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Abstract. Some criteria of strong roughness, roughness and pointwise roughness of Orlicz norm
and Luxemburg norm on Musielak-Orlicz function spaces are obtained.

1. Introduction. Leach and Whitefield [1] introduced the concept of rough norm in
1973. Later John and Zizler [2] and Li [3] introduced the concept of strong rough norm
and pointwise rough norm, respectively. X denotes a Banach space, X* the dual of X.
S(X) is the unit sphere in X. B(X) denotes the unit ball of X. The norm of X is said
to be pointwise rough provided (z) > 0 for every point on S(X), where

e(z) =sup{e > 0: 3fn,gn € X*, I full; lgnll — 1,
fn(x)vgn(x) - l’nhjgo an *gnH > 5}'
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||| is said to be rough provided inf{e(x) : € S(X)} > 0, ||-|| is said to be strongly rough
provided inf{diamA(x) : x € S(x)} > 0, where A(z) = {f € S(X*) : f(z) = ||z| = 1},
that is, A (z) is the gradient of z.

Criteria for roughness of the norm in Orlicz spaces are given in [10, 11]. This paper
gives criteria for roughness of the norms in Musielak-Orlicz function spaces.

The triple (T,%, 1) stands for a finite nonatomic measure space. A mapping T X
[0,00) — [0, 0¢0] is said to be a Musielak-Orlicz function if it satisfies:

(i) M(-,u) is X-measurable for any u € [0, 00).
(i) for p-a.e. t € T, M(t,u) is a left continuous and convex function of w.
(iii) for p-a.e. t € T, M(t,0) = 0, lim, oo M(t,u) = 0o, and there exists v’ # 0 such
that M (¢t,u") < oo for pra.e t € T.
The complementary function of M is defined by
N(t,v) = sup{uv — M(t,u)} (p-ae. teT;v>0)
It is easy to see that N(t,v) is also a Musielak-Orlicz function. We define a(t) =
sup{v > 0: N(t,v) < co}.
p(t,u) and p~(t,u) (resp. ¢(t,v) and ¢~ (t,v)) stand for the right and left derivative
of M(t,u) (N(t,v), respectively). We know that for any w,v > 0

wo < M(t,u) + N(t,v) (p-ae teT)
and uv = M (t,u) + N(t,v) if and only if p~(¢t,u) < v < p(t,u) or ¢~ (t,v) < u < q(t,v).
M is said to satisfy the Ay condition (for short, M € Ay) if there exist A > 1 and a
measurable nonnegative function ¢ defined on 7" such that [,.§(t)du < oo and

M(t,2u) < AM(t,u) +6(t) (ae.t €T, —00 < u < +00).

By L° we denote the set of all (equivalence classes of) Y-measurable real functions

defined on T'. The linear set
{m(t) e L: o) = / M (t, Ax(t))dp for some A > 0}
T
endowed with the Luxemburg norm
llz]|ar = inf{X > 0: pps(x/N) <1}
or the Orlicz norm
) 1
el =sup{ [ oo ) < 1] = jut {10+ purtro |
T >0 k;

is a Banach space. We call it the Musielak-Orlicz space and denote by Ljs or LY, re-
spectively.

We define a closed subspace Ef, of L$,; by

ES; ={x € L°: ppr(A\z) < 0o for any A > 0}.

The spaces £, and L, coincide if and only if M € As.

For any x € L§,, write

d°(z) = inf{||z — y|3; : y € Bf}, d(z) = inf{||lz — yllar : y € Enr},
Opr(z) = inf{\ > 0: ppr(z/N) < 00} = E(x).

It is known that )/ (x) = d°(z) = d(x).



ROUGHNESS ON MUSIELAK-ORLICZ SPACES 255

If [ N(t,a(t))dp > 1, we have [k}, k3*] # 0 and we know (see [13], [14]) that ||z||§, =

T

+(1+ par(kx)) if and only if k € [k}, k}*], where
k* = inf {k >0 / Nt p(t, k|z(8)]))dp > 1},
T

k= sup {k >0 /TN(t,p(t, Kl () du < 1}.

The dual space of Ly is represented as (Ly)* = LY & @, i.e. every f € (La)* is
uniquely represented in the form f = y+ ¢, where ¢ is a singular functional, i.e. ¢(x) =0
for any = € E)y, and y is a regular functional defined by the formula

(z,5) = /T H(y(B)dp (Y € Lay).

If any f € (Lp)* is uniquely represented in the form f = y + ¢, then || f]|° =
llyll% + l|]° (see [4, Lemma 1.3]), where

61l = 611" = sup{(2) : prs(z) < o0} = sup{(e) : pule) <} = swp_ e%)

if the norm || f]|® is defined by || f]|® = sup {z* (x) : |||, < 1}.
If f e (L), that is, f =y + ¢, where y € (L) is the regular functional defined by
the formula

(@) = [ attwOdn (v € Lgy)
T
and ¢ is a singular functional, then
[f1l = inf{¢ > 0: pn(y/€) + I¢]]/€ < 1}
(see [14, Lemma 1.4]), if the norm || f|| is defined by the formula
* 0
1£Il = sup{a™ (2) : [lz][5, <1}
We start with auxiliary lemmas.
LEMMA 1. The spaces Ef; and En are separable.

LEMMA 2. (i) The spaces ES; and Ey are weakly Asplund.
(ii) The spaces EY; and Ep are Asplund if and only if M € V.

Proof. By Lemma 1, the proof is similar to that for Orlicz spaces (see [13], Theorem
2.58). m

LEMMA 3 ([6], Proposition 5.6). For any sequence (uy,) in Ly we have that ppr(uy,) — 1
if and only if ||un|lar — 1 if and only if M € As.

*

LEMMA 4 ([8], Lemma 1.7). There is no nonzero singular functional ¢ € (L,)* attaining

its norm on S(L§,)*.

LEMMA 5. For any f € (L$;)*,f =y + ¢ (where y € (Ln), ¢ is a singular functional).
If | fIl = 1 is attained on S(LS,), we obtain

/T Nty (6)du + 6] = 1.
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Proof. Since Lemma 4 holds, we can get the result in the same way as for Orlicz spaces
(see [6], Theorem 1.42). m

LEMMA 6. The following conditions are equivalent:
1) N € Ao, i.e., there exist A > 1 and 0 < §(t) € Ly satisfying
N(t,2v) < AN(t,v)+6(t) (a.e.t€T,veR).
2) for any e > 0, there exist A > 1 and 0 < 6(t) € L1, such that
N(t,v/e) < AN(t,v) +06(t) (a.e.t€T,ve€R).
3) for any e € (0,1), there exist 6 € (0,1) and 0 < §(t) € Ly satisfying
M(t,eu) < 0eM(t,u) +6(t) (a.e.t€T,ueR).
4) there exist £,6 € (0,1) and 0 < §(t) € L1 satisfying:
M(t,eu) < OcM(t,u)+0(t) (a.e.te€T,uecR).
Proof. See [13]. m
LEMMA 7 (see [19]). If

( +pM</m>>},

ol

Ky := sup {k>0:||x||?\/[:

llzllg,=1
then Ky < oo if and only if N € As.

Proof. Necessity. Since N & Ao, taking any € > 0, putting
€
o(t) = >0: M(t —M(t
(t) sup{v_ (,Ev)>€Jrl (71))}
we have [ M(t,d(t))dt = co. Indeed otherwise

M(t,e0(t)) < E%1(]\4(15,1;) FM(L6(t) (ae teT,veR),
whence, by Lemma 6, we get N € Ay, a contradiction.

In this way, we get u(t) > 0 such that
1
M(t,ev(t)) > —— M(t,v(t)) and / M(t,o())dt > S
e+1 T €

Then [, M(t,ev(t))dt > 1, whence |[eul|° > 1. Therefore, there exists Q C T such that
lleulql]® = 1. Take k € K(culq), i.e.

(1 + par(keuw)).

x| =

1= leul|” =
We have k > 1, so

(1 + par(keula)) = lleulal®

< a(l + pM<§ ~Eu|sz>> =e(1+ pum(vla))

=

1
T pu(keulo) <

e+1
13

< 6(1 + /QM(t,eu(t))d,u> =cec+ (1+¢)pum(euln).
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This shows that )
% <e+epupleulg) < 2e.
By the arbitrariness of € > 0, we obtain that Kj; = oo, a contradiction.
Sufficiency. Because N € Ay, by Lemma 6, there exist n > 0 and 0 < §(¢) € L; such
that
M(t,2u) > 2(1+2n)M (t,u) —o0(t) (ae.t €T ,u €R).
Hence, for u > 0 satisfying M (t,u) > §(t)/2n, we obtain
M(t,2u) > 2(1 + n)M(t,u). (1)
Pick D big enough such that

i,
D—-1—— [ 4(t)>1.
TRCE

For any = € S(LS,), denote
H,={teT: Mt D|z(t)]) > dt)/2n}.
In view of 1 = ||z]|$, < 5(1+ pam(Dx)), we get ppr(Dz) > D — 1. Moreover
Mt Da(t)di = paa (D) — [ M(t, Dr(t))d

H, T\H,
1 1
>D—-1-— 5(t)du2D—1——/5(t)du21. (2)
nJr\H, 2n Jr
Since N € Ay, we have a(t) = oo a.e. For any « € S(L{,), we obtain that K (x) # (. If
k€ K(z),thenk < Dork > D.If k > D, there exists j > 1 such that 277'D < k < 27D.

From (1) and (2), we have

21D >k =1+ puy(kx) > / M (t, kx(t))du > / M (t, 2271 D|x(t)])du
H, H,
> 2 ()t [ M Dle(ol)du > (L4 P
H,

This shows that j — 1 < 1ogf+n D. Therefore k < D - glogi, Pt so Ky < 00. m
LEMMA 8. The space Eyy is smooth if and only if p(t,u) is continuous with respect to u,
t € T. The support functional of u € Ey; is the function
_ p(t,u(®)/||ulla) signu(t)
v(t) = .
P, u(®)/Nulla)l
Proof. Tt is analogous to the proof of Theorem 2.15 in [6]. m

LEMMA 9 ([8], Lemma 1.9). Ifx € (L§,) and Op(x) > 0, there exist two distinct singular
functionals g1, 6]l = 1, satisfying du(u) = &(u) i = 1,2.

LEmMMA 10. If p(t,u) is continuous with respect to u, t € T, then p-a.e. w € S(Lys) is a
smooth point of B(Lyr) if and only if the support functional of u belongs to S(L%;), and

u# 0.
Proof. By Lemmas 8, 9, the proof is similar to the proof for Orlicz spaces (see [6], Theorem
2.17).
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LEMMA 11. w € S(Lyps) is a smooth point of B(Lys) if and only if
(1) |u(t)] < B(t) (ae. teT);
(2) pa(u) =1,p™(Jul) € ER;
(3) p~ (¢, [u(t)]) = p(t, [u(t)]), where B(T') = sup{u >0 : M(t,u) < oo}.
Proof. Since Lemma 10 holds, we can repeat the proof from [16]. u
LEMMA 12 ([17]). = € S(LY,) is an extreme point of B(LS,) if and only if
(a) the set K(x) consists of one element from (0,+00),
(b) kx(t) € Sy for p-a.e. t € T, where {k} = K(x).
LEMMA 13. zg € S(X) is a smooth point if and only if its support functional is an
extreme point of B (X™*).

LEMMA 14 (see [18]). If M € Ay and g € S(Lyy) is an extreme point of B(LS,), then
xo 1s an H-point.

2. The Orlicz norm
THEOREM 2.1. The following conditions are equivalent:
(1) LS, is rough.
(ii) LS, is pointwise rough.
(iii) M & Vs.
Proof. (1)=-(ii) is trivial.
(ii)=(iii) If M € V3, by Lemma 2(ii), we obtain that E, is an Asplund space. By
Corollary 2 in [12], p. 177, there is at least one F-differential point zg of E$, on S(E,).
Now, we need only prove that z is also an F-differential point of Lg,.

Let f, € (L))", fn = Yn + &n, | full = 1 and f,,(x0) — 1, where y,, € Ly and ¢, is a
singular functional,

fula) = /T e(Oga(Odp + dulz)  (x € L3y).

_ Since [pxo(t)yn(t)dp = [pxo)yn(t)dp + ¢nl(z0) = fulwo), im,  llynlly = 1. If
limy, o0 ||yn ||~ > 1, there exists A > 0 such that ||y,||xy > 1 for an infinite number of n.

Therefore, ||{% || > 1 and py(5%%) > 1. We have

(2.1) [fnll = inf{& > 0: pn(yn/S) + ¢n/E < 1}
It is easy to prove that || f,|| > 1 4+ A. This contradiction proves that

lim lynlln <1,
n—oo
whence ||y, ||nv — 1. By lim, .o || fn|| = 1 and (2.1), there exists &, — 1 satisfying

Since N € Ay and ||y, ||y — 1, by Lemma 3, we get pn (yn/En) — 1, s0 [|dn]l/En — 0, i,
l¢n| — 0. Since x¢ is an F-differential point of ES,, and ||y,||n — 1, so {y,} is a Cauchy
sequence. Combining this fact with ||¢,|| — 0, we get that {f,} is a Cauchy sequence,
too. Hence xg is an F-differential point of L§,.
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(iii)=-(i) Suppose that zo € S(L},),f =y + ¢ € (L3,)" I f| = 1 and f(zo) = [|z[|,
= 1. By Lemma 5,

(2.2) /TN(t,y(t))d,u +]¢]|=1 forae teT,

Since N ¢ As, there exists v € S(Ly) and gp > 0 satisfying
loxr, || > €0, 1=1,2,...,

where T; = {t € T : |v(¢)| > i}.
Defining v; = vxm\1,/

, we have ||v;|| = 1. Define f;, g; € (Lg,)* by

|UXT\T,,-

filw) = /T L FOv / vi(t)dp + (),

i

w0 = [ BECTOIS | vattdns o) (@< L3,

In view of
/ zo(t)y(t)dp — / zo(t)y(t)dp
T\T; T
and
/ vix(t)dug/ M(t,mo(t))du—l—/ N(t,v;)dp — 0,
T; T; T;
we get lim, fi(zo) = 1, whence lim, ,__||f;|| > 1. On the other hand, as i — oo, for

any € > 0, there exists T;, such that [, N(t,v;,)dt < ¢, a.e. t € T. By (2.2), we know
that ’
N(t,y(t))dt +/ N(tvi(t))dt + ol < pn(y) + ¢l +e=1+¢e, i >do.
T\TL' Ti

Taking into account (2.1), ||f;|| < 1+ e. Therefore lim; ., || fi]| = 1.

Similarly, lim; o0 gi(20)=1, lim;_, ||g;||=1. But we have proved that lim;_, ||v; X1,
=1, hence lim; .|| f; — g;|| = 2. This shows that &(z¢) > 2. In view of the arbitrariness
of xg, we get that inf{e(x) : x € S(L},;)} = 2, and L§, is rough. =

THEOREM 2.2. The space L}, is not strongly rough.

Proof. By Lemma 1, Lemma 2(i) and Lemma 5, the proof is the same as for Orlicz spaces,
see [10]. =

3. The Luxemburg norm
THEOREM 3.1. The space Ly is pointwise rough if and only if M & V.

Proof. Sufficiency. A non-smooth point must be a rough point. Next we prove that every
smooth point is a rough point.

Suppose that zo € S(Lys) is a smooth point. By Lemma 10, there exists a support
functional of x¢ — yo, which belongs to S(L%). By the proof of Lemma 11, we know that
K(yo) # 0. Choose ko > 0 satisfying kio(l—i-pN(koyo)) = |lyol|% = 1. Since N & Aq, we get
from the proof of Theorem 2.1 that v; = vxp\1, /[[vX\7, ||, where T; = {t € T': [v(t)| > i}
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satisfies ||v;]| = 1. Therefore, as i — oo, for any £ > 0, there exists T; such that
fT_ N(t,v;,)dt < ¢ for a.e. t € T and i, > i. Define y;, z; € L} by

vo(t), teT\T, yo(t), teT\T
yi(t) = zi(t) =
’Uz‘/ko, teﬂ, 711i/]€07 tGTi.

/ zo(t)yo(t)dp + — /xo dt—>/x0 Yyo(t)dp = 1.
T\T;

Hence hmzéoo||yl||N > 1. Moreover,

Then

lyill3 < k (1+PN(k0yz)) (1+ N(tak‘oyo(t))dt‘F/ N(t,v;)dt)
T;

ko T\T;
< i(1 + pn(koyi)) +e— =1+ =5
~ ko ko ko
Therefore, lim,, .« ||yi||% < 1, whence lim; oo ||y [|% = 1.
In the same way one can prove that [, xo(t)z(t)dp — 1, |z]|% — 1. But

2
lyi = 2ill% = llys = zillw = - fjvillv-

Hence mn_mllyi — z||% > 2/ko, which shows that ¢ is a rough point of L.
Necessity. If M € V4, by Lemma 2(ii), Ej is an Asplund space. Moreover, || f,[|%, =
lynllos + |@nll, whence the proof is similar to the proof for Orlicz spaces. m

THEOREM 3.2. The space Ly is not strongly rough.

Proof. Since Lemma 1 and Lemma 2 (1) hold, the proof is as in the case of Orlicz spaces,
see [10]. m

THEOREM 3.3. The space Ly is rough if and only if M & Vo and M € As.

Proof. Sufficiency. Since M € Ay, the support functional at any point xg on S(Las)
belongs to S(Ly). Since M ¢ V3, by the proof of the sufficiency in Theorem 2.1, e(xg) >
2/ky, where ||y||% =1, [, zo(t)y(t)du=1. Again by Lemma 7, we have sup{k, : [|y||% =1}
=k < oo, whence inf{e(z) : € S(Lps)} > 2/k, which shows that Ly, is rough.

Necessity. Roughness implies pointwise roughness, so it follows immediately from
Theorem 2.1 that M ¢ V5.

In order to prove that M € A,, we consider the following four steps.

(I) If M & A,, for any positive integer n, there exists a smooth point zg on S(Lys).
From the proof of Lemma 11, we get yo in the support of zg satisfying K(y,) # 0,
moreover we prove that k, > n.

Assume that M ¢ A, take any € > 0 (¢ = 1/2n) and put

5(t) = sup {v >0:N(tev) > 6_&ij_—lN(zf,v)}
Then [ N(t,0(t))dt = co. Indeed, otherwise
N(t,ev(t)) < €+Ll(zv(t,v) FN(,(1) (ae teT,veR),

so by Lemma 6, we get that M € Ay, a contradiction.



ROUGHNESS ON MUSIELAK-ORLICZ SPACES 261

In this way, we get v(t) > 0, satisfying: v(¢) is a strict increase point of ¢(¢,v) with
respect to v for each t € T and
e+1
—

N(t,ev(t)) > N(t,v(t)), / N(t,v(t))dt >
e+ 1 T

Therefore [, N(t,ev(t))dt > 1, whence [|ev|| > 1. Moreover, [ev||° > [lev]|, so we obtain
lev||® > 1. Consequently there exists 2 C T such that ||cv|q||® = 1. Take k € K(ev|q),
ie.

1= Jlev]l® = (1 + pw (k).

el

Then k£ > 1 and

1
=+ px(kevla) <

2 (14 pn(kevla)) = llevlall®

< 5(1 +pN(§ -evm)) = (14 py(vla))

| =

e+1
€

< 5<1+ /QN(t,sv(t))d,u) =ec+ (1+¢)pn(ev]a),
which shows that + < &+ epy(ev|q) < 2¢, i.e. kev|g > n.

Since [ N(t,6(t)) = co,e = 1/2n and v(t) < 4(t), we get [, N(t,ev(t)) < oc.
Therefore N (t,ev(t)) is bounded for p-a.e. t € T. Hence ev(t) is bounded for p-a.e. t € T.
Therefore cv(t)|q € EY. By the Hahn-Banach Theorem, there is an zg € S(Ly;) such
that zo(ev|q) = |lev|al|% =1 = ||zo|las. Therefore ev|q is a support functional at z.

Setting yo = ev|q, from the above proof we obtain that k,, > n.

(IT) Since ev is a strict increase point of ¢(t,v) with respect to v for each t € T, we
know that N(¢,v) is strictly convex with respect to v for each t € T, kyg is a strictly
convex point of N(t,v). By Lemma 12, we obtain that y, is an extreme point of L. So
by Lemma 13, z( is a smooth point of L;.

(IIT) Put y,, € LY, [yl =1 and [ 20(t)yn (t)dp — 1. Then yn (t) — yo(t) -, 0. By
the same method of Lemma 14, we get y,(t) — yo(t) == 0 on Q.

Next we will prove that v, (t) —yo(t) —— 0 on t € T'\ Q. Since S yn(t)xazo(t)dp — 1,
we have ||y, ||% — 1. Notice that

1
L lynl% = — (14 px(knynxri0)) = lynxmallX + o8 YnXxr\Q)-

Therefore pn (ynx7\0) — 0, whence y, — 0 ont €T\ Q.

(IV) We have lim,, oo ||y — %0l|% < 4/k. For any ¢ > 0, there exists § > 0 such that
e C t,p(e) < d implies py (kyoxe) < € and [|yox.||% < €. Pick ey C t such that pu(eg) < 4,
and y,, (t) converges to yo(t) uniformly on 7'\ eg. Then for n large enough, we have

1
I+e> HynH?\I = k_(l + pN(knynXT\eo) + pN (knYnXeo))
pN(knynXEU)
2k
pN(knynXeo) pN(knynXeo)
—_ " >1-2 _
T TR

> HynXT\eo”(I)V + > ”ynXT\eo”?V —¢€

+
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whence pn (knynXe,) < €. Therefore, for n large enough

k k 1 k—k,
PN Z(yn —9) | < pn Z(yn — Yo)XT\eo | T 3PN 5 YnXe

1 1
+ ZPN(knynXeo) + ZPN(kyOXeo) = 0(6)'

Hence
4 k 4
o =0l < 5 (14 o (50 — ) ) <+ 060

So limy—oc [|Yn — y0[|% < . This shows that e(zo) < 8/k < 8/n, whence inf{e(z) : z €
S(La)} =0, i.e. Ly is not rough. m
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