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Abstract. As written in L. Schwartz’ book, Heaviside’s theory of cables is an important source

of the theory of generalized functions. The partial differential equations he discussed were the

usual heat equation and the simplest hyperbolic equations of one space dimension, but he had

to solve them as evolution equations in the unusual direction of the distance along which the

electric signals propagate. Although he obtained explicit expressions of solutions, which were

of great economical values, it has not yet been clarified completely how he derived and proved

them. The author gives easy proofs of Heaviside’s results based only on the classical theory of

Laplace transforms and their reciprocal, the Bromwich integrals. At the end it is indicated that

an abstract version of the Fatou theorem on bounded harmonic functions on a half space implies

the uniqueness of solutions for the Thomson cables.

1. Fourier’s δ-function and operational calculus. Schwartz’ book “Théorie des
distributions” [25] starts with citations of Heaviside’s paper [10] on operational calculus
and Dirac’s [5] on quantum mechanics. These are supposed to be the first places where
distributions were actually employed.

It is little known, however, that Joseph Fourier (1768–1830) introduced the δ-function
much earlier as an integral kernel, and formulated his integral formula as

δ(x− α) =
1
π

∫ ∞
0

cos(q(x− α)) dq. (1)

His book “Théorie analytique de la chaleur” [7] claims this repeatedly. In particular, the
statement on p. 449 is incontestable. He also gives many proofs of (1) and, in particular,
the last one given on pp. 546–551 is essentially the same as that of Dirichlet, Riemann
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and Jordan and is sufficient for developing his “fonctions quelconques” which are actually
piecewise real analytic functions.

Moreover, Fourier has developed on pp. 511–546 an operational calculus in order to
solve not only the initial value problem of the heat equation but also many other linear
partial differential equations.

He starts with the expansion of a general solution into a formal power series, and
then writes the result in an operational expression. For example, consider the initial
value problem of the heat equation:

∂v

∂t
=
∂2v

∂x2
, t > 0, x ∈ R,

v(0, x) = φ(x), x ∈ R.
(2)

Then, we have

v(t, x) = φ(x) + tφ(2)(x) +
t2

2!
φ(4)(x) +

t3

3!
φ(6)(x) + · · · ,

which may be written etD
2
φ(x) with D = ∂/∂x.

Applying etD
2

to cos(q(x− α)), we get

etD
2

cos(q(x− α)) = e−tq
2

cos(q(x− α)).

Fourier obtains the heat kernel as its integral with respect to q :

1
2π

∫ ∞
−∞

e−tq
2

cos(q(x− α)) dq =
1

2
√
πt
e−

(x−α)2

4t .

His proof given on p. 477 makes use of a shift of the path of integration in

√
π =

∫ ∞
−∞

e−q
2
dq.

In his book [7] Fourier attributes the integral formula

v(t, x) =
1

2
√
πt

∫ ∞
−∞

e−
(x−α)2

4t φ(α) dα =
1√
π

∫ ∞
−∞

e−q
2
φ(x+ 2q

√
t) dq

of solutions to (2) to Laplace in the latter form but he never forgets to mention that
Laplace’s paper appeared later than the year 1807 in which he submitted the first part
of his book to the Academy (and its committee with Laplace as a member rejected to
publish it).

Along with the usual initial value problem (2), Fourier considers also the initial value
problem 

∂2v

∂x2
=
∂v

∂t
, t, x ∈ R,

v(t, 0) = φ(t), t ∈ R,
∂

∂x
v(t, 0) = ψ(t), t ∈ R,

(3)
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in the direction of space. In this case, we have

v(t, x) = φ(t) +
x2

2!
φ′(t) +

x4

4!
φ(2)(t) +

x6

6!
φ(3)(t) + · · ·

+ xψ(t) +
x3

3!
ψ′(t) +

x5

5!
ψ(2)(t) +

x7

7!
ψ(3)(t) + · · ·

= cos(x
√
−∂/∂t) φ(t) +

sin(x
√
−∂/∂t)√
−∂/∂t

ψ(t). (4)

Power series (4) converges if the functions φ and ψ are in the Gevrey class of index
(2), i.e., if their m-th derivatives are bounded by Cεεmm!2 for any ε > 0 with a constant
Cε (see [14]).

On p. 544 Fourier gives an integral formula of the fundamental solution. It converges
as an ultradistribution of class (2) but never as a function in any sense.

In the same way, the solution of the initial value problem of the wave equation in two
dimensions is expressed as

u(t, x, y) = cos(t
√
−∆)φ(x, y) +

sin(t
√
−∆)√
−∆

ψ(x, y).

Fourier almost stops here but it is not difficult hence to obtain the explicit integral formula
of solutions due to Poisson and Herglotz.

2. Thomson’s theory of cables. A similar problem appears in the theory of signal
transmission on submarine cables. Telegraphy was invented in 1837 by C. Wheatstone
in England and by S. F. B. Morse in the United States independently. Long distance
telecommunication systems were of vital importance for both countries to maintain their
huge territories. Already in 1850 they started to construct submarine cables for telegraphy
but first cables didn’t show their expected performance. Signals were so blurred that they
became illegible at the receivers.

In 1855 William Thomson (1824–1907) published the first paper [28] analyzing the
signal transmission on long cables. The paper is composed of three extracts from corre-
spondence he exchanged with G. G. Stokes.

The electric property of cables or parallel wires may be approximated by the following
circuit. We put an electro-motive force φ(t) at one end of a cable and observe the electric
current j(t) at the other end.

φ

Thomson took into consideration only the electrostatic capacitance C between the
wire and the sheath and the electric resistance R of the wire, and ignored the self-
inductance L and the leakage conductance G. Let C and R be the capacitance and the
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resistance per unit length, respectively. Then, the voltage v(t, x) and the current j(t, x)
of the wire obey the equations

−∂v
∂x

= Rj, − ∂j
∂x

= C
∂v

∂t
.

For the sake of simplicity we consider an infinitely long cable x ≥ 0. Let the cable
be quiet for t < 0. Then, we put an electro-motive force φ(t) at x = 0 and observe the
electric current j(t, x) at x > 0. Eliminating j, we have the following problem:

∂2v(t, x)
∂x2

= CR
∂v(t, x)
∂t

, x ≥ 0,

v(t, x) = 0, t < 0, x ≥ 0,

v(t, 0) = φ(t), t ≥ 0.

(5)

The solution Thomson and Stokes gave is symbolically

v(t, x) = e−
√
CRx
√
d/dtφ(t) (6)

and more concretely

=
1

2
√
π

∫ t

0

√
CRx

(t− s)3/2
e−

CRx2
4(t−s)φ(s) ds. (7)

If, in particular, φ(t) is the Heaviside function

θ(t) =

{
1, t ≥ 0,

0, t < 0,

then we have

v(t, x) = 1− erf
(
x

2

√
CR

t

)
=

2√
π

∫ ∞
x
2

√
CR
t

e−u
2
du. (8)

Except for the coefficient CR the differential equation in Thomson’s problem (5) is
the same as Fourier’s (3), but the numbers of the initial values are one for (5) and two
for (3). The solutions expressed by (7) represent waves going in the positive direction
in x, and there are also waves going in the opposite direction. We cannot exclude the
latter type of solutions without the quietness condition in the middle of (5). We remark,
however, that Fourier’s solutions (4) satisfy the quietness condition if φ(t) = ψ(t) = 0 for
t < 0. This shows that physical phenomena cannot be described by differential equations
only. For Thomson’s problem (5) it is intuitively clear that we have only waves going in
the positive direction, so that only one initial condition is allowed. This intuitive fact is
not necessarily explained clearly in a mathematical or physical language. Heaviside relied
on the causality as shown later. We may also appeal to the dissipation of energy or the
like (see Section 6).

To obtain (8), Thomson made use of the formula∫ ∞
0

e−z
√
n cos(2nt− z

√
n) dn =


√
πz

4
√
t3
e−

z2
4t , t > 0,

0, t ≤ 0.
(9)
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In order to make its meaning clearer, we change the variable into 2n = ω. Then, we have

1
2

∫ ∞
0

e
− z
√
ω√
2 cos

(
ωt− z

√
ω√
2

)
dω =

1
4

∫ ∞
−∞

e−z
√
iωeiωt dω,

where
√
iω =

{
1+i√

2

√
ω, ω ≥ 0,

1−i√
2

√
−ω, ω < 0.

Thus formula (9) is equivalent to

1
2π

∫ ∞
−∞

e−z
√
iωeiωt dω =


z√

4πt3
e−

z2
4t , t > 0,

0, t ≤ 0,
(T)

for z > 0.
This may be the most valuable mathematical result in the nineteenth century in the

sense that the discoverer got the most wealth.
Thomson did not give the details how he computed it but we can find in the paper

[28] Stokes’ complicated proof based on the Fourier sine transformation. Expression (7)
of a general solution is also due to Stokes.

In 1866 a transatlantic cable was successfully constructed after Thomson’s design and
he was knighted for his contributions. In 1892 he became Lord Kelvin, Baron of Largs.

3. Heaviside’s operational calculus. Oliver Heaviside (1850–1925) is an Englishman
born in a poor family and had no formal education of college level. Since his mother was
a sister of C. Wheatstone’s wife, he was able to get a position of telegraphist but resigned
at the age of 24 and spent the rest of his life in writing mathematical and physical papers
for a weekly commercial newspaper “The Electrician”. His theory of operational calculus
[9, 10, 11] was invented first to make the Fourier-Thomson theory more accessible to
engineers.

After we have an operational representation like (6), we have to carry out difficult
integration in order to obtain the solution v(t, x) or the integral kernel (T). Heaviside
employed instead the fractional power series expansions in the operator p = d/dt and
computed the integrals as series of distributions with the use of the following correspon-
dence of operators and distributions under the causality condition:

pα ←→ pαδ(t) =


t−α−1
+

Γ(−α)
, α 6= 0, 1, 2, . . . ,

δ(α)(t), α = 0, 1, 2, . . . ,

where t−α−1
+ denotes Hadamard’s finite part of the function t−α−1 for t > 0 and 0 for

t < 0 [20].
For example, Thomson’s problem (5) is solved as follows:

v(t, x) = e−
√
RCx

√
p φ(t) =

(
1− qx+

(qx)2

2!
− (qx)3

3!
+ · · ·

)
φ(t)

= (cosh qx− sinh qx)φ(t),
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where
q =
√
CR
√
p =
√
CR
√
d/dt.

To compute the integral kernel (T), let φ(t) be the delta function δ(t). Then, cosh qx
being a differential operator (of infinite order), we have

(cosh qx)δ(t) = 0, t 6= 0.

On the other hand, we have(
d

dt

)m+ 1
2

δ(t) =
(
d

dt

)m+1(
d

dt

)− 1
2

δ(t)

=
1√
π

(
d

dt

)m+1 1√
t+

=
(−1)m+1

2
√
π

(2m+ 1)!

m! 4m tm+ 3
2

+

.

Hence it follows that −(sinh qx)δ(t) = 0 for t < 0 and that

−(sinh qx)δ(t) = −
√
CRx

∞∑
m=0

(CRx2)m

(2m+ 1)!

(
d

dt

)m+ 1
2

δ(t)

=
√
CRx

2
√
πt3

∞∑
m=0

1
m!

(
− CRx2

4t

)m
=
√
CRx

2
√
πt3

e−
CRx2

4t for t > 0.

This is his method which Schwartz commented as ‘audacieux’ in [25]. It was more so
at the end of the nineteenth century. Heaviside’s paper [10] originally consisted of three
parts. After two parts were published, the third one was rejected as nonsense and was
never published. He was almost ignored in his life, but soon after his death people began
to evaluate him. Whittaker [29] wrote in 1928:

Looking back on the controversy after thirty years, we should now place
the Operational Calculus with Poincaré’s discovery of automorphic functions
and Ricci’s discovery of the Tensor Calculus as the three most important
mathematical advances of the last quarter of the nineteenth century.

Many books have been published since then on its applications, extensions and justifica-
tions, e.g., van der Pol – Bremmer [24], Jeffreys [12] and Mikusiński [23]. However, their
treatments are not necessarily so straightforward as Heaviside.

Today we can righteously interpret most of Heaviside’s results with the help of the
theory of hyperfunctions and ultradistributions [15]–[20]. In the above case, for example,
cosh qx and sinh qx are an ultradifferential operator of class (2) and a pseudodifferential
operator of class (2), respectively, so that the series converge as ultradistributions of class
(2) and coincide with the above sums on {t : t 6= 0}. On the other hand, since e−z

√
iτ

is integrable as a function in τ , integral (T) is a continuous function in t. Thus, we have
the identity (T).

Heaviside made use of his operational calculus also to establish the theory of cables
for telephone. Telephony had been invented by A. G. Bell in 1876. Heaviside knew
from his experience that the leakage and the self-induction of cables improved their
performance at high frequencies in spite of all our intuition. He was also one of the very
few who understood the electromagnetic theory of J. C. Maxwell (1831–1879) at that
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time and was able to compute the self-inductance of cables, which was by no means
negligible.

Let L and G be the inductance and the leakage conductance per unit length. Then,
he showed in 1881 that the voltage v and the current j obey

−∂v
∂x

= Rj + L
∂j

∂t
,

− ∂j
∂x

= Gv + C
∂v

∂t
,

and hence the differential equation for v is

∂2v

∂x2
=
(
R+ L

∂

∂t

)(
G+ C

∂

∂t

)
v. (10)

This is usually called the telegraphist equation but the Heaviside equation would be a
more appropriate name.

Thus the problem of signal transmission on cables is reduced to that of finding solution
of (10) under conditions {

v(t, x) = 0, t < 0, x ≥ 0,

v(t, 0) = φ(t), t ≥ 0.
(11)

The following are the most important results Heaviside obtained in the case LC 6=
0. Both were announced in the year 1887, that is, the memorable 50th anniversary of
telegraphy.

Distortionless Cables: If condition

CR = LG

is satisfied, then equation (10) is reduced to

∂2v

∂x2
= LC

(
∂

∂t
+
R

L

)2

v

and its solution is
v(x, t) = e−

√
RGxφ(t−

√
LC x). (12)

This shows that the signal attenuates exponentially according to the distance but it
propagates without distortion.

General Cables: Assume
CR 6= LG.

Then, equation (10) is written

∂2v

∂x2
= LC

{(
∂

∂t
+ ρ

)2

− σ2

}
v, (13)

with

ρ =
CR+ LG

2LC
, σ =

|CR− LG|
2LC

.
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Its solution is given by

v(x, t) = e−ρ
√
LCxφ(t−

√
LC x)

+
∫ t−

√
LC x

0

e−ρ(t−s)σ
√
LC x√

(t− s)2 − LCx2
I1(σ

√
(t− s)2 − LCx2)φ(s) ds,

(14)

where I1 is the modified Bessel function of order 1.

He should have thought that then he surpassed Sir William. The response was, how-
ever, quite opposite. He was declined to contribute his papers to “The Electrician”. He
lost his steady income. Fortunately, Heinrich Hertz (1857–1894) published in 1888 papers
on his famous experiments, and Heaviside survived.

He must have been very much proud of his discovery of the distortionless condition.
Since the capacitance C is too large because of high electrostatic inductivity of insulators,
he proposed plans to increase the inductance L. Finally, loaded cables, which have coils at
every fixed distance, have been widely utilized. But the American patent went to Pupin in
1900. Pupin became a millionaire but Heaviside had nothing and died of poverty. In 1932
Shigeyoshi Matsumae invented the method of sending multi-channeled signals carried by
waves of high frequency on unloaded cables. The income he got from his patent was large
enough to create an engineering college, which is now Tokai University.

Heaviside’s strategy is the same as above. Equation (13) is written

∂2v

∂x2
= LC{(p+ ρ)2 − σ2}v = q2v,

where
q =
√
LC
√

(p+ ρ)2 − σ2.

Hence its solution should be
v = eqxA+ e−qxB,

with constants A and B in the sense that they are independent of x. The attenuation
rate ρ may be eliminated by the general rule

F (p+ ρ)v = e−ρtF (p)(eρtv).

In case σ = 0, the general solution is, therefore,

v = e−ρte
√
LCxp(eρtA) + e−ρte−

√
LCxp(eρtB)

= eρ
√
LCxA(t+

√
LCx) + e−ρ

√
LCxB(t−

√
LCx),

where A and B are arbitrary functions in t. The first term represents a wave going to the
left, which must vanish by the quietness condition for t < 0. Thus, only the second term
remains and gives the solution (12).

In the above we have also employed the translation rule

ezpf(t) = f(t+ z), for real z. (15)

This is the Taylor expansion theorem but we know that it converges only for very special
functions f(t). That means that his method of power series expansions in p does not work
in the literal sense.
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In the general case, he also claims that

v(t, x) = e−
√
LCx
√

(p−ρ)2−σ2
φ(t) (16)

is the solution to problem (10) and (11) and obtains the true solution (14). By the
Duhamel principle, we have only to know the response to the δ-function δ(t) or the
Heaviside function θ(t) and he mainly works for his unit function θ(t).

He was not allowed to publish his first proof (or heuristics). Judging from his an-
nouncement, it seems that he decomposed the exponential in (16) into the sum of sinh
and cosh and computed their actions as in the case of the Thomson cables. Chapter VII
of [11] is devoted to this problem. Considering the initial values of the current, he shows
that if we take

e−ρtI0(σt+) =
1√

(p+ ρ)2 − σ2
δ(t)

as the initial value of v, the computation goes well.
J. R. Carson, who published the first understandable proof [4], writes “Heaviside’s

own attack on this problem from the operational equation, while distinguished by ex-
traordinary ingenuity and almost uncanny intuition, can hardly be regarded as entirely
satisfactory”.

4. Laplace’s integrals and Bromwich’s. The first foundation for operational calculus
was established by Bromwich [3], Carson [4] and Lévy [22] by the following correspondence
between operators F (p) and functions f(t) = F (p)δ(t):

F (p) = Lf(p) =
∫ ∞

0

e−ptf(t) dt, (17)

F (p)δ(t) = L−1F (t) =
1

2πi

∫ c+∞

c−∞
eptF (p) dp, (18)

the integral being evaluated along any line parallel to the imaginary axis with a sufficiently
large c (cf. [12] or [24]).

They are reciprocal. If F (p) is the Laplace transform (17) of f(t), then the Bromwich
integral (18) is equal to the original function f(t), and vice versa. Of course we need
conditions to guarantee the convergence of integrals.

The correspondence has been extended to the case where f(t) are distributions by
Schwartz [26] and Sebastião e Silva [27] and to hyperfunctions by Komatsu [15]–[20].

On the other hand, Mikusiński [23] established a completely different foundation of
operational calculus by defining the operators to be elements in the quotient field of
the convolution algebra of continuous functions. They include the ultradistributions [16].
Thus, a linear (ultra)differential equation has always a unique solution as an operator by
“division”. But its identification with a function or an ultradistribution is difficult. This
is especially the case when the symbol of an operator is expressed as the exponential of
an operator of the first order as in (15) or (16). Heaviside’s naive method of fractional
power series expansions does not work because the corresponding series of distributions
do not converge in any localizable topology. Nevertheless, Mikusiński [23] overcame the
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difficulty of identifying solution (16) of the Heaviside cables with expression (14) by a
four pages long calculation.

5. Our proofs. We give here rigorous but easy proofs to the above results of Thomson
and Heaviside relying only on classical Laplace’s and Bromwich’s integrals.

The signal transmission on the Thomson cables has been reduced to the formula

1
2πi

∫ c+i∞

c−i∞
eτte−z

√
τ dτ =


z√

4πt3
e−

z2
4t , t > 0,

0, t ≤ 0,
(T)

for z > 0. It is easy to see that the value is 0 for t < 0 by taking the limit as c→∞. The
value at t = 0 is also 0 by Lebesgue’s convergence theorem. However, for t > 0, proofs in
the literature are rather complicated.

The following is an elementary proof by a senior student Toshiyuki Suzuki of Tokyo
University of Sciences, who submitted it as a paper for the assignments of my course on
operational calculus for this spring.

We change the independent variable τ in (T) into
√
τ = w and let Γ be the image of

the line of integration under this transformation. Then the left hand side of (T) is equal
to

1
2πi

∫
Γ

ew
2te−zw2w dw =

−1
πi

∫
Γ

∂

∂z
(ew

2t−zw) dw

=
∂

∂z

−1
πi

∫ i∞

−i∞
ew

2t−zw dw = −2
∂

∂z

1
2
√
πt
e−

z2
4t =

z√
4πt3

e−
z2
4t . (19)

To discuss the Heaviside Cables, we first compute the fundamental solution of the
Klein-Gordon equation:

∂2

∂t2
u(t, x) =

(
∂2

∂x2
+ σ2

)
u(t, x), for a σ > 0,

with support in the positive light cone {(t, x) ∈ R2 : t ≥ |x|}.
We write

A =
d2

dx2
+ σ2

and regard it as a closed linear operator in a suitable Banach space E of functions on R
on which the integrable functions in L1(R) act continuously by convolutions, e. g. Lp(R)
for 1 ≤ p ≤ ∞. Then, the initial value problem

(
d2

dt2
−A

)
u(t) = f(t),

u(0) = g0, u′(0) = g1,

is well-posed if the inverse Laplace transform

L−1
t (τ2 −A)−1 = (sin t

√
−A)/

√
−Aδ(t)

exists and its kernel becomes a fundamental solution in t and x [18].
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In our case, the resolvent (τ2 − A)−1 is the convolution operator with the integrable
kernel

1
2
√
τ2 − σ2

e−
√
τ2−σ2|x|.

Thus the fundamental solution K(t, x) is computed as the integral

K(t, x) =
1

2πi

∫ c+i∞

c−i∞
eτt

1
2
√
τ2 − σ2

e−
√
τ2−σ2|x| dτ.

By the usual argument as above we have K(t, x) = 0 for t ≤ 0. If t > 0, we can
deform the path of integration into a sufficiently large circle containing a slit connecting
±σ outside which the integrand is holomorphic. Hence it follows that K(t, x) is analytic
for t > 0.

If x = 0, it is well known ([24] Chap. X.4, [12] Chap. 21.03 or [20] §5) that

K(t, 0) = L−1
t

(
1

2
√
τ2 − σ2

)
=

1
2
I0(σt+),

where

I0(t+) =

{
I0(t), t > 0,

0, t ≤ 0,

and

I0(t) = 1 +
t2

22
+

t4

2242
+

t6

224262
+ · · ·

is the modified Bessel function of order 0.
The Klein-Gordon equation is Lorentz invariant, and so is its fundamental solution.

To prove this it is enough to show that it is invariant under the infinitesimal Lorentz
transformation. In fact, it follows from the Heaviside rules that(

x
∂

∂t
+ t

∂

∂x

)
K(t, x) = L−1

t

{(
xτ − ∂

∂τ

∂

∂x

)
1

2
√
τ2 − σ2

e−
√
τ2−σ2|x|

}
= 0.

Thus we have proved that the fundamental solution K(t, x) is equal to

L−1
t

(
1

2
√
τ2 − σ2

e−
√
τ2−σ2|x|

)
=

1
2
I0(σ

√
t2 − x2)θ(t− |x|).

Since

e−
√
τ2−σ2x = −2

∂

∂x

1
2
√
τ2 − σ2

e−
√
τ2−σ2x, (20)

we have

L−1
t e−

√
τ2−σ2 x = −2

∂

∂x
L−1
t

1
2
√
τ2 − σ2

e−
√
τ2−σ2 x

= −2
∂

∂x

1
2
I0(σ

√
t2 − x2)θ(t− |x|)

= δ(t− x) +
σx√
t2 − x2

I1(σ
√
t2 − x2)θ(t− |x|), x > 0,

(21)

where

I1(t) = I ′0(t) =
t

2
+

t3

224
+

t5

22426
+

t7

2242628
+ · · · .
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Substituting
√
LCx for x in (21), and multiplying it by the attenuation factor e−ρt,

we obtain the kernel for the representation (14) of solutions.
Finally the Poisson integral

P (t)φ(x) = e−t
√
−∆φ(x), t > 0,

is another important integral involving the exponential of the square root of a differential
operator. Its integral kernel is given by the absolutely convergent integral

Pn(t, x) =
1

(2π)n

∫
Rn
e−t|ξ|eixξ dξ =

2
ωn+1

t

(t2 + x2)
n+1

2

, t > 0, x ∈ Rn, (P)

but its direct evaluation is not easy except for the case of low dimensions n.
We give here an easy proof based on the reciprocal of (T):

e−z
√
τ =

∫ ∞
0

e−τt
z√

4πt3
e−

z2
4t dt, z > 0,Re τ ≥ 0. (T′)

Substituting e−t
√
ξ2 in (P) by its integral expression, we obtain

Pn(t, x) =
1

(2π)n

∫
Rn
eixξ dξ

∫ ∞
0

t√
4πs3

e−
t2
4s e−s|ξ|

2
ds

=
∫ ∞

0

t√
4πs3

e−
t2
4s

1
(4πs)

n
2
e−
|x|2
4s ds

=
t

(t2 + x2)
n+1

2

1

π
n+1

2

∫ ∞
0

u
n+1

2 −1e−u du,

(22)

where u =
t2 + |x|2

4s
and the area ωn+1 of the unit sphere in Rn+1 is

2π(n+1)/2

Γ ((n+ 1)/2)
.

We also note that, similarly to (19) and (20), we have

Pn(t, x) = −2
∂

∂t
Nn+1(t, x),

where Nn+1(t, x) is the Newton kernel, that is, the symmetric fundamental solution to
the Laplacian:

Nn+1(t, x) =


−1
2π

log
√
t2 + x2, n = 1,

1
ωn+1(n− 1)

|
√
t2 + x2|−n+1, n > 1.

6. The abstract Fatou theorem. If φ(x) is a function in Lp(Rn), 1 ≤ p ≤ ∞, then
the Poisson integral u(t, x) = P (t)φ(x) is a harmonic function in the upper half space
{(t, x) ∈ Rn+1 : t > 0}, whose Lp-norm is uniformly bounded, that is, it satisfies

∂2u

∂t2
= −∆u, t > 0, x ∈ Rn,

sup
t>0
‖u(t, ·)‖Lp(Rn) <∞.

(23)

Conversely, Fatou [6], for p = ∞, and Hardy – Littlewood [8], for 1 ≤ p < ∞, have
shown that if u(t, x) satisfies (23), then it has the boundary value

u(0, x) = φ(x), x ∈ Rn,

and u(t, x) = P (t)φ(x).
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The calculation (22) shows that the Poisson semigroup P (t)φ(x) on Lp(Rn) for 1 ≤
p ≤ ∞, is related to the Gauss semigroup

G(t)φ(x) =
1

(4πt)
n
2

∫
Rn
e−
|x−y|2

4t φ(y) dy,

by

P (t)φ(x) =
∫ ∞

0

t√
4πs3

e−
t2
4sG(s)φ(x) ds.

Let, more generally, G(t) = exp(−tA) be any bounded strongly continuous semigroup
on a Banach space X with the generator −A. Then, the integral defines another bounded
strongly continuous semigroup P (t). Balakrishnan [1] defined the square root

√
A of

the operator A as the negative of the generator of the semigroup P (t), so that P (t) =
exp(−t

√
A).

Later Balakrishnan [2] and Komatsu [13] have developed the theory of fractional
powers Aα,Reα > 0, for non-negative operators A, that is, closed linear operators in a
Banach space X such that the negative real line (−∞, 0) is included in the resolvent set
of A and, moreover, the resolvent (λ+A)−1 has the uniform estimate

M0 = sup
0<λ<∞

‖λ(λ+A)−1‖ <∞.

The negative −A of a non-negative operator A with dense domain in a Banach space
X does not necessarily generate a continuous semigroup but −

√
A does a bounded holo-

morphic semigroup exp(−t
√
A), so that for any φ ∈ X, u(t) = exp(−t

√
A)φ is a solution

of 
d2

dt2
u(t) = Au(t), t ∈ (0,∞),

sup
t>0
‖u(t, ·)‖X <∞,

(24)

with the initial value u(0) = φ.

Conversely, if X is reflexive or if it is the dual X ′∗ of a Banach space X∗ and if A is
the dual of a non-negative operator A∗ in X∗ with dense domain, then we can find for
any solution of (24) a unique φ ∈ X such that u(t) = exp(−t

√
A)φ ([2] Theorem 6.1,

[21]).
If we apply this theorem to the differential operator A = CR∂/∂t, we obtain the

uniqueness of solutions to Thomson’s problem (5) under the additional condition

sup
x>0
‖v(·, x)‖Lp <∞,

for a 1 ≤ p ≤ ∞.
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