X and Y are strictly convex and ¥
is strictly convex. Building on this result, Saito and Kato [7] also proved that X @&y Y is
uniformly convex if X and Y are uniformly convex and ¥ is strictly convex.

For a Banach space X, we denote by S(X) and B(X) the unit sphere and unit ball
of X, respectively. A point g € S(X) is called

a) an extreme point of the unit ball of X if for y,z € S(X) the equation 2zg =y + 2
implies y = z,

b) an H-point if for any sequence (x,,) in X such that ||z,| — 1 as n — oo, the weak
convergence of (x,,) to zo (write x,, — x0) implies that ||z,, — x| — 0.

A Banach space X is said to be rotund if every point of S(X) is an extreme point of
B(X). It is well-known that X is rotund if and only if [|£3¥|| < 1 whenever z,y € S(X)
with z # y. If every point in S(X) is an H-point of B(X), then X is said to have the
H-property.

For p € [1,00), the Cesdro sequence space ces, is defined as the space of all real
sequences x = (x(4))22; such that

e8] 1 n . p\ 1/p 1 n .
x|, = (Z (5 Z |x(z)|) ) <oo and ||zl = blég - Z |z(4)] < oo.
i1 n

n=1 i=1

For n € N, cesy; is the space R" equipped with the norm

Jall, = (2 (é i x@))p)l/p.

It is well-known that ces, (1 < p < oo) is rotund, and so is the space ces). For p €
[1,00], we use (©j;Xi)ces, to denote the product ©}_;X; equipped with the Cesaro

k
p-norm ||($1,$27-~»$n)\|ccsp = (Zzzl(% Z’L:l HwiH)p)l/p and [[(z1,%2,. .., Tn)|cesoe =

maxi<k<n % 21'11 3]

2. Main results. We first show that(@?lei)ceSp has the Schur property if and only if
each X; has the Schur property. To do this, we need the following lemmas.

LEMMA 2.1. Let X1, Xo,..., X, be Banach spaces and p € [1,00), and let (acgk),xgk),

. ,x%k)),;“;l be a sequence in (Dj—1Xi)ces,. Then (xgk), xék), e ,x%’“’) — (0,0,...,0) as
k — oo if and only ifxgk) —0ask—o0 foralli=1,2,...,n.
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Proof. Since
(k) (k) (k)
1@, 2 |lees, = <||x§k)||p+_._+ (||331 |+ sl + -+ [low ) )

n

it follows that (z (k), (),...,x,(f))—>(0,(),...,0) as k — oo if and only 1fx ) 50 as
k—ooforali=1,2,...,n. =

LEMMA 2.2. Let X1, Xo,..., X, be Banach spaces and let f; € X¥ (i = 1,2,...,n).
For each i € {1,2,...,n} define f/ : &1 X; — R by fl(x1,22,...,2,) = fi(x:). Then
fL € (O Xi)ses, for eachi=1,2,....,n

Proof. It is easy to see that f] is linear. We will show that f/ is continuous at zero. To do
this, suppose that (:Cgk),xék),. (k)) € (Pj21Xi)ces, such that (z (k)mcék), . ..,m%k)) —
(0,0,...,0). By lemma 2.1, mg ) - 0 as k — oo, hence fi(z; (k )) — 0 as k — oo. It follows
that f’(:vgk) xék),. xﬁf)) — 0 as k — oo. Hence f/ is continuous at zero. Therefore

fz, (@? 1X )ces

LEMMA 2.3. Let X1, X5,..., X, be Banach spaces and let (wgk) xgk),‘..,x%k)),;";l be a

sequence in (Bf_y Xi)ces, and let (z1,...,2,) € (B Xi)ces,- If (x (k), (k),...,x%k)) =
(x1,22,...,2p) as k — o0, then xl(k) &mrl as k — oo for eachi=1,2,...,n.
Proof. Let f; € Xf (i = 1,2,...,n). Define f! : & ;X; — R by f(xl,xg,... Tp) =

fi(z;). By Lemma 2.2, f! is a bounded linear functlonal on &, X;, so f] (scl )7. x% )

— fli(z1,22,...,2y). Thus fz( x; ) — fi(x;) as k — oo, hence zgk)

alli=1,2,...,n. =

=5 z; as k — oo for

LEMMA 2.4. Let X1, Xa,..., X, be Banach spaces and p € [1,00). Then X; is isometri-
cally isomorphic to a subspace of (D=1 Xi)ces,-

Proof. For each i = 1,2,...,n, let X] = {(0,...,0,2;,0,...,0) € (&]_,X;) : ; € X;}.
It is clear that X] is a subspace of &7, X;. We deﬁne T, : X; — X! by

=

1
E(J?i):(O,...,0,0éil‘i,o,...,o) where Q; = (W)
Then T; is linear and
;T

i=iG
p p
Tz| = [|(0, . ..,0, 0,0, ...,0)|| = :
il = 100, 000l = ( (|24 (|2 ) e (
1
1 1 1 B
— p||P | — - J— =
(loale |5+ G+ + 5] ) =l

hence T; : X; — X/ is isometrically isomorphic from X; onto X/. m

THEOREM 2.5. Let X1, Xo,..., X, be Banach spaces and p € [1,00). Then (Dj—; X;)ces,
has the Schur property if and only if each X; has the Schur property.

B =

;T o;x

) n

r)

Proof. Necessity is obvious, since each X; is isometrically isomorphic to a subspace of
(D71 Xi)ces, and every subspace of a normed space with the Schur property has also the
Schur property.
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Sufficiency. Suppose that each X; has the Schur property for : = 1,2, .

Let (asg ) .Ték), ... ,x;’“)), (71, 22,...,2n) € (Bf—; Xi)ces, such that (asg ) .Ték), ... ,x;’”)
SN (x1,x2,...,2,). By Lemma 2.3, we have mgk) =, x; as k — oo. Since X; has the
Schur property, mgk) — x; as k — oo. That is, ||ac£k) —x4]] — 0 as k — oo for each
i=1,2,...,n. Since

k
||(£L'(1 )a B 'axgzk)) - (xla v 7xn)||ccsp
k
= ||(gc§k) — a:l,xg ) _ To,. .. ,x;’” — Zn) ||ces,
(k) (k) P
Ty x|ty — @
(1289 - e+ (12 1\|2|| Py,
k k k 1
Y R S el L A 2 AT
n b)
it follows that ||(:1c1 (k), ) x%k)) — (w1, 22, ..., Tn)|ces, — 0.
Thus (x(lk) zgk), cee ;k)) — (@1,%2,...,2,) as k — oo. Hence (@}, Xi)ces, has the

Schur property. =

If X1, Xo,..., X, are Banach spaces and p € [1,00), we will show that (©}_; X;)ces,
has the H-property if and only if each X; has the H-property. To do this, it is enough
to show only that (X; & X3)ces, has the H-property if and only if X; and X, has the
H-property.

THEOREM 2.6. Let X1 and Xo be Banach spaces and p € [1,00). Then (X1 ® X2)ces, has
the H-property if and only if X1 and Xo have the H-property.

Proof. Necessity follows from the fact that each X; is isometrically isomorphic with
a subspace of (X1 @ X2)ces, (Lemma 2.4) and every subspace of the space having the
H-property has also the H- property

Sufficiency. Let (x; (k) x2 ) (x1,22) € (X1@X2)Cesp such that (x; (k). (k)) s (1, 20)
as k — 0o. By Lemma 2.3, we have sc( ) v, xz; as k — oo for each i = 1 2. Next we shall
show that HxEk)H — ||lz;|| as k — oo for i = 1,2. We have ||a;|| < liminfy_, o Hxi )H We
will show that lim sup,,_, ||:vz(.k) I < |la;]| for i=1,2. If not, we get that lim sup;_, ., ngk)H
> | or limsupy, o, |28 > |||
CASE 1: limsupy,_, ., ||.T(k)H > ||z1||. Then there exists a subsequence (my) of (k) such

that ||x(m") |I> ||z1||+€1 for some €1 >0 for all k€ N. Now we consider lim supy,_, . ||x(m") II.

CASE 1.1: limsupy,_, o ||332 ’“)H > [|z2|. Then there exists a subsequence (m},) of (my)
such that Hx;m")H > ||2]| + €2 for some ez > 0 for all k € N. Hence, we have

(ml) () A e il e S A T
1= (@™, 28" |ees, = { 127 + ;

1 1
|| +€en + ||za]| + 2\ P\ P 21l + llzo |\ P\ »
> <(|x1|+61)p+ <|| il +ea - |2l 62) > > (|x1|p+ (” il - [ 2|> ) —1,

which is a contradiction.




CESARO DIRECT SUMS 251

CASE 1.2: limsupy,_, o, ||xém’“)|| < |lx2||- Since

Jea]] < lim inf flof™]| < lim sup [l5™] < |||

k—o00
we get that limg_,o Hwémk)H = ||z2||. Therefore, there exists k, € N for each k > k,,
@]l = G < ||a?émk)||, Hence, for each k > k, we have
N T (L (e ”xém”u)p)%
> <(||x1|| + )P + (||1‘1|| + € '12' ||| — %>p>;
= (el + oy + (I el —))

1
1| + ||z P\ »
> <||x1||p_|_ <|| 1|| 5 || 2||> > =1,

which is a contradiction.

CASE 2: limsupy,_, o Hx;k) || > ||z2]]. The proof of this case is analogous to that of case 1
which leads to a contradiction.

Hence we obtain that lim supy,_, ||a:£k)|| < ||| for all 4 = 1,2. This implies ||ac£k)|| —
|lz;|| for each ¢ = 1,2. Since X; has the H property, we have mgk) — x; as k — oo. By
lemma 2.1, we get that H(J;gk), acgk)) — (21, 22)]/ces, — 0. m

THEOREM 2.7. Let X1, Xa,..., X, be Banach spaces and p € (1,00). Then (Dj=; Xi)ces,
is rotund if and only if each X; is rotund.

Proof. If (@?lei)cesp is rotund, then each X; is also rotund since X; is isometrically
isomorphic to a subspace of (EB?lei)cesp. Conversely, assume that each X is rotund. Let
(r1,22,...,2,) and (y1,¥2,...,Yyn) be different elements in S(®}_; X;)ces,. The proof
will be finished if we show that ||3(z1 + y1,22 + y2,...,2n + ¥n)|| < 1. Notice that
(lzalls 2l - - -5 lzaland (lyall; lyzll - lynll) € S(cesp). If [lzi]| # ||ly:|| for some ¢ =
1,2,...,n, then it follows from the rotundity of ces; that

1
H—(fﬁ+y1,$2+y27~~-,$n+yn)

2
1 r1+ + ||z2 + P
—2<||a?1+yl||p+<” L y1”2|| 2 y2”) + ...

1
n (Ile + ol + 1z + ol + - + IIwn+yn|>”)f’
n

1
= gl + il oz +goll- sz +ynl)llcesy

IN

1
MUl + el a2l + llyzll, - lzall + lynl)llees; < 1.



252 S. YOUYEN AND S. SUANTAI

Thus, it may be assumed that ||z;|| = ||y;]| for all i = 1,2,...,n. It may be assumed
that @; # y; for some i. Then [[5(z; + i)l < llasll = llall = 5(llsll + lly:ll) by the
rotundity of X;. Therefore

1
(1 4y, z2+ Y2, .., T+ Yn)

2
1 1 + vl + o2 + 3ol "
=3 |21 + 11| + 5 4.

1
+ (le + il + o2 + ool + - + IIxn+ynll>”>P

n
1
= Sl +wlls oz +gell, - llzn +yal)llees;
1
< izl + llyall, Izl + vzl - lzall + ynl) lcesy
1
= Sl @llzall 2fjzz2ll, ., 2llzal)llces; = 1.
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