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Abstract. Let µ ∈ A(Rd)′ be an analytic functional and let Tµ be the corresponding convolution

operator on Sato’s space B(Rd) of hyperfunctions. We show that Tµ is surjective iff Tµ admits

an elementary solution in B(Rd) iff the Fourier transform bµ satisfies Kawai’s slowly decreasing

condition (S). We also show that there are 0 6= µ ∈ A(Rd)′ such that Tµ is not surjective

on B(Rd).

1. Introduction. Surjectivity of convolution operators has been characterized in many
classical spaces of (generalized) functions including spaces of real analytic and holomor-
phic functions, spaces of (ultra)differentiable functions and spaces of (ultra)distributions
and Fourier hyperfunctions, respectively. A selection of corresponding papers is contained
in the references and it is intended only as a first hint towards the corresponding literature
(see [1–7,9, 11–16,18,20]).

For convolution operators on Sato’s space B(Rd) of hyperfunctions however, a char-
acterization of surjectivity seems to be missing. One reason for this might be that B(Rd)
does not admit a suitable topology and hence topological methods are not directly ap-
plicable.

A sufficient condition for the surjectivity of Tµ on B(Rd) is Kawai’s slowly decreasing
condition (S) (see [11] and (1) below). Using Kawai’s condition, Okada [18] proved that
Tµ is surjective on B(Rd) for any ultradistribution µ 6= 0 with compact support. Moreover,
(S) can also be used to show that Tµ is surjective on B(Rd) for any 0 6= µ ∈ A({0})′
(see [18]), while the present paper shows that there are 0 6= µ ∈ A(Rd)′ such that Tµ
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is not surjective on B(Rd). In fact, we will show that (S) is also a necessary condition
for surjectivity and we will clarify the connection of surjectivity and the existence of
elementary solutions for Tµ. More precisely we will prove the following

Main Theorem. For µ ∈ A(Rd)′ the following are equivalent:

a) Tµ : B(Rd)→ B(Rd) is surjective.
b) Tµ admits an elementary solution E ∈ B(Rd).
c) µ̂ satisfies the following condition (S): For any δ > 0 there is C > 0 such that for

any t ∈ Rd with |t| ≥ C there is ζ ∈ Cd such that

|ζ − t| ≤ δ|t| and |µ̂(ζ)| ≥ e−δ|ζ|. (1)

Recall that E ∈ B(Rd) is an elementary solution for Tµ if Tµ(E) = δ, where δ denotes
Dirac’s δ-distribution.

Notice that we do not need a condition on the location of zeroes of µ̂ for the charac-
terization in our Main Theorem. This is different from the characterization of surjective
convolution operators on Fourier hyperfunctions and on modified Fourier hyperfunctions
(see [13] and [20]).

The implication ”c) ⇒ a)” was proved in [11] using convolution operators on holo-
morphic functions defined on tube domains. We will give a different proof here which
is based on the space R(Dd) of modified Fourier hyperfunctions (see 2.1 and 3.3). This
space is also the main tool when proving that b) implies c) (see 3.1).

Using Baire’s category theorem we then show that there are 0 6= µ ∈ A(Rd)′ such
that Tµ is not surjective on B(Rd) (see 3.4).

2. Preliminaries. We will recall some basic notions and results concerning hyperfunc-
tions and modified Fourier hyperfunctions in this section (see [11], [10] and [19] for a
systematic study) and then show how topological methods can be used to characterize
surjectivity of convolution operators on B(Rd) (see 2.1).

Hyperfunctions may be defined as boundary values of holomorphic functions as fol-
lows: let Cd] := {z ∈ Cd | =(zl) 6= 0 for any l} and Cd],j := {z ∈ Cd | =(zl) 6= 0 for any
l 6= j}. Then the space of hyperfunctions is given by

B(Rd) := H(Cd] )/
(∑
j≤d

H(Cd],j)
)
. (2)

We always assume in this paper that µ ∈ A(Rd)′ is fixed. µ̂ then is an entire function
and there is K such that for any ε > 0 there is Cε such that

|µ̂(z)| ≤ Cεeε|z|+K|=(z)|. (3)

For u ∈ H(Cd] ) let

µ ∗ u(z) := 〈ξµ, u(z − ξ)〉 if z ∈ Cd] . (4)

The convolution operator Tµ on B(Rd) is then defined by

Tµ([u]) := [µ ∗ u] if [u] ∈ B(Rd). (5)
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In the following, we will usually write u ∈ B(Rd) and we will thus not distinguish in
notation between the defining function and its equivalence class in B(Rd).

Similarly, the space R(Dd) of modified Fourier hyperfunctions on the radial compact-
ification Dd of Rd may be defined as a space of boundary values using in (2) spaces of
exponentially increasing functions defined as follows (see [19, p. 257 ff]): let Yd be the
radial compactification of Cd = R2d. For W open in Yd let

Oinc(W ) := {f ∈ H(Cd ∩W ) | sup
Z
|f(z)|e−|z|/j <∞ for any Z b W and any j}

where Z b W means that Z is relatively compact in W (and open). Let U := {z ∈ Cd |
|=(z)| < (1 + |<(z)|2)1/2/2}, V := (U)◦ ⊂ Yd, V] := {z ∈ V | =(zl) 6= 0 for any l} and
V],j := {z ∈ V | =(zl) 6= 0 for any l 6= j}. The modified Fourier hyperfunctions on Rd are
defined by

R(Dd) := Oinc(V])/
(∑
j≤d

Oinc(V],j)
)
. (6)

Alternatively, R(Dd) may be defined by duality (see [19, Thm. 4.25]), namely as the dual
space P̃∗(Dd)′ of P̃∗(Dd) := lim indj→∞ P̃∗,j , where

P̃∗,j := {f ∈ H(Wj) | ‖f‖j := sup
z∈Wj

|f(z)| exp(|z|/j) <∞}

for Wj := {z ∈ Cd | |=(z)| < (1 + |<(z)|2)1/2/j}. The duality of R(Dd) and P̃∗(Dd) is
defined for u ∈ R(Dd) and f ∈ P̃∗(Dd) by

(u, f) =
∑

σ∈{1,−1}d
sign(σ)

∫
γj,σ

u(z)f(z)dz (7)

where γj,σ is the path defined by x + ieσ(1 + |x|2)1/2/j for a unit vector eσ in the
corresponding orthant and large j. By (6) and (2), the restriction

|Rd : R(Dd)→ B(Rd) is well defined and R(Dd)|Rd = B(Rd) (8)

(see [19, sect. 1.2 i)]). By [19, 3.2.3] we have

ker( |Rd) = R(Dd \ Rd) = P̃∗(Dd \ Rd)′ (9)

where P̃∗(Dd \ Rd) := lim indj→∞ P̃∗,∞,j for

P̃∗,∞,j := {f ∈ H(W∞,j) | ‖f‖∞,j := sup
z∈W∞,j

|f(z)| exp(|z|/j) <∞}

where W∞,j := {z ∈Wj | |z| > j}.
We may define Tµ(u) for u ∈ R(Dd) by using (4) and (5). Then Tµ(u) ∈ R(Dd) and

we have

Tµ(u)|Rd = Tµ(u|Rd) if u ∈ R(Dd). (10)
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For f ∈ P̃∗(Dd) and large j we get by (7)

(Tµ(u), f) =
∑

σ∈{1,−1}d
sign(σ)

〈
ξµ,

∫
γj,σ

u(z − ξ)f(z)dz
〉

=
∑

σ∈{1,−1}d
sign(σ)

〈
ξµ,

∫
eγj,σ u(z)f(z + ξ)dz

〉

=
∑

σ∈{1,−1}d
sign(σ)

〈
ξµ,

∫
γj,σ

u(z)f(z + ξ)dz
〉

= (u, µ̌ ∗ f) if u ∈ R(Dd)

(11)

where γ̃j,σ is defined by x+ ieσ(1 + |x|2)1/2/j − ξ and j is large.
We finally notice that the Fourier transform

f̂(z) :=
∫
f(x)e−i〈x,z〉dx, f ∈ P̃∗(Dd),

defines a topological isomorphism in P̃∗(Dd) (and hence in R(Dd) by duality, see [19]).
Moreover,

̂̌µ ∗ f = ̂̌µf̂ if f ∈ P̃∗(Dd). (12)

Lemma 2.1. Let µ ∈ A(Rd)′. Then the following are equivalent:

a) Tµ is surjective on B(Rd).
b) The mapping

S : R(Dd)× P̃∗(Dd \ Rd)′ → R(Dd), S(ν, η) := Tµ(ν)− η,
is surjective.

c) B is bounded in P̃∗(Dd) if B is bounded in P̃∗(Dd\Rd) and µ̂B̂ is bounded in P̃∗(Dd).

Proof. ”a) ⇒ b)” For κ ∈ R(Dd) there is ν ∈ B(Rd) by a) such that Tµ(ν) = κ|Rd . By
(8) there is ν ∈ R(Dd) such that ν|Rd = ν. Then

Tµ(ν)|Rd = Tµ(ν|Rd) = Tµ(ν) = κ|Rd
by (10) and hence S(ν, h) = κ for Tµ(ν)− κ =: h ∈ P̃∗(Dd \ Rd)′ by (9).

”b)⇒ a)” For u ∈ B(Rd) there is u ∈ R(Dd) such that u|Rd = u by (8). By assumption
we can find (ν, h) ∈ R(Dd)× P̃∗(Dd \ Rd)′ such that S(ν, h) = u and hence

u = u|Rd = Tµ(ν)|Rd − h|Rd = Tµ(ν|Rd)

by (9) and (10). This shows a).
”b) ⇔ c)” Since R(Dd) = P̃∗(Dd)′b and R(Dd \ Rd) = P̃∗(Dd \ Rd)′b are (FS)-spaces,

S is surjective if and only if tS : P̃∗(Dd)→ P̃∗(Dd)× P̃∗(Dd \Rd) is injective with closed
range if and only if B is bounded in P̃∗(Dd) if tS(B) is bounded in P̃∗(Dd)× P̃∗(Dd \Rd)
(see [17, section 26]). Since tS(f) = (µ̌ ∗ f,−f) for f ∈ P̃∗(Dd) by (11) and since the
Fourier transformation is a topological isomorphism this proves the claim by (12).

3. The main results. In this section we always denote µ ∈ A(Rd)′. We will prove the
Main Theorem by means of two lemmata starting with the implication ”b)⇒ c)”:

Lemma 3.1. µ̂ satisfies (S) if Tµ admits an elementary solution E ∈ B(Rd).
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Proof. Let E ∈ R(Dd) be an extension of E existing by (8). Then we have by (10)

Tµ(E)|Rd = Tµ(E) = δ

and hence there is H ∈ P̃∗(Dd \ Rd)′ by (9) such that

δ = Tµ(E) +H. (13)

If (S) is not true there is 0 < δ ≤ 1 such that for any l ∈ N there is tl ∈ Rd with |tl| ≥ l

such that

|µ̂(−ζ)| ≤ e−δ|ζ| if |ζ − tl| ≤ δ|tl|. (14)

For η, ζ ∈ Cd let 〈η, ζ〉 :=
∑
ηkζk and set

gl(z) := (2π/(δ|tl|))d/2e−〈z−tl,z−tl〉/(2δ|tl|), l ∈ N,

and notice that gl ∈ P̃∗(Dd) and

gl = f̂l for fl(z) := ei〈z,tl〉−〈z,z〉δ|tl|/2 ∈ P̃∗(Dd).

Since E ∈ R(Dd) = P̃∗(Dd)′ and H ∈ P̃∗(Dd \ Rd)′, for any j ∈ N there is C1 such that
by (13), (11) and the Fourier inversion formula

1 = fl(0) = |〈Tµ(E) +H, fl〉| = |(2π)−d〈 ̂̌E, ̂̌µgl〉+ 〈H, fl〉|

≤ C1(‖̂̌µgl‖j + ‖fl‖∞,j) for any l ∈ N. (15)

We will show however that both terms of the right hand side of (15) tend to 0 as l→∞
if j is large:

I) If |z − tl| ≤ δ|tl|/2 then

|=(z)| ≤ |z − tl| ≤ δ|tl|/2 and 2|tl| ≥ |z| ≥ (1− δ/2)|tl| ≥ |tl|/2

since δ ≤ 1. We thus get for large l by (14)

|µ̂(−z)gl(z)|e|z|/j ≤ C2e
(−δ+1/j)|z|+=(z)2/(2|tl|δ)

≤ C2e
−δ|z|/2+δ|tl|/8 ≤ C2e

−δ|tl|/8

if j ≥ 2/δ.
II) Let z ∈ Wj and |<(z)| ≥ 1 (and hence |=(z)| ≤ 2|<(z)|/j). If |z − tl| ≥ δ|tl|/2 we

get by (3) (for ε := 1/j)

|µ̂(−z)gl(z)|e|z|/j ≤ C3e
K|=(z)|+2|z|/j+|=(z)|2/(|tl|δ)−|z−tl|2/(2δ|tl|) (16)

≤ C3e
2(K+1)|z|/j+4|z|2/(j2|tl|δ)−|z−tl|2/(2δ|tl|)

≤ C3e
(2K+2+8/(jδ))|tl|/j+2(K+1)|z−tl|/j+(8j−2−1/2)|z−tl|2/(|tl|δ)

≤ C3e
(2K+2+8/(jδ))|tl|/j+2(K+1)|z−tl|/j−|z−tl|2/(4|tl|δ)

≤ C3e
[(2+δ)(K+1)/j+8/(j2δ)−δ/16]|tl| ≤ C3e

−δ|tl|/32

if j is large. If z ∈ Wj and |<(z)| ≤ 1 then |z| ≤ 2 and the right hand side of (16) tends
to 0 as l→∞. We have thus shown that ‖̂̌µgl‖j → 0 as l→∞ if j is large.
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III) Let z ∈W∞,j (and hence j ≤ 2|<(z)| and |=(z)| ≤ 2|<(z)|/j if j is large). Then

|fl(z)| ≤ e[|=(z)|+|=(z)|2δ/2−|<(z)|2δ/2]|tl|

≤ e[2|<(z)|/j+(4/j2−1/2)δ|<(z)|2]|tl|

≤ C4e
−j2δ|tl|/8 if j is large.

This shows that ‖fl‖∞,j → 0 if j is large.

To show that (S) is sufficient for the surjectivity of Tµ we need the following variant
of Harnack’s inequality (see [7, 3.1]):

Lemma 3.2. Let F (z), G(z) and F (z)/G(z) be holomorphic when |z| < R, z ∈ Cd. For
|z| < R we then get

|F (z)/G(z)| ≤ sup
|η|<R

|F (η)|( sup
|η|<R

|G(η)|)2|z|/(R−|z|)|G(0)|−(R+|z|)/(R−|z|).

Lemma 3.3. Tµ is surjective in B(Rd) if µ̂ satisfies (S).

Proof. a) We will show the criterion of 2.1c). Let B ⊂ P̃∗(Dd) such that B is bounded in
P̃∗(Dd \Rd) and µ̂B̂ is bounded in P̃∗(Dd). Since P̃∗(Dd) is a compact injective inductive
spectrum (and hence regular), there is j1 such that any germ g = µ̂f̂ ∈ µ̂B̂ has a
holomorphic extension g1 ∈ H(Wj1) contained in a bounded set in P̃∗,j1 . Since B is
bounded in P̃∗(Dd \Rd) (which is also a regular inductive spectrum) there is j2 such that
B|Wj2

⊂ P̃∗,∞,j2 and therefore there is j3 such that f̂ has an extension f1 ∈ H(Wj3) for
any f ∈ B (see the proof of [19, 4.1.2]). We may assume that j1 = j3. By the identity
theorem this implies that any germ g = µ̂f̂ ∈ µ̂B̂ has a holomorphic extension g1 = µ̂f1
contained in a bounded set in P̃∗,j1 where f1 ∈ H(Wj1). Condition (S) and Lemma 3.2
now easily imply that B̂ (and hence B) is bounded in P̃∗(Dd). The argument is included
for the convenience of the reader:

Fix t ∈ Rd with large |t| and choose ζ for δ = 1/(8j2) by (S) where j2 ≥ j1 is to
be determined later. Then F := f1(ζ + · )µ̂(ζ + · ) and G := µ̂(ζ + · ) satisfy the
assumptions of 3.2 for R := |t|/(4j2). If |ξ − t| ≤ |t|/(16j2) then z0 := ξ − ζ satisfies

|z0| ≤ 3|t|/(16j2) and
R+ |z0|
R− |z0|

≤ 7 and
2|z0|

R− |z0|
≤ 6

and by 3.2 and (3) we thus get C1 and C2 (independent of j2) such that

|f1(ξ)| = |f1(ζ + z0)| ≤ C1e
−|ξ|/(4j1)+C2|ξ|/j2 ≤ C1e

−|ξ|/(8j1) if j2 ≥ 8C2j1

since µ̂f1 is contained in a bounded set in P̃∗,j1 . This proves the claim.

Combining Lemma 3.1 and Lemma 3.3 we have proved the Main Theorem since it is
evident that a) implies b).

It is known that (S) is satisfied for all 0 6= µ ∈ A({0})′ and for all ultradistributions
µ 6= 0 with compact support (see [18]). For µ ∈ A(Rd)′ however this does not hold as we
will prove now:

Theorem 3.4. For any d ∈ N there is 0 6= µ ∈ A(Rd)′ such that Tµ : B(Rd)→ B(Rd) is
not surjective.
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Proof. We reason by contradiction, assuming that there is d ∈ N such that Tµ :
B(Rd)→ B(Rd) is surjective for any 0 6= µ ∈ A(Rd)′.

a) We may assume w.l.o.g. that d = 1.
Proof: Since Tµ is surjective on B(Rd) for any 0 6= µ ∈ A(Rd)′ this also holds for µ :=
ν(x1) ⊗ δ(x′) where x = (x1, x

′) ∈ R × Rd−1 and 0 6= ν ∈ A(R)′. Hence, µ̂(z) = ν̂(z1)
satisfies (S) (on Cd) by the Main Theorem and therefore ν̂(z1) satisfies (S) (on C): in
fact, we may apply (S) for t := (t1, 0) and notice that ζ then satisfies |ζ| ≤ |ζ1|/(1− δ).
Thus, Tν is surjective on B(R) for any 0 6= ν ∈ A(R)′ by the Main Theorem.

b) Let Tµ be surjective on B(R) for any 0 6= µ ∈ A(R)′. Then

any 0 6= f ∈ F(A([−1, 1])′) =: E satisfies (S) (17)

by the Main Theorem, where

E = {g ∈ H(C) | ∀δ > 0 : pδ(g) := sup
C
|g(z)|e−|=(z)|−δ|z| <∞}

by the Paley-Wiener theorem (see e.g. [8]).
Let E1 := {g ∈ E | g(0) = 1}. E1 is a complete metrizable space since E1 is a closed

subset of the Fréchet space E.
For any η > 0 there are g ∈ E1, ε > 0 and C1 > 1 such that for any f ∈ E1 with

pε(f − g) < ε we have: for any t ∈ R with |t| ≥ C1 there is ζ ∈ C such that

|ζ − t| ≤ η|t| and |f(ζ)| ≥ e−η|ζ|. (18)

Proof: For fixed η > 0 let

Sk := {f ∈ E1 | f satisfies (18) for C1 := k}.

Sk is closed in E1 (since the topology of E1 is stronger than locally uniform convergence)
and E1 =

⋃
k∈N Sk by (17) since 0 /∈ E1. Hence, there is k0 by Baire’s theorem such that

Sk0 has an interior point. This proves the claim.
c) In the following we will fix 0 < η < 1/4 such that

4πη ≤ − ln(πη) and | sin(z)| ≤ 2 if |z − π/2| ≤ ηπ/2 (19)

and choose g ∈ E1, ε > 0 and C1 > 1 by b).
We may suppose that g is a polynomial. In fact, the polynomials are dense in E (notice

that the set {δ(j) | j ∈ N0} is total in A([−1, 1])′b and that the Fourier transformation
is a topological isomorphism from A([−1, 1])′b onto E). Thus, the polynomials P with
P (0) = 1 are also dense in E1.

Let hn(z) := (cos(z/n))n. Then hn(0) = 1 and

|hn(z)| ≤ e|=(z)| for any n ∈ N (20)

and hence hn ∈ E1. Moreover,
hn → 1 in E1. (21)

Proof: Fix 1 ≥ γ > 0 and let |z| ≥ A := 1
γ ln(2/γ). Then 1 ≤ γeγ|z|/2 and

|hn(z)− 1| ≤ e|=(z)| + 1 ≤ γe|=(z)|+γ|z|
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by (20). For |z| ≤ A we get by (19) since | cos(z)| ≤ e|=(z)|

|hn(z)− 1| ≤ |z| sup
|ξ|≤A

| cos(ξ/n)|n−1| sin(ξ/n)|

≤ AeA sup
|ζ|≤A/n

| sin(ζ)| ≤ γ ≤ γe|=(z)|+γ|z| if n is large.

d) Since g is a polynomial in E1 and hn ∈ E1, also hng ∈ E1. (21) implies that for
any ε > 0 there is Bε such that

|g(z)− hn(z)g(z)| ≤ Bεeε|z|/2|hn(z)− 1| ≤ εe|=(z)|+ε|z| if n ∈ N is large. (22)

Since hng ∈ E1 we thus get by (22) and (18) for large n: for any t ∈ R with |t| ≥ C1

there is ζ ∈ C such that |ζ − t| ≤ η|t| and

e−η|ζ| ≤ |hn(ζ)g(ζ)| ≤ Bηeη|ζ||hn(ζ)|

and hence
|hn(ζ)| ≥ e−2η|ζ|/Bη. (23)

e) Let tn := πn/2 and let |ζ − tn| ≤ η|tn| = ηπn/2. Then |ζ/n − tn/n| ≤ ηπ/2 and
therefore

|hn(ζ)| = | cos(ζ/n)|n = | cos(ζ/n)− cos(tn/n)|n

≤ 2n|ζ/n− tn/n|n ≤ (ηπ)n

≤ (ηπ)n/2e−2ηπn ≤ e−2η|ζ|/(2Bη) if n is large (24)

by (19), (24) contradicts (23).
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