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Abstract. We consider the multiplicative algebra P(G’,) of continuous scalar polynomials on
the space G/ of Roumieu ultradistributions on [0,00) as well as its strong dual P’(G’). The
algebra P(G)) is densely embedded into P’(G',) and the operation of multiplication possesses a
unique extension to P’(G’,), that is, P’(G),) is also an algebra. The operation of differentiation
on these algebras is investigated. The polynomially extended Laplace transformation and its
connections with the differentiation are also studied.

1. Introduction. Recently, algebras of distributions and utradistributions with the ten-
sor operation of multiplication were effectively used in physics (see e.g. [I]). It is not
difficult to see that such algebras have to be defined on spaces of differentiable functions
of infinitely many variables. These algebras have often an equivalent structure of scalar
polynomials with pointwise multiplication, but the fact is not observed in the literature.

In the present paper, we would like to take this structure into consideration in a
special case. For many reasons it is convenient to start with the space G/, of Roumieu
ultradistributions and its predual, which belong to the known classes (F'S) and (DF'S)
(see e.g. [6]), respectively, and are nuclear; all these properties are important for our
purposes. Algebras of scalar polynomials on such spaces may be described by means
of projective symmetric tensor products. Thus, the symmetric tensor and multiplicative
structures are equivalent in a certain sense. This fact is crucial for our investigations.

We give a description of properties of the differentiation on algebras P(G', ) and P'(G’,)
by means of their tensor representations (Theorems and . A connection between
the differentiation of polynomials and the polynomially extended Laplace transformation
in the form of operator calculus is described (Theorem [6.3)).
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2. Tensor representations of nuclear polynomial algebras. For polynomials on
infinite dimensional spaces we refer to [3]. If X, Y are locally convex (shortly: LC) complex
vector spaces, then Z(X,Y) = £ (X,Y) denotes the space of all continuous linear
operators endowed with the topology b of uniform convergence on bounded sets in X.
Further, Z(X) := Z(X, X) is an algebra with the operation o of operator composition
and X' := % (X, C) is the strong dual of X.

We will denote by [[T]] the commutant of T € £ (X) and by (f | «) the value of f € X’
at € X. Let £"(X,C) := £(X,C) (resp. £ (X,C)) denote the space of continuous
n-linear (resp. continuous n-linear symmetric) forms defined on the Cartesian product
X x ... x X of n copies of X.

The symbol ®, (resp. ®;) denotes the completion of the algebraic tensor product ®
(resp. of the symmetric tensor product ®) in the projective tensor LC topology. Consider
the projective tensor product @ X’ (resp. the projective symmetric tensor product ©) X")
of n copies of the strong dual X’ and define the symmetrization projector as follows

1
st QX D /1® @ oo 1O O = =Y fo)® @ fo(m) € OFX,
5

where the sum is taken over all permutations s of the set {1,...,n}. Analogously, the
projective tensor product ®@yX (resp. the projective symmetric product Op X ) may be
considered for the space X.

We define the LC space P, (X) of n-homogeneous polynomials on X via the canonical
topological linear isomorphisms P, (X) ~ Z(X,C) ~ (0, X)" described in [3]. Namely,
consider the following canonical embeddings:

QU: X X..XX3(x1,...,Tp)— 1Q...0T, € ®p X,

Th: X2z (- ,2) e X x...x X,
and put

(@gX)/ Spp— Ppi=p,o®@" o, € P,(X),
ie.
P,(z) := (pn | "), QMr:=(@"olY)r=2Q - ®uz, zeX.
We call P, so defined the n-homogeneous polynomial on X.
We equip P, (X) with the topology b on X for n € N and put Po(X) := C. The space

P(X):= {P =Y P P,ePy(X),me N},
n=0

endowed with the topology b, is called the space of continuous polynomials on X . Note

that the space P(X) is a topological algebra with the scalar unit 1 and the pointwise

multiplication given by

P@) Q@)=Y > Pu(®) Qu-m), zeX
n€Zy m=0
We will denote by P/(X) and P}, (X) the strong duals of P(X) and P,,(X), respectively.
The spaces P(X') and P,,(X’) of polynomials for the dual X’ and their duals are defined
similarly.



POLYNOMIAL ULTRADISTRIBUTIONS 197

The symbols [];, @3 X and Y_° ©p X, where the product and the sum (here and in
the sequel) are taken over all n € Z,, will mean the LC Cartesian product and the LC
direct sum of X, respectively. In a similar way we mean the Cartesian product and the
direct sum for X'.

From now we will assume that X is a nuclear (F') or (DF') LC space (see [5] [10]).

PROPOSITION 2.1. There exist linear topological isomorphisms Y x/, T x and their linear
extensions Yx/, Tx such that
TX’ . ’Y‘X/
orx' £ P, (X), H orx’ £ P(X),
n

opX = P, (x7), S erx = P(x).

Consequently, the identity

P'(x) | P = (T opx

Z; @;}X>

describes equivalence between the corresponding dual pairs.
If X & X' is a continuous dense embedding, then

P(X') = P (X")
is also a continuous dense embedding.

Proof. Since the topological isomorphism ©p X’ =~ (©F X )" holds for every nuclear (F) or
(DF) space X [6, Th. 2.2|, we have the isomorphism

Tx:: Q;JLXI S far Fyi=fpo®"ol, € Pn<X)
For the dual pair (}_» @7 X' | ], ©@X) the formula

F(z) ;:ZFn(x)=<Z'fn H.®"m>, reX

induces the isomorphism

Yo Y opx'sf=3"fum FeP(X),

where F = Tx/(f) = > n Yx/(frn) acts as a linear extension of Tx/ : Op X' = Py, (X).
Replacing above X by X', we obtain ©p X S P,.(X") and therefore (see [3])
ST X ~ P(X).
n
Now, since the topological isomorphism (®} X')" ~ ®} X holds for every nuclear (F') or
(DF) space X [6], we have
PL(X) ~ (05 X') ~op X ~ P, (X').

On the other hand, applying the known duality between Cartesian products and direct
sums [10], we obtain

Py (57 epx) = [T ep = T P

n
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Hence the dual pair ([} @7 X’ | 3% 7 X) may be transformed to (P’'(X’) | P(X’)). Due
to the canonical embedding Y7 ©p X' C []} ©F X', we have
P(X)~ Y @pX'c [] opX' ~P'(X').

Since ) @"x is a total subset in )7 @} X, the mapping Ty o Op X" — P(X) can
be linearly extended to the mapping

TX’: H QQX/af: H fn'_’F: H TX’(fn)e H Pn(X)
by the formula
(X ere) = (11 +
n n
If X & X' is a continuous dense embedding, then so are the embeddings Z:L OpX P
o Op X and 30 Op X’ 4 []7 O X'. Consequently, we have

PX) =Y Topx e Y Topx’ e [ opx’ ~ P/(XY)

STere) = Fu@), F=I[F, zex.

n

with the respective dense continuous embeddings. =
Formula (1) means that P’(X’) consists of polynomials on X.

PROPOSITION 2.2. The direct sum
> opx ={p= 3" eut pucopX}

is an LC algebra with respect to the convolution

n
prpi=Y ( > en Gwn—m)
n m=0
and the following mapping is an algebraic isomorphism
{3 opx} T px).
Proof. For arbitrary ¢, € ©y X and ¢y, € @’;X we have
¢n O Pr € (05 X) © (05 X) C OpTFX.

Hence the direct sum Z; OpX is an algebra with respect to the convolution *. By

T ~
Proposition we have Op X = P,.(X"), so the linear extension Tx of Tx given by
Tx: Y OpX 3¢ Tx(p) € P(X)

is the required algebraic isomorphism. m

Now we suppose that X & X’ is a continuous dense embedding. Then the convolution
in {3°% ©p X, x} can be extended to the convolution

rra=11 ( S © Gn-m)
n m=0
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in the Cartesian product
[T opx' ={r =TI fu: fucopx’},

which is also a topological convolutional algebra.

PROPOSITION 2.3. The multiplication in P(X') can be uniquely extended to the multipli-
cation in P'(X'), given by the formula

P 5%) = 33 Pule) Quon(@)

n n m=0
for @ =TI Qn, P =TI, P, € [ Pa(X) and z € X. Thus P'(X') is a topological
algebra and Y x uniquely extends to the following algebraic isomorphism

[ ] :f ’
{TT epx'x} 2 P,
Proof. Proposition together with Proposition imply at once that the extended
mapping
H X' 5 f =T fars F= ] FueP(x)
n n
gives the required isomorphism of algebras. m

In the sequel, we will define by

. LX) : =
%S )= | TR0 Z ]

a subalgebra of diagonal form in £ (> ©pX) endowed with the topology of uniform
convergence on bounded sets; analogously, for the Cartesian product

ﬁ(ll[' DpX) = [ X(QQX()) o ] o © z(];[' o X).

We will define also diagonal subalgebras for the dual X'.
Using the isomorphisms P(X’) ~ 2" ©7X and P/(X’) ~ []* ©p X’ we will identify
the appropriate operator algebras, namely:

z(z' GX) = 2(P(X),  H (Y epX) = A (PX)),
(H OpX) = Z(P(X")), 2(IT opx') = e (P'(X)).

n

We denote by [[T]]r the commutant in £ (-) of an operator T' € £ ().

3. A multiplicative algebra of polynomial ultradistributions. Fix ¢ > 1. For ev-
ery p > 0 and finite [a,b] C R we define the space

Gty = { € C(R): |igllgn , < o0}
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of complex functions ¢ with supp ¢ C [a, b] and the norm

[D¥(t)] d
lellge == sup  ———, D= —i—.
Fio tefad], kez, HFERP dt
The space G of Gevrey ultradifferentiable functions with compact support can be defined
as the inductive limit

B : p
G := ind lim Q[a’b}.

—a,b,u—oc0

As it is known [6], 8, [7], G is a nuclear (DF'S)-space and is a topological algebra with
respect to the pointwise multiplication.

Denote by G’ the strong dual of G of all Roumieu ultradistributions on R [9] and let
G'. denote the closed subspace in G of ultradistributions with supports in [0, 00). If G’ i
denotes the orthogonal complement of G/, with respect to (G’ | G) then the factor space

Gy:=G/G  ={p:=p+G7: pcg)
is the dual of G/_. The operator of multiplication
©:Gop—0pcd
by the Heaviside function 6 has the kernel {¢ € G: suppy C (—00,0)} = g’i. Hence,
for its codomain ©(G) the topological isomorphism
G ~0(9)

holds. Thus every element ¢ € G, can be interpreted as a regular ultradistribution,
belonging to G, .

From duality arguments it follows that G, is a nuclear (F'S)-space and G, is a nuclear

(DFS)-space. As it is known [2, 1], G/ is a topological algebra with respect to the
convolution

(f,9) = f*g, fr9€gl

with the Dirac function § as the convolutional unit. Since G’ i is a closed ideal in G, the
factor space G is also a topological algebra.

PROPOSITION 3.1.

i ﬂle LC algeb?a I / gl iS a I ! g/ I gl '5157 Ong Complelion Of ﬁnlte lfype poly-
nOmialS

o+ (X (1@l @) aec

neN  f;eg

by the variable ¢ € G. The space G, is closed in P'(G',).
(ii) The LC algebra P(G',) is a completion by uniform convergence topology on bounded
sets in G'. of finite type polynomials

a+ (X Ule) o (18),  aec
neN  @jegy

by the variable f € G'.. The space Gy is closed in P(G',).
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Proof. The statements follow from the topological isomorphisms P'(G’ ) ~ []7 ©}G"
and P(G}) ~ >~ ©pG+, established by Proposition with the help of additional
arguments that (F'S)-spaces ©pG, and (DF'S)-spaces ®p G can be approximated by
linear combinations of elements fi; ©® -+ ©® f, and $1 © -+ - © @y, respectively (see [4]). m

We will call elements of P'(G',) polynomial ultradistributions on [0, 00). Clearly, since
G\, C P'(G"), elements of G/ can be understood as linear ultradistributions.

4. A generalized differentiation of polynomial ultradistributions. The ideal G’ i
is invariant with respect to the right shift in the space G, hence the diagram

G 3¢ — G(-+1t)€Gy
e e

Gop —— o(-+t)eg
uniquely defines a semigroup [0, 00) 3 t — T} of the operators T; € Z(G4).

The ideal G’ i is also invariant with respect to the differentiation D, hence D uniquely
defines some differentiation D, on the algebra G, (in Leibniz’s sense), which can be also
defined as a generator of semigroup T;.

The factor topology on GH[0,b] := g[*; /9 i N Qf;yb] is defined by the factor norms

Blgron = swp  2E201
e tefa], kez, MERPF
and
G+ ~ind lim G% [0, b].
b,pu—o0
Let Ty and D', = —D denote the corresponding adjoints with respect to <ggr | g+>.

THEOREM 4.1.
(i) The family {I'(T]): t € [0,00)} of continuous linear operators on P(G.) of the form
D(T}): Q = Qo T, Q=> QueP(@G),

where Qn = qn 0 @™ o'y and g, € ©yGy, acting as

D(THQf) =QT/f)  forall  feg,,
is an equicontinuous Co-semigroup of automorphisms on the algebra P(G'.).
An equivalent tensor representation on Y, OrGy ~ P(G) of its generator dT'(D'y)
belongs to the subalgebra £ (3., ©pGy) and on every element ¢ = Y, gy it acts

as
n

n
di(D\)g=> Y 1Dign, [Dy=1,0...0 Dy ®...01,.
j=1 N

n

J
(ii) The family {T'(T}): t € [0,00)} of continuous linear operators on P'(G!.) of the form
D(T}): P— PoT, P=][ P.eP9,),
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where P, = p, o®@" oI, and p, € @QQ;, acting as
(T P(@) = P(Typ) forall ¢ €Gy,

is an equicontinuous Co-semigroup of automorphisms on P'(G') with the generator
dT'(Dy), which, in an equivalent tensor representation on []7 ©pG, ~ P'(G,),
belongs to 20 (1, ©pG) and acts as

dF(D+)p = - H. Z?DH% Jor all p= H.pn-
j=1 n

n

(iii) The generator dT'(D'.) is a continuous differentiation on P(G'.), that is,
dl(DL)(P - Q)(f) = (dT(DY)P - Q)(f) + (P - dT(D})Q)(f) (2)
for all P,Q € P(G.) and f € G, (similarly, for dT(Dy) on P'(G.)).
(iv) The generators dT'(D.) and dT'(D'.) satisfy the dual relation
(dI'(DL)P | Q) = —(P|dT(D})Q),  PeP(G)), QeP(G,).

Proof. (i) First note that the inductive limit G, ~ ind lim, .o G [0,b] has compact
embeddings G/[0,b] & G/[0,b'], if 4 < v, b < b’ [7]. Using the known property [4] that
the order of inductive limits and projective tensor products can be changed, we obtain

Op Gy = in%l lim ©, G4 [0, b].
Proposition [2.1] implies that
DI = {an | @ T/ f) = (@ "T)gn | @™ f)

with the semigroup ®@"71; := T} ® ... ® T}, acting on ©pGy. Consider ®"T; on a to-
tal in ©5GY[0,b] subset of functions (71,...,7,) = P1(11) © ... © $n(7s), defined on
[0,b] x ... x [0,b]. The conditions 7; € supp @; and 7; — ¢ € supp(T3¢;) are equivalent,
thus,

supp(T3p;) = (supp @; —t) N [0, 00) with t>0.
Hence,

T2 35llgv 00 < IBillgrop  forall @5 € Gl[0,b], t=0.

Now, the regularity of inductive limits ind lim, p—oc ©F GY [0,0] implies that ®"T;
is equibounded and, as a consequence, it is equicontinous on @;g+. Clearly, the last
conclusion uses barreledness of ©;G and the uniform boundedness Banach-Steinhaus
principle.

Since the function

0,00) 5t DE@1(-+t)@...0 DEg,(-+1) € OpG,

is smooth, the Lagrange theorem at once implies the Co-property for ®"T; on ©;G.. The
equicontinuity and Co-property on P(G',) ~ > ©pGy+ directly follows from properties
of the direct sum topology.
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Since (k; + 1)ki+1D8 < 2(ki+1)3k;€jﬂ, we get

D (Y2F] v v su su V||,
+rslogiod k‘jEEJr rje[g,b} (V27 Bkt (k4 1) (ki T1)B 7HG3 10

with = v277. Therefore, we have "Dy € £(0pG4) and the definition of a semigroup
generator implies that

n

Di(Tip1 © ... 0 Typn) = Z(@)nTt) 0Dy (P1O...O Pn).
j=1
In order to approximate an arbitrary q € Z; ©p G+ by linear combinations of 1 ©...0¢,
it remains to apply Proposition ii).
The assertion (ii) follows from the duality (P’(G}) | P(G})) = (IT;, ©pG" | >on OpG4)
and Proposition (i).
(iii) The generator dI'(D’.) satisfies the equality
dT'(D})Q(f) = dsQ(DY f)
with the Fréchet derivative dyQ(D', f) of the polynomial @ € P(G’,) at the point f € G/,
in the direction D', f, since
d

dT'(D)Q(T} f) = %Q(Tt/f) = th’fQ(%Tt/f) = dpQ(DL Ty f)

and
dl(D)Q(f) = dT(DL)Q(TL f) li=0= drysQ(D+T} f) |t=0= dyQ(D', f),
as a consequence. It follows that the Leibniz property (2|) holds for dI'(D’, ) and, similarly,
for dF(D_;,_)
The assertion (iv) immediately follows from the dual relations

> iDian) = (> iDip
j=1 j=1

Dy =-Di,  (pn

Qn>
with ¢, € ©; G4 and p, € @;g;. m

5. An operator representation of differentiation. Via Theorem for every poly-
nomial ) € P(G’,) there exists a unique P(G, )-valued continuous function

Qi [0,50) 3t~ T(T))Q € P(T,).

The isomorphism P (G’ ) ~ Z.n ©pGy implies that forall @ = Y- ¢n 0 ®™ o', € P(G},)

with ¢, € ®; G4 and for all n it well-defines the unique ©; G -value continuous function
[Ov 00) 3t (®"T})qn.

Approaching g, by linear combinations of ¢; ® ... ® ¢, € ©;G,; and using that the
functions [0,00) 3t +— DA @1 (- +1) ©...® DY @, (- +1t) € 3G, are smooth, we see that
qn belongs to O3 G, ®pG. Thus Q; € P(G,)®,G.

THEOREM 5.1. The mapping (which is a polynomially extended cross-correlation)

KiGh s f=Kre Zp(P(GL)), K@) :=(f]Q), QEePG})
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uniquely defines an algebraic topological isomorphism from the convolutional algebra G,
into the commutant [[dT'(D',)]]r of dT'(D’,), such that

§—Ks, & —dl(D)), frg—KpoK,  fgeg,,
where Ks is the unit in Z3(P(G))). The cross-correlation satisfies the conditions
d['(D,)(Ky o Ky) = [dT(D, )Ky] 0 Ky = Ky o [dT(D', )K,], f,geg..
Proof. First note that (f(t) | (®"T;)q.) € ©pGy, since (@"T)g, € ©pG+®,G, and
f € G'.. The operator
K:G) o> fKpe Z(Pu(G))) = Z(05G1)  with Kpgn == (f(t) [ (@"T)qn)

is obviously injective and it acts as an algebraic isomorphism. In fact, the convolution in
G’ can be defined by the duality <g’ | g> as follows

(fxgle)=(ft)][€1){g(s) [ n(s)e(t +5)))

for any ¢ € G, where £, € G are 1 near suppf and 0 outside of supports (see [11]). We
obtain

Kfrggn = | §(t) (g(s) | n(s)(@"Ti15)qn))
= < ) &) g[ ()(@"Tiv)an] ) = (Kf 0 Kg)dn.
Thus Ks is the unit of Z[©}G]. It also follows that

Ksrn = (8(6) | (@"Tan) = = (D 7D+ )an,
hence, Ky (Q) = dT'(D})Q. Replacing (3°7D+)gn by gn in Kygn = (f(t) | (2"T1)qn), we

obtain
Ky (32504 )an = (10| (23D ) (" T)an)
- (Z?m) (f@t) [ (©"Ty)qn) = (Zym)qun

for any n, hence, Ky € [[d['(D’, )]]. Finally, since
(0" x f)xg=frg=Fxg =[x("*g),

we have

dI'(D) ) (Ky 0 Kg)(Q) = [Ks 0 K] 0 Kyg(Q) = Ky 0 Ky(Q)
= [dT(D1)Ky] 0 Kg(Q) = Ky 0 Ko (Q)
=Kyo [dF(D’Jr)Kg](Q).
Let us consider topological properties. The isomorphism G, =~ ind lim, ;.o G [0, 0]
implies the following adjoint isomorphism for the corresponding strong duals with a

projective limit structure

G'. ~ proj lim(G% [0,0])".
v,b—0

The regularity of the inductive limit ©pG; = ind lim, oo ©5 G [0,b] implies the em-
bedding
proj lim Z(©,G%[0,0]) & Z(©pG+),

v,b—0
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where the operator spaces are endowed with corresponding uniform convergence topolo-
gies. By definition, every composition of K with the projector G, — (G [0,b])" acts
as

(G5[0,8))" > f = foldg, € ZL(©,G%[0,0]),

where Jg, : G4 & ©pG1®pG4 is the canonical continuous embedding in the projective
tensor product definition. Thus it, and therefore K, are continuous. Moreover, K has a
closed codomain in .Z(®; G [0,b]) for all n. In fact, the equality

G110,8] = {{pn | (®"T)dn) : gn € ©3GY10,0], pu € (©5G1[0,0])'}

implies that if a sequence (f;) is pointwise convergent to f in Z(©®,G%[0,b]), where
©pGY[0,b] endowed with ((©pG%[0,8]) | ©pGY[0,b])-weak topology, then (f;) is also
weakly convergent in G% [0,b]. Therefore, f € G¥[0,b], via the appropriate completeness.
Now, the open mapping Banach theorem implies that K is a topological isomorphism
from (G%[0,0])" into Z(©y G [0,0]) for any v,b, thus, from G/ into Z(©;G4) for all n.
Using a diagonal form of £ (P(G’.)), we obtain the required isomorphism. =

6. A polynomially extended operator calculus. By the Paley-Wiener theorem the
Fourier transformation

PO =Fel) = [ pdt with peG, (eC teR
acts as a topological isomorphism
F:G—G

onto a space G of entire analytic functions, which we for simplicity endow with the
inductive LC topology, generated by F. In the sequel,

G, = G/F@G'T)

stands for the corresponding L.C factor space. For the strong duals, the appropriate adjoint
transformation

~1

F.:G =g
is defined. The codomain
G, = F1(G})
of the subspace G, C G’ with respect to the inverse mapping
Flig s e fed
is closed in the dual a. The mappings F' and F’ ~! are continuous with respect to

~ ~
the strong topologies. It follows that G, is a nuclear (F'S)-space. The space G, is a
multiplicative topological algebra with the unit §, since

A generalized Laplace transformation can be defined as

FeiGiafmTel, Fo=F g . (3)
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Every element of §+ can be interpreted as the Laplace transform @ = F,(p4) of
the regular ultradistribution

oy =0(p) € G, with ¢ €G.
From duality arguments it follows that the topological isomorphism
Fr G120 — pr €G4
is true. Hence, §+ is a nuclear (DF'S)-space. From Proposition it follows that the
commutative diagrams
. F 5
P.(G.) — = P,(G) P'(G.) —— P(G,)

Tg,

T

Tg,

Yo, 9

"F oy . n - Yl
org, =75 opg,,  Topdy —— Topd),

uniquely define the polynomial extension

Fo:P(G)3P=[[ Pur P=][ FulP) €P(GL),  PuePulGy)

of the generalized Laplace transformation , as an operator of the diagonal subalgebra

G(P(G1). PG = | LG PalG s 2
0: n#m ———

The above diagrams and Proposition@imply that F is invariant with respect to the
polynomial multiplication and acts as an algebraic surjective topological isomorphism.
Proposition implies that the restriction of F, to P, (G’ ) acts also as an algebraic

surjective isomorphism
FiiP(@)3Q=> Qu—=Q=) Fu(Qu)eP@.), QueP.(G))

and the duality equivalence (P | Q) = (P | Q) with P € P'(G/,), Q € P(G/,) holds.

Let us reduce the cross-correlation concept, considered in Theorem to the case
of linear ultradistributions. For this purpose we compare for every element ¢, € G4 the
G -valued function

Tipt: [0,00) 2t = @i (- +1t) € Gy,
belonging to G4 ®,G. Then the cross-correlation
K:§G, > f— Ky € Z(G4), Koy = (f(t) | Teos) Y+ €64,
can be expressed by the convolution
Kppy = fxpr  with @4 (t) == (1)
ProPOSITION 6.1. The commutative diagram

¢, —— [[ID}]]

7| |

G, — = b
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uniquely defines the algebraic and topological isomorphism
K: é\g_ 5 fe IA(]?G [[ﬁg_]] such that I?g =1, is the unit in £(G,) and
(/S\/’_)ﬁiw f/g\HI?]’;OI?g, ﬁ/g\eé\f‘r’
which acts from the algebra Q\g_ onto the commutant [[ﬁ;]] in Z(Gy), where I?f and ﬁg_
are defined as

K}?I g+9$+’—>KfQ0+€g+
and

Do (¢) = (2+(¢) — ¢+(0), ¢eR.
Proof. Since the cross-correlation mapping K for linear ultradistributions is a special
case of the mapping K for polynomial ultradistributions, Theorem is also true if we
substitute G, in place of P(G',). Therefore, in the statement Theorem |5.1} we can put
Kf = Kf, K5 = K§ and dF(D;) = K(;/ = Kg/ = D;
However, we can prove more that the algebraic topological isomorphism

K G — [(D4]
is surjective. To show it first note that [[D ]] = [[T3]] with ¢ > 0. Let K € .Z(G) be an
operator for which

(KoTi)py = (T o K)ps with ¢ €Gy.
We show that there is an f € G, such that K = K. Namely, such an f can be defined
by
(flo4) = (Ke1)(0).

In fact, putting T34 instead of ¢, we obtain

(Kp4)(s) = (1) | T (s)) = (F(1) | Tupr (1))
= (K oT)ps)(0) = (Kpi)(s)  with  s>0.

Now, it is enough to calculate ZA)Qr Since

(K7D, )(C) = C(Kr90)(O) = {F | o4),

we have @4_(0 = (p+(C) — v+ (0), if f = 4. The rest follows from the fact that Fj
realizes an algebraic topological isomorphism. m

From Theorem [£.1] and Proposition [6.1] it follows
COROLLARY 6.2. The family [0,00) 3 t +— F(fjr) € X(P(_Cz)) of operators

NT): Qe QoT) with Q=Y FulQ)=Y Go"oT,,
n n
where Gy, == (Q"F4)qn € ®g§+, acting as
NINRN =Q@S)  forall  fed,,

is an equicontinuous Co-semigroup of automorphisms on P(G',).
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A tensor representation on Y ®g§+ of the semigroup generator dF(ﬁ;) belongs to

EZAOM @;@;) and on every =Y+ Gy it acts as

dr(D)g= > > "D\g,  with D, =1,®..0D,®.. .01
j=1 —~

n

o~

n .
J

THEOREM 6.3. The mapping

K: G\ > f Ky e [[d0(D})]Ir,

where the operator Rf €. [P(Q\;)} is defined as follows

K7 P(@}) > Q — K (Q) € P(G,).

realizes an algebraic topological isomorphism from the algebra é\g_ onto the commutant
[[df(ﬁ;)]]p such that Rg is the unit in f(P(éﬁr)) and

(?HdF(ﬁﬁr), f~§|—>RfoR§ for all f,ﬁeéﬁr

Moreover, the commutative diagram

holds.

¢\, —— [dr(D})]Ir

7| |

G, — s (DY)

Proof. The statement directly follows from Theorem Proposition and Corol-

lary [6:2] =

(1
2l
3]
4]

[5]
[6]

(7]
8]
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