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Abstract. Over the past few years there has been considerable progress in the structural

understanding of special Colombeau algebras. We present some of the main trends in this de-

velopment: non-smooth differential geometry, locally convex theory of modules over the ring of

generalized numbers, and algebraic aspects of Colombeau theory. Some open problems are given

and directions of further research are outlined.

1. Introduction. Colombeau algebras of generalized functions [4, 5, 23] are differential
algebras that contain the vector space of Schwartz distributions as a linear subspace,
and the space of smooth functions as a faithful subalgebra. Initially discovered in the
context of infinite-dimensional calculus in locally convex spaces, such algebras have turned
out to be a powerful tool in the study of singular problems that involve differentiation
combined with non-linear operations. In particular, Colombeau algebras quickly found
(and continue to find) applications in the field of non-linear partial differential equations
(e.g., [23, 3, 22]), where the application of classical distributional methods is limited by
the impossibility to consistently define an intrinsic product of distributions [27].

From the mid 1990’s, it also became apparent that Colombeau algebras could be a
significant tool with which to study singular problems in various geometrical settings.
In particular, early work centered on applications to problems in General Relativity (see
[28] for a recent survey), and Lie group analysis of partial differential equations (e.g.,
[16, 14]).
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At the same time, structural properties of Colombeau algebras came to the fore in the
work of several research groups. In particular, a thorough study of algebraic properties was
carried out (e.g., [1, 29]) and topological and functional analytic structures on Colombeau
spaces were developed and refined to a high degree (e.g., [25, 26, 9, 10]).

The aim of this contribution is to provide an overview of some of these developments
that show significant potential both for the intrinsic understanding of algebras of general-
ized functions and for applications in geometry, differential equations, and mathematical
physics.

2. Non-smooth differential geometry. Throughout this paper we will employ the
so-called special (or simplified) version of Colombeau’s algebras. To fix notations we
briefly recall the definition of the Colombeau algebra G(M) on a manifold M (see, e.g.,
[14]). Let P(M) denote the space of linear differential operators on M . G(M) is defined
as the quotient space Em(M)/N (M), where the spaces of moderate resp. negligible nets
are defined by

Em(M) = {(uε)ε ∈ C∞(M)(0,1] : ∀K ⊂⊂M ∀P ∈ P(M) ∃l sup
x∈K
|Puε(x)| = O(ε−l)},

N (M) = {(uε)ε ∈ Em(M) : ∀K ⊂⊂M ∀m sup
x∈K
|uε(x)| = O(εm)}.

Here and in what follows we will assume that all representatives of generalized functions
in fact depend smoothly on the regularization parameter ε. A similar definition can be
given for the space ΓG(M,E) of generalized sections of a vector bundle E →M , and we
have the fundamental C∞(M)-module isomorphism

ΓG(M,E) ∼= G(M)⊗C∞(M) Γ(M,E),

i.e., generalized sections may be viewed globally as sections with generalized coefficient
functions. Based on regularization operations via convolution in charts (cf. the de Rham
regularizations in [8]) it can be shown that there exist injective sheaf morphisms

ι : Γ( , E) ↪→ D′( , E) ↪→ ΓG( , E).

An important feature distinguishing Colombeau generalized functions from Schwartz dis-
tributions is the availability of a point value characterization: we call a net (xε)ε of points
in M compactly supported if xε remains in some compact set for ε small. Two compactly
supported nets (xε)ε, (yε)ε are called equivalent, (xε)ε ∼ (yε)ε, if dh(xε, yε) = O(εm) ∀m,
where dh is the distance function induced by any Riemannian metric h on M . The quo-
tient space M̃c := M (0,1] is called the space of compactly supported generalized points.
Then we have (cf. [14], Th. 3.2.8):

Theorem 2.1. Let u ∈ G(M). Then u = 0 if and only if u(x̃) = 0 for all x̃ ∈ M̃c.

As a first pointer at algebraic properties of G, let us have a look at the question of
(multiplicative) invertibility in both G(M) and the ring of constants in G(M) (or space
of generalized numbers), K̃ (for K = R resp. K = C).

Lemma 2.2. Let u ∈ G(M). The following are equivalent:

(i) u is invertible.
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(ii) u(x̃) is invertible in K̃ for all x̃ ∈ M̃c.
(iii) u is strictly nonzero, i.e., ∀K ⊂⊂M ∃q s.t. infp∈K |uε(p)| > εq for ε small.

Similarly, for generalized numbers we have:

Lemma 2.3. Let r ∈ K̃. The following are equivalent:

(i) r is invertible.
(ii) r is not a zero divisor.
(iii) r is strictly nonzero.
(iv) For every representative (rε)ε of r there exists some ε0 > 0 such that rε 6= 0 for all

ε < ε0.

While the other conditions in Lemmas 2.2 and 2.3 are well-known (cf. [14]), (iv) from
Lemma 2.3 is a rather recent and very convenient observation from [21].

For applications in general relativity, a notion of generalized (pseudo-)Riemannian
metric is of central importance. Denoting ΓG(M,T rsM) by Grs (M) we have the following
characterization ([17, 21]):

Theorem 2.4. Let g ∈ G0
2(M). The following are equivalent:

(i) g : G1
0(M)× G1

0(M)→ G(M) is symmetric and det(g) is invertible in G(M).
(ii) For each chart (ψ, V ), ∀x̃ ∈ (ψ(V ))∼c : ψ∗g(x̃): K̃n × K̃n → K̃ is symmetric and

nondegenerate.
(iii) det(g) is invertible in G(M) and ∀V ⊂⊂M there exists a representative (gε)ε, such

that each gε|V is a smooth pseudo-Riemannian metric.

Moreover, if g satisfies these equivalent conditions then g has index j if and only if for
each chart ψ and each x̃, ψ∗g(x̃) is a symmetric bilinear form on R̃n with index j.

As in the smooth setting, the following fundamental lemma shows that each general-
ized pseudo-Riemannian metric induces a unique Levi-Civita connection ([17]):

Theorem 2.5. For any generalized pseudo-Riemannian metric g on M there exists a
unique connection ∇̂ : G1

0(M)× G1
0(M)→ G1

0(M) such that:

(∇1) ∇̂XY is R̃-linear in Y .
(∇2) ∇̂XY is G(M)-linear in X.
(∇3) ∇̂X(uY ) = u ∇̂XY +X(u)Y for all u ∈ G(M).
(∇4) [X,Y ] = ∇̂XY − ∇̂YX
(∇5) X〈Y,Z〉 = 〈∇̂XY,Z〉+ 〈Y, ∇̂XZ〉

With these tools at hand, one can proceed to analyzing curvature quantities and
geodesics for singular metrics. We refer to [28] for a recent overview of applications in
general relativity. More generally, generalized connections in principal fiber bundles have
been studied in [19]. Notions like curvature, holonomy and characteristic classes can then
be modelled in a non-smooth setting. First applications to singular Yang-Mills equations
can also be found in [19].

A further aspect of Colombeau algebras that allows one to go beyond the distributional
setting is the notion of generalized functions taking values in differentiable manifolds
([15, 18]). The basic idea is to consider, for given manifolds M , N , a quotient construction
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on subspaces of E [M,N ] := C∞(M,N)(0,1]. The corresponding growth conditions can
either be modelled by asymptotic estimates in charts ([15]) or, more elegantly, using
‘referee functions’ for testing for moderateness resp. negligibility, as follows: we say that
a net (uε)ε ∈ E [M,N ] (depending smoothly on ε) is c-bounded if for each K ⊂⊂M there
exists some K ′ ⊂⊂ N and some ε0 such that uε(K) ⊆ K ′ for all ε < ε0. A c-bounded net
(uε)ε is called moderate if (f ◦ uε)ε ∈ Em(M) ∀ f ∈ C∞(N). The space of moderate nets
is denoted by Em[M,N ]. Two elements (uε)ε, (vε)ε of Em[M,N ] are called equivalent,
(uε)ε ∼ (vε)ε, if (f ◦ uε − f ◦ vε)ε ∈ N (M) ∀ f ∈ C∞(N). The space of Colombeau
generalized functions on M taking values in N is then given by G[M,N ] := Em[M,N ]/ ∼.

Manifold-valued generalized functions are a necessary prerequisite for addressing prob-
lems like determining geodesics of singular metrics or flows of generalized vector fields.
Based on G[M,N ], a functorial theory of manifold-valued generalized functions and gen-
eralized vector bundle homomorphism has been developed in [15, 18].

On the structural level, a basic question is whether G[ , N ] forms a sheaf. Due to the
lack of algebraic structure on the target space N , the usual tools like partitions of unity
are not directly available to answer this question. Nevertheless, we have:

Theorem 2.6. G[ , N ] is a sheaf of sets.

Sketch of proof. The nontrivial part is to show that any coherent family of locally defined
generalized maps is given as a family of restrictions of one globally defined generalized
map. The strategy is to use a Whitney embedding of N into some Rn and then apply a
gluing procedure in Rn based on partitions of unity. In order to obtain a global repre-
sentative taking values in N , the retraction map of a tubular neighborhood of N in Rn
is employed. For details, see [20].

By a similar method, we obtain the following result on the inclusion of continuous
maps in G[M,N ] (σ denotes the identical embedding f 7→ (f)ε of C∞(M,N) in G[M,N ]),
cf. [20]:

Theorem 2.7. There exists an embedding ι : C(M,N) ↪→ G[M,N ] with the following
properties:

(i) ι is a sheaf morphism.
(ii) ι|C∞(M,N) = σ.

(iii) ι(u)ε converges to u uniformly on compact sets.

As an added benefit, the construction of G[M,N ] provides a blueprint for defining a
space of manifold-valued distributions, as follows: set A[M,N ] = {u ∈ G[M,N ] | ∀f ∈
C∞(N), ∃ limε→0 f ◦ uε ∈ D′} and let u ≈M v if for all f ∈ C∞(N), f ◦ uε − f ◦ vε → 0
in D′. Then set D′(M,N) := A[M,N ]/ ≈M. For M , N Euclidean spaces, D′(M,N)
singles out a subspace of bounded distributions. Further properties (e.g., the relationship
to Young measures) are analyzed in [20].

3. Some algebraic aspects of Colombeau algebras on manifolds. Based on the
construction in the previous sections, here we will give a few examples indicating the in-
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creasingly important role that an understanding of the algebraic structure of Colombeau-
type spaces plays in a geometrical context.

To begin with, let us consider the structure of the space of algebra isomorphisms
from G(M) to G(N). In the smooth setting, it has been known for a long time that
for any algebra isomorphism φ : C∞(M) → C∞(N) there is a unique diffeomorphism
f : N → M of the underlying manifolds such that φ is given as the pullback map under
f : φ = u 7→ u ◦ f . The analogous problem for isomorphisms of Colombeau algebras has
only recently been solved by H. Vernaeve in [30]. The result is based on the solution of
‘Milnor’s exercise’ in the Colombeau setting, i.e. the characterization of multiplicative
linear functionals on G:

Theorem 3.1. Every multiplicative linear functional on G(M) is of the form

eδx̃ : u 7→ eu(x̃)

for x̃ a generalized point and e ∈ K̃ idempotent.

Using this result, we obtain

Theorem 3.2. Let φ : G(M)→ G(N) be an algebra-isomorphism (with φ(1) = 1). Then
φ = f∗ for some f ∈ G[N,M ] such that f−1 ∈ G[M,N ]. Also, φ−1 = f∗.

Next, let us investigate generalized de Rham cohomology. We denote by ΩpG(M) =
ΓG(M, Λp(M)) the space of generalized p-forms on M . Also, as in the smooth setting we
introduce the cohomology spaces by

ZpG(M) := {ω ∈ ΩpG(M) | dω = 0},
BpG(M) := {ω ∈ ΩpG(M) | ∃τ ∈ Ωp−1

G : ω = dτ},
Hp
G(M) := ZpG(M)/Hp

G(M).

The relationship between generalized and smooth de Rham cohomology is as follows:

Theorem 3.3. For any p ≥ 0 we have the following isomorphism of real vector spaces:

Hp
G(M) ∼= R̃⊗R H

p(M)

Sketch of proof. Both

0 −→ ker(d) d−→ Ω0
G(M) d−→ Ω1

G(M) d−→ . . .

and
0 −→ ker(d) id⊗d−→ R̃⊗R C

∞(M,R) id⊗d−→ R̃⊗R Ω1(M) id⊗d−→ . . .

are fine resolutions of the sheaf of locally constant Colombeau generalized functions. The
result therefore follows from the abstract de Rham theorem. For details, see [19].

This means that the structural difference between generalized and smooth de Rham
cohomology is encoded precisely in the algebraic structure of the ring of generalized
numbers.

Finally, let us return to the algebraic foundations of pseudo-Riemannian geometry in
the Colombeau setting. As can be seen from Th. 2.4, the study of bilinear forms on R̃n
is of central importance here. We have ([21]):

Theorem 3.4. Let v ∈ R̃n. The following are equivalent:
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(i) For any positive definite bilinear form h, h(v, v) > 0.
(ii) v is free (i.e., for any λ ∈ R̃, λv = 0⇒ v = 0).

(iii) v can be extended to a basis of R̃n.
(iv) For each representative (vε)ε there exists some ε0 such that for all ε < ε0, vε 6= 0.

Based on this result, causality notions (time-like, space-like, and null vectors) can be
introduced and analyzed in the generalized setting. Applications include energy methods
for solving wave equations on singular space-times (cf. [13]).

4. Algebraic properties of K̃. In this section we give a brief overview of known results
on the algebraic structure of the ring of generalized numbers. For details and proofs we
refer to the original sources [1, 2, 29]. In what follows, topological properties always refer
to the sharp topology on K̃ (cf. the following section).

• K̃ is a reduced ring, i.e., there are no nontrivial nilpotent elements.
• Elements of K̃ are either invertible or zero-divisors (cf. Lemma 2.3).
• e ∈ K̃ is idempotent (e2 = 1) iff e = eS , the characteristic function of some
S ⊆ (0, 1].

• K̃ possesses uncountably many maximal ideals.
• K̃ is a complete topological ring.
• The closure of any prime ideal is maximal. Conversely, every maximal ideal is closed.
• Let I be an ideal in K̃. Then the closure of I is the intersection of all maximal ideals

containing I.
• K̃ is not:

– Artinian

– Noetherian

– von Neumann regular

• Every ideal I in K̃ is convex (x ∈ I, |y| ≤ |x| ⇒ y ∈ I).
• An ideal I is prime iff it is pseudoprime and radical, i.e.:

– ∀S ⊂ (0, 1]: eS ∈ I or eSc ∈ I, and

– ∀x ∈ I:
√
|x| ∈ I.

We note that many of the corresponding properties for G instead of K̃ are the subject of
ongoing research. We conclude this section with the following interesting connection to
the nonstandard space of asymptotic numbers (cf. [24]), established in [29], Th. 7.2:

Theorem 4.1. Let I be a maximal ideal in K̃. Let U := {S ⊆ (0, 1] | eSc ∈ I}. Let ∗K be
the nonstandard field constructed by the ultrafilter U and let ρ be the infinitesimal with
representative (ε)ε. Then ρK is canonically isomorphic to K̃/I.

5. Topology and functional analysis. Topologies on spaces of Colombeau generalized
functions and generalized numbers were originally introduced by D. Scarpalézos by the
name of sharp topologies in 1993 (and published only later in [25, 26]). After the field
lay dormant for some years (in which the main focus of research was on applications in
PDEs) there occurred a veritable surge of activities lately. In particular, the fundamental
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work by C. Garetto [9, 10] has led to the development of a full-scale locally convex theory
for algebras of generalized functions. In this section we outline some of the main features
of this theory.

For any given locally convex vector space E whose topology is induced by the family
of seminorms (pi)i∈I , we set

ME := {(uε)ε ∈ E(0,1] | ∀i∃N : pi(uε) = O(ε−N )},
NE := {(uε)ε ∈ E(0,1] | ∀i∀q : pi(uε) = O(εq)},
GE :=ME/NE .

Then GE is a C̃-module. The special Colombeau algebra G(Ω) is obtained as the special
case E = C∞(Ω) of this construction (cf. [9, 7]).

On GE we introduce valuations given by

vpi
(u) := sup{b ∈ R | pi(uε) = O(εb)}

(here (uε)ε is any representative of u ∈ GE). The valuations, in turn, induce ultra-pseudo-
seminorms (ups) via

Pi := e−vpi .

This family of ups defines the sharp topology on GE . As an important special case we
may take E = C, in which case GE = C̃. Here we only have one seminorm, p(x) = |x|,
which induces a valuation v and a corresponding ups denoted by | |e.

More generally we may introduce suitable notions for directly generalizing locally
convex topologies to the C̃-module setting. Recall that for V a vector space and X ⊆ V , X
is called absorbent in V if ∀u ∈ V ∃λ0 ∀λ ≥ λ0: u ∈ λX. Let now G be a C̃-module and let
A ⊆ G. If we let λ0 correspond to the infinitesimal [(εa)ε], then λ0

∼= [(εa)ε] ≤ [(εb)ε] ∼= λ

iff b ≤ a, so we are led to defining: A is called C̃-absorbent if ∀u ∈ G ∃a ∈ R ∀b ≤ a:
u ∈ [(εb)ε]A. Similarly, we call A C̃-balanced if ∀λ ∈ C̃ with |λ|e ≤ 1: λA ⊆ A.

To introduce a suitable notion of convexity, recall that a subset X of a vector space
V is a convex cone in V if X +X ⊆ X and ∀λ ∈ (0, 1]: λX ⊆ X. Thus we call a subset
A of a C̃-module G C̃-convex if A+A ⊆ A and ∀b ≥ 0: [(εb)ε]A ⊆ A. Finally, we define a
locally convex topological C̃-module to be a topological C̃-module (which means that +
and λ· are continuous) with a base of C̃-convex neighborhoods of 0.

This provides the starting point for a by now highly developed theory of locally convex
C̃-modules which to a large extent parallels the theory of locally convex vector spaces.
Some of the main features of the theory are:

• The ups take over the role of seminorms.
• Completeness, metrizability, projective and inductive limits have been studied.
• There is a theory of barrelled and bornological C̃-modules.
• Examples: Gc(Ω) (corresponding to D(Ω)) is a strict inductive limit. G(Ω) (corre-

sponding to C∞(Ω)) is a Fréchet C̃-module. The standard spaces Gτ (Ω), GS(Ω),
G∞(Ω), etc. can all be treated within the theory.
• Duality theory, study of

L(G, C̃) := {T : G → C̃ | T C̃-linear and continuous}
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An example is the generalized delta distribution (point evaluation at x̃ ∈ Ω̃): δx̃ =
u 7→ u(x̃) ∈ L(Gc(Ω), C̃).
• Based on this, kernels of pseudodifferential operators can be constructed as elements

of L(Gc(Ω× Ω), C̃) (cf. also [6]).
• Microlocal analysis in the dual of Colombeau algebras, see [11].
• A Hahn-Banach theorem is not attainable in general due to algebraic obstructions

([29]).
• Several open mapping and closed graph theorems and applications to G∞-hypo-

ellipticity are given in [12].

5. Conclusions and outlook. As can be seen from the above summary of results,
Colombeau theory is currently undergoing a profound and far-reaching conceptual re-
structuring. Several branches of research that so far had been rather disconnected have
seen fruitful and promising interactions. As a first example we have seen the strong links
between global analysis and algebraic properties in Section 3. These will give rise to
a new algebraic approach to non-smooth differential geometry. Moreover, the algebraic
causality structures also mentioned in Section 3 are currently being pursued as a tool
for generalizing the Hawking and Penrose singularity theorems of general relativity to
space-times of low differentiability.

Interactions between algebra and PDE theory include topics like a refined study of
hypoellipticity properties (which will require at least the rudiments of real algebraic ge-
ometry in the generalized setting). Moreover, as was indicated in Section 5, there are by
now strong ties between functional analytic methods and the theory of pseudodifferen-
tial and Fourier integral operators. Similarly, there are close connections between such
methods and variational problems of low regularity.

There already are examples of abstract (functional analytic) existence results for
concrete analytical problems in PDE theory in the Colombeau framework, a direction
of research which without doubt will gain importance in the near future. The hope here
is to provide a toolkit (similar to the one available in classical analysis) of topological
and algebraical methods for solving problems of non-smooth analysis and geometry.
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theory of the topological ring of Colombeau generalized functions, Proc. Edinb. Math. Soc.

51 (2008), 545–564.

[3] H. A. Biagioni, A Nonlinear Theory of Generalized Functions, Lecture Notes in Mathe-

matics 1421, Springer, Berlin, 1990.

[4] J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North

Holland, Amsterdam, 1984.

http://dx.doi.org/10.1081/AGB-100002179
http://dx.doi.org/10.1017/S0013091505001616


RECENT PROGRESS IN SPECIAL COLOMBEAU ALGEBRAS 183

[5] J. F. Colombeau, Elementary Introduction to New Generalized Functions, North Holland,

Amsterdam, 1985.

[6] A. Delcroix, Kernel theorems in spaces of tempered generalized functions, Math. Proc.

Cambridge Philos. Soc. 142 (2007), 557–572.
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