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Abstract. A review of some methods in sheaf theory is presented to make precise a general

concept of regularity in algebras or spaces of generalized functions. This leads to the local analysis

of the sections of sheaves or presheaves under consideration and then to microlocal analysis and

microlocal asymptotic analysis.

1. Introduction. We are going to present in this article a review of certain methods in
sheaf theory and to discuss the notion of regularity in algebras or spaces of generalized
functions. We dissociate the microlocal analysis of the sections of sheaves or presheaves
under consideration into so-called frequential microlocal analysis and a microlocal asymp-
totic analysis.

The frequential microlocal analysis based on the Fourier transform leads to the study
of propagation of singularities under only linear operators (including pseudodifferential
operators) in the theories described further on. However the study has been extended
to certain non-linear cases in the classical theories involving Sobolev’s techniques. The
microlocal asymptotic analysis is a new spectral study of singularities which gives some
results involving nonlinear operations.

In terms of sheaf theory, the notion of regularity in algebras or spaces of generalized
functions can be formulated in a general way. If A is a presheaf of algebras or vector
spaces on a topological space X, B is a subpresheaf of A and Ω is an arbitrary open set
in X, then B(Ω) can be considered as the space or algebra of some regular elements of
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A(Ω). This leads to the notion of B-singular support refining the notion of support of a
section u ∈ A(Ω), under the following localization principle:

(F1) if u and v are global sections of A which agree on every open set of a family (Ωi)i∈I
of open sets in X, then they agree on the union

⋃
i∈I Ωi.

One can give many examples of such situations in the framework of theories of general-
ized functions, e.g. in the theory of distributions [38] or in the theories of Colombeau-type
algebras [1, 7, 8, 9, 10]. Differential or pseudo-differential operators are special cases of so
called B-compatible operators giving estimates on the behaviour of B-singular supports.

2. Microlocal and spectral asymptotic analysis. We are going to restrict our study
to the following two subjects: the frequential microlocal analysis and the spectral asymp-
totic analysis.

2.1. The frequential microlocal analysis. In this subject we are interested in con-
sidering the following three cases:

• Distribution spaces and Sobolev-type regularity. The wave front set WF (u) of u ∈ D′(Ω)
is a well known refinement of its singular support [21]. This leads to the study of prop-
agation of singularities of distributions under differential or pseudo-differential actions.
Such studies even exist for nonlinear operators in a classical framework involving some
spaces of Sobolev type. In Section 8 of [23], Hörmander uses the results on microlocal
H loc

(s) -regularity of nonlinear operations for tempered distributions in S ′(Rn) to discuss
semi-linear equations, following Rauch [35]. By means of paradifferential techniques some
general results for quasilinear equations are given in Bony [4]. Then some fully nonlinear
equations are discussed from a general result on propagation of singularities for pseudo-
differential operators and a Bony’s linearization theorem. Precise propagation results for
hyperbolic second order semi-linear equations are obtained. Extensions of the previous
results can be found in works of Beals [2, 3] and Bony [5].

• Gr-Colombeau-type algebra and Gr,R or Gr,R,L-regularity. To give a microlocal study
of generalized functions Nedeljkov, Pilipović and Scarpalézos [31, 37] take A = G, the
Colombeau simplified algebras and B = G∞ as the ”first” regular subsheaf of G defined
by Oberguggenberger [32]. The crucial point was the conservation of the power of Lemma
8.1.1 in [21] leading to the definition of the generalized wave front set of u ∈ G(Ω) denoted
WF g(u). Recently A. Delcroix has extended in [12] the G∞ regularity to a so called GR
regularity, which still preserves the statements of the above quoted lemma, and gives
a GR-frequential microanalysis. The Fourier transform is still the main tool involved in
other generalized cases, where the G∞-regularity is subjected to an additional condition
(such as an estimate on the growth of derivatives) characterizing a special property such
as to belong to an analytic, Gevrey or CL class in Hörmander sense ([21], Section 8.4).
Such cases are studied by Pilipović, Scarpalézos and Valmorin [34], Marti [29], Bouzar
and Benmeriem [6]. They are special cases of the more general one obtained when taking
A = Gr which extends the Colombeau algebra G and B = Gr,R,L which generalizes all
the previous regularity cases.
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• Functional space L(Gc(·), C̃) and G-regularity. Many results on propagation of singu-
larities and pseudo-differential techniques have been obtained during the last years by
various authors, inspired by the classical theories (see e.g. [15, 18, 19, 24, 25, 26]). For
instance, if u ∈ G(Ω), Hörmann and Garetto [18] have obtained characterizations of
WF g(u) in terms of intersections of certain domains corresponding to pseudo-differential
operators analogously to Hörmander’s characterizations of WF (u) for u ∈ D′(Ω) [22].
However these deep results are limited mainly to linear cases, at least in the framework
described above. Even in case A is a sheaf of factor algebras, no study is made on the
microlocal behaviour of singularities under nonlinear operations by means of frequential
methods based on the Fourier transform.

2.2. The spectral asymptotic analysis. We are going to give the meaning of an
asymptotic analysis [14, 27, 28] when A(Ω) = G(Ω). Let F be a subsheaf of vector spaces
(or algebras) of G. First we define the sheaf B such that B(V ), for every open set V in
Rn, is the space of all u = [uε] ∈ A(V ) such that uε has a limit in F(V ) as ε tends to 0.
Then we define OFG (u) as the set of all x ∈ Ω such that u agrees with a section of B above
some neighbourhood of x. In turn, the F-singular (or B-singular) support of u is defined
by SFG (u) = Ω\OFG (u) (or SBG (u) = Ω\OBG (u)). For fixed x and u, we denote by Nx(u)
the set of all r ∈ R+ such that εruε tends to a section of F above some neighbourhood
of x. The F-singular spectrum of u is defined as the set of all (x, r) ∈ Ω× R+ such that
r ∈ R+\Nx(u). This leads to a spectral decomposition of the F-singular support of u.

This asymptotic analysis is extended to (C, E ,P) algebras. This gives the general
asymptotic framework, in which the net (εr)ε is replaced by any net a satisfying some
technical conditions, leading to the concept of the (a,F)-singular parametric spectrum.
The main advantage is that this asymptotic analysis is compatible with the algebraic
structure of the presheaf F asymptotically associated to (C, E ,P) algebras. Thus the
(a,F)-singular asymptotic spectrum inherits good properties with respect to nonlinear
operations when F is a presheaf of topological algebras. Moreover, even when F is a
presheaf (or sheaf) of vector spaces (for instance F = D′), some results on microlocal anal-
ysis are still obtained for nonlinear operations (see paragraph 4.3.1) on (a,D′)-singular
asymptotic spectrum of powers of δ functions. In [14], various examples of propagation of
singularities through nonlinear differential operators are given, connected to some results
of Oberguggenberger, Rauch, Reeds and Travers [33, 36, 39].

3. Sheaf interpretation of regularity and local analysis of generalized func-
tions. Let us consider the following sequence of sheaf embeddings, defined for each Ω
open set in Rn by

C∞(Ω)→ D′(Ω)→ G(Ω),

where G(Ω) is the Colombeau algebra. Each term of the sequence can be considered as
the B(Ω) regular space or algebra of the following algebra or space A(Ω). It is the basis
for a local analysis of the elements in A(Ω). The purpose of this section is to localize the
singularities of some generalized functions and to study their behaviour under a general
B-compatible operator. We refer the reader to [20] for more details on the sheaf theory
involved in the sequel.
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3.1. The basic definitions. We recall that
1◦ A is a given sheaf of sets (or presheaf satisfying, in addition, the localization prin-

ciple (F1)) over a topological space X.
2◦ is a given subsheaf (or subpresheaf) of A.

Definition 3.1. For an arbitrary open set Ω in X, elements of B(Ω) are considered as
regular and are called B-regular elements of A(Ω).

Definition 3.2. For an arbitrary open set Ω in X, an element u ∈ A(Ω) is called
B-regular at x ∈ Ω if there is an open neighbourhood V of x such that the restriction
u |V of u to V belongs to B(V ).

Definition 3.3. By OBA(u), denote the set of all x ∈ Ω such that u is B-regular at x, i.e.

OBA(u) = {x ∈ Ω : ∃V ∈ Vx, u |V ∈ B(V )},
where Vx denotes the family of all open neighbourhoods of x.

Definition 3.4. For an arbitrary open set Ω in X and a section u ∈ A(Ω), we define
the B-singular support SBA(u) of u by

SBA(u) = Ω \ OBA(u).
Remark 3.5.

a) We recall that the presheaf A becomes a sheaf when adding the gluing principle
(F2) to the localization one (F1) given in Introduction.

(F2) Let (Ωi)i∈I be a family of open sets in X and (vi)i∈I a family of sections
vi ∈ A(Ωi) such that, for each (i, j) ∈ I × I, vi |Ωi∩Ωj= vj |Ωi∩Ωj .

Then there exists v ∈ A(
⋃
i∈I Ωi) such that, for each i ∈ I, v |Ωi= vi.

However the (F2) principle is not needed to define the B-singular support of a
section u ∈ A(Ω) for an arbitrary open set Ω in X.

b) the set SBA(u) is always a closed subset of S{0}A (u) = supp(u).
c) In general, the set OBA(u) is not the largest open set O such that u|O is in B(O)

except in the following two cases:

1◦ if B = {0} (then SBA(u) = supp(u));

2◦ if B is a sheaf (even if A is only a prehesaf).

The elementary algebraic properties of the B-singular support are given by the fol-
lowing (see [30]):

Proposition 3.6. Suppose that B and A are (a) presheaves of K-vector spaces or (b)
algebras. Let (uj)1≤j≤p be an arbitrary finite family of elements in A(Ω) and (λj)1≤j≤p
be an arbitrary finite family of elements in K. Then

SBA
( ∑

1≤j≤p

λjuj

)
⊂

⋃
1≤j≤p

SBA (uj)

in cases (a) and (b) and, in addition in case (b),

SBA
( ∏

1≤j≤p

uj

)
⊂

⋃
1≤j≤p

SBA (uj).

In particular, in case (b), we have SBA(up) ⊂ SBA (u).
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3.2. Localization of singularities. Let Ω be a given open subset of X. A presheaf
operator A in A(Ω) is defined as a presheaf morphism A(Ω) → A(Ω) compatible with
restrictions. More precisely if OΩ denotes the category of all open sets in Ω, A may be
given by a collection (AV )V ∈OΩ of mappings AV : A(V ) → A(V ) such that for each
V ∈ OΩ and u ∈ A(Ω) we have: AΩ(u)|V = AV (u|V ). Thus we can simplify the notations
and write A instead AV when acting on sections over V .

Definition 3.7. Let A be a presheaf operator in A(Ω). Then A is said to be locally
B-compatible if for every (x, V, v) ∈ Ω× Vx × B(V ) there is a W ∈ Vx such that W ⊂ V
and A(v)|W ∈ B(W ).

The following result is proved in [30]:

Proposition 3.8. Suppose the assumptions from Subsection 3.1 are fulfilled. Let A be a
presheaf operator in A (Ω) locally B-compatible. Then SBA(A(u)) ⊂ SBA (u).

The following weaker form of local B-compatibility are more practical for applications:

Definition 3.9. A presheaf operator A in A(Ω) is said to be B-compatible if it maps
B(V ) into itself for every open set V of Ω.

Evidently, a B-compatible operator is locally B-compatible. The following simple re-
sult is useful:

Proposition 3.10. If a presheaf operator A in A(Ω) is B-compatible, then the composi-

tion product Ap =

p︷ ︸︸ ︷
A ◦ . . . ◦A is B-compatible for every p ∈ N .

The following result is proved in [30]:

Proposition 3.11. Suppose that B is a presheaf of algebras and A is a presheaf of
vector spaces and a B-module. Let, for an arbitrary set of indices A, (bα)α∈A be a family
of elements in B(Ω), (Aα)α∈A be a family of B-compatible operators in A(Ω) and (pα)α∈A

be a family of positive integers. Then

(i) for every finite A0 ⊂ A, the operator
∑
α∈A0

bαA
pα
α is B-compatible in A(Ω);

(ii) if A is a presheaf of algebras, then the mapping u 7→
∑
α∈A0

bα(Aα(u))pα is a
B-compatible operator in A(Ω).

3.3. Examples: a review of principal cases. We divide this section into two parts.

a) In the first part we give a list of examples of embeddings B → A:

C∞ → D′; CL → D′; GL → G; G∞ → G;

GR → G; Gσ,∞ → Gσ; Gr,R → Gr; Gr,R,L → Gr.

We recall that here

• G is the sheaf of Colombeau simplified algebra (see [7]).
• G∞ is the “regular” subsheaf of G, the sheaf of Colombeau’s generalized functions

(see [32]).
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• GR: in [12] the G∞-regularity is extended to a GR one. Under certain stability
conditions on the set R given in [12], GR is a subsheaf of differential algebras of G and
when R consists of the set of all bounded sequences, then GR = G∞.
• According to Hörmander’s definition given in Subsection 8.4 of [21], CL denotes the

sheaf of K-algebras of CL-class on Rn (K = R or C.) associated to an increasing sequence
Lk of positive numbers such that L0 = 1 and k ≤ Lk, Lk+1 ≤ CLk for some constant C.
if Lk = k + 1, CL is the sheaf A of analytical functions. If Lk = (k + 1)a, a > 1, CL is
the sheaf Ga of the Gevrey class of order a.
• GL: in [29] one constructs B = GL as a special regular sub(pre)sheaf of A = G,

extending in a generalized sense the CL classes of Hörmander. When taking Lk = k + 1,
we obtain the analytic case GA studied in [34] involving special properties of holomorphic
generalized functions which give GA the sheaf property.
• Gσ,∞-local analysis in Gσ 6= G defined in [6] is the sheaf of algebra Gσ 6= G of Gevrey

ultradistributions with another asymptotic scale than the Colombeau one. Gσ,∞ is the
sheaf of algebras of Gevrey ultradistributions.

In order to construct a general model containing all the previous examples we have
to combine R and L = (Lk)k with another parameter: an asymptotic scale r = (rλ)λ ∈
(R∗+)Λ. This leads to the following (see [30]):

•


Gr: sheaf of algebras containing G and Gσ,
Gr,R: subsheaf of R-regularity in Gr,
Gr,R,L: subpresheaf of (R-L)-regularity in Gr.

Taking λ = ε ∈ ]0, 1], rε = ε and R = RN
+, we recover the sheaf G of Colombeau

simplified algebras.
Taking λ = ε ∈ ]0, 1], rε = ε and R = Bo (the set of bounded sequences), we obtain

the sheaf of G∞-generalized functions [12].

Taking λ = ε ∈ ]0, 1], rε = eε
− 1

2σ−1 and R = RN
+, we obtain the sheaf of so called

Gσ-generalized functions in [6].
Taking λ = ε ∈ ]0, 1], rε = ε, R = Bo (the set of bounded sequences), and some

L = (Lk)k, we obtain the presheaf of GL-generalized functions (subpresheaf of G) [29].
Taking λ = ε ∈ ]0, 1], rε = ε, R = Bo and Lk = k + 1, we obtain the sheaf of

GA-generalized functions (subsheaf of G) [34].

Taking λ = ε ∈ ]0, 1], rε = eε
− 1

2σ−1 , R = Bo and Lk = (k + 1)σ, we obtain the
presheaf of Gσ,∞-generalized functions (subsheaf of Gσ) [6].

b) In the second part we consider two other embeddings:

G → L(Gc, C̃); FA(C,E,P) → A(C,E,P).

• G′c = L(Gc, C̃): Ω→ L(Gc(Ω), C̃) is a sheaf of vector spaces: the topological dual of
Gc [16]. The duality in the Colombeau context is defined when starting from the so-called
sharp topology of G(Ω) [31]. In [17], L(Gc(Ω), C̃) is endowed with the topology of uniform
convergence on bounded subsets of G(Ω). The sheaf embedding G → L(Gc, C̃) is defined,
for each open set Ω of Rn, by the continuous map (as recalled in [17])

G(Ω) 3 u 7→ Tu ∈ L(Gc(Ω), C̃),
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where Tu is defined, for u = [uε] ∈ G(Ω) and each v = [vε] ∈ Gc(Ω), by

〈Tu, v〉 =
[ ∫

K

uε(x)vε(x) dx
]
∈ C̃,

where K is an arbitrary compact set containing supp v in its interior.
• A(C,E,P) is a presheaf of (C, E ,P)-algebras admitting FA(C,E,P) as subpresheaf. We

summarize the construction of the so-called (C, E ,P) algebras [14, 28] which generalize
many cases met in the literature. K is the real or complex field and Λ a set of indices. C
is the factor ring A/I where I is an ideal of A, a given subring of KΛ. (E ,P) is a sheaf
of topological K-algebras on a topological space X. A presheaf of (C, E ,P) algebras on
X is a presheaf A = H/J of factor algebras where J is an ideal of H, a subsheaf of EΛ.
The sections of H (resp. J ) of X have to verify some estimates given by means of P and
A (resp. I). The above construction needs some technical conditions given in [14] on the
structure of C and we suppose that for any open set Ω in X, the algebra E(Ω) is endowed
with a family P(Ω) = (pi)i∈I(Ω) of semi-norms. Then, the factors we speak about are
given by

H(Ω) = H(A,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω) ((pi(uλ))λ ∈ |A|}

and
J (Ω) = J(IA,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω) (pi(uλ))λ ∈ |IA|}.

We assume further that A is unitary and Λ is left-filtering for the given (partial)
order relation ≺. Let us denote by F a given sheaf of topological K-vector spaces (resp.
K-algebras) over X containing E as a subsheaf, and set

FA(Ω) = {u ∈ A(Ω): ∃(uλ)λ ∈ u ∃f ∈ F(Ω) lim
ΛF(Ω)

uλ = f}.

Moreover, FA is a subpresheaf of vector spaces (resp. algebras) of A. Roughly speaking,
it is the presheaf whose sections above some open set Ω are the generalized functions in
A(Ω) associated to an element of F(Ω). We can directly deduce the algebraic properties
of SFAA (u) (see [14]) from Subsection 2.2. For the differential ones we suppose that F is a
sheaf of topological differential vector spaces, with continuous differentiation, admitting
E as a subsheaf of topological differential algebras. Then the presheaf A is also a presheaf
of differential algebras.

3.4. B-compatibility of differential or pseudo-differential operators. In all the
previous examples, B is always a presheaf (or a sheaf) of differential algebras and A is
a differential B-module with a differentiation ∂α (α ∈ A = Nn) extending the B one.
Then in each case and each open set V in Ω (open set of X = Rn) it is easy to prove
that ∂αv maps B(V ) into itself. Thus ∂α is a presheaf operator B-compatible in A(Ω)
according to Definition 3.9. If we give now a family (bα)α∈Nn of elements in B(Ω), then
P (∂) =

∑
|α|≤m bα∂

α is a B-compatible operator in A(Ω).

Moreover at least in some cases, when A is D′ (resp. G, L(Gc(Ω), C̃)), a pseudo-
differential operator A can be defined (see [22]) in A(Ω) by the formula

Au(x) =
∫ ∫

Rn
ei〈(x−y),ξ〉a(x, y, ξ)u(y)dydξ
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when a(x, y, ξ) lies in the space Smρ,δ(Ω×Ω×Rn) of Hörmander symbols of order m and
type (ρ, δ). A extends continuously to a map E ′(Ω) → D′(Ω). We can find (for example
in [11]) a definition of generalized pseudo-differential operators with generalized symbols
extending the classical one. The set S̃mρ,δ(Ω×Rn) of generalized symbols can be described
(see [17]) as the algebra GSmρ,δ(Ω×Rn) based on Smρ,δ(Ω×Rn) and obtained as a GE-module
by choosing E = Smρ,δ(Ω × Rn). Then the pseudo-differential operator with generalized
symbol b ∈ S̃mρ,δ(Ω× Rn) is the map Gc(Ω)→ G(Ω) given by

Au =
∫

Rn
eixξb(x, ξ)û(ξ)dξ =

[∫
Rn
eixξbε(x, ξ)ûε(ξ)dξ

]
.

One can define more generally pseudo-differential operators by means of symbols in
S̃mρ,δ(Ω×Ω×Rn) and generalized oscillatory integrals (see [15]). We can find in [17] (def.
2.5) an extension of the action of A to the dual L(Gc(Ω), C̃).

When A is D′ (resp. G, L(Gc(Ω), C̃)), it is proved in each case that if A is a properly
supported pseudo-differential operator, it maps A(Ω) into itself. Moreover, when B is C∞,
(resp. G∞, G), for each open set V in Ω, A maps B(V ) into itself. In other words A is a
B-compatible operator in A(Ω). Therefore Proposition 3.8 allows to deduce the classical
inclusions:

SBA(P (∂)u) ⊂ SBA (u); SBA(Au) ⊂ SBA (u),

from the presheaf property of an operator B-compatible. Through Proposition 3.11, we
can even obtain some non linear results, when A is a presheaf of algebras as

SBA
( ∑
|α|≤m

bα(∂αu)pα
)
⊂ SBA (u); SBA(Au)p ⊂ SBA (u),

where p is any positive integer and (pα)α∈Nn any given family of positive integers.

4. The frequential microlocal analysis

4.1. The distribution case

4.1.1. Wave front set and microlocal regularity of product. For a general v ∈ E ′(Rn)
Hörmander introduces the cone Σ(v) of all η ∈ Rn\{0} having no conic neighbourhood V
such that the Fourier transform v̂ is rapidly decreasing in V . Lemma 8.1.1. in [21] proves
that if Φ ∈ D(Rn) and v ∈ E ′(Rn) then Σ(Φv) ⊂ Σ(v). It follows that if Ω is an open set
in Rn and u ∈ D′(Ω), setting: Σx(u) =

⋂
Φ Σ(Φu); Φ ∈ D(Ω), Φ(x) 6= 0, one can define

the wave front set of u as

WF (u) = {(x, ξ) ∈ Ω× (Rn\{0}) : ξ ∈ Σx(u)}.

Then, if u ∈ D′(Ω) and (x, ξ) ∈ Ω × (Rn\{0}), u is said to be in H loc
(s) at (x, ξ) if

(x, ξ) /∈WF (u− v) for some v ∈ H(s)(Rn). The microlocal regularity of products is given
in the following result (see [23], 8.3.3):

Theorem 4.1. Let uj ∈ H(sj)(Rn), j = 1, 2. Then

(i) u1u2 ∈ H loc
(s2) outside WF (u1), if s1 > n/2 and s1 + s2 > n/2;

(ii) u1u2 ∈ H loc
(s) outside WF (u1), if s1 < n/2 and s1 + s2 − n/2 > s ≥ 0;
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(iii) u1u2 ∈ H loc
(s1+s2−n/2) outside WF (u1) ∪WF (u2), if s1 + s2 > 0.

The propagation of noncharacteristic regularity for semi-linear equations studied in
[35] is given by (see [23], 8.4.13):

Theorem 4.2. Let u ∈ H loc
(s+k)(Ω), where Ω is an open set in Rn and s > n/2, be a

solution of the semi-linear equation

P (x,D)u = f(x, Jku),

where Jku = (∂αu)|α≤k|, f and the coefficients of P are C∞ and k is smaller than the
order m of P (x,D). If P is noncharacteristic at (x, ξ) ∈ Ω × (Rn\{0}), it follows that
u ∈ H loc

(2s+m−n/2) at (x, ξ).

4.1.2. Application of paradifferential calculus. The paradifferential calculus of Bony [4]
is based on some regularization of nonsmooth symbols. We do not intend to develop this
theory here but look at it as a powerful tool to prove good results for nonlinear problems
such as the following (see [23], 10.3.6):

Theorem 4.3. Let u ∈ H loc
(s+m−1/2)(Ω), s > max((n − 1)/2 , n/4), and assume that u

satisfies the quasilinear differential equation∑
|α|=m

aα(x, Jm−1u(x))∂αu+ c(x, Jm−1u(x)) = 0,

where aα and c are C∞. Then it follows that u ∈ H loc
(2s+m−n/2) at every noncharacteristic

point (x, ξ).

4.1.3. Propagation of singularities. Roughly speaking we know that under some condi-
tions for linear or pseudo-differential equations, the singularities of solutions propagate
along bicharacteristics. This remains valid for nonlinear equations in the sense of the
following (see [23], 11.4.1):

Theorem 4.4. Let u ∈ H loc
(s+m)(Ω), s > n/2+1, be a real valued solution of the differential

equation
F (x, Jmu(x)) = 0,

where F ∈ C∞. If σ ≤ 2s−n/2, then the set of (x, η) ∈ Ω×(Rn\{0}), where u /∈ H loc
(σ+m−1)

is contained in the characteristic set and it is invariant under the Hamilton flow defined
by the principal symbol of the linearized equation.

Beals [2, 3] has studied the case of second order hyperbolic equations (extended by [5]
to arbitrary order) for which we can give the following special version (see [23], 11.5.10):

Theorem 4.5. Let u ∈ H loc
(s) (Ω), s > n/2, be a solution of the hyperbolic second order

semi-linear equation
P (x, ∂) = f(x, u),

where f ∈ C∞. If u ∈ H loc
(s) at a characteristic point (x, ξ) and if s ≤ σ < 3s− n+ 1, it

follows that u ∈ H loc
(s) at the bicharacteristic γ through (x, ξ).
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4.2. The frequential microlocal analysis in Gr. We refer the reader to [12, 13] for
more details. The motivation is to summarize the microlocal results obtained for A = G
and B = G∞ (see [11, 31]) or GR (see [12]) into the microlocal ones involving A = Gr
and B = Gr,R (see [13]). On the other hand, we also summarize the microlocal studies
for A = Gσ and B = Gσ,∞ (see [6]) or A = G and B = GA (see [34]) or GL (see [29])
into the microlocal ones involving A = Gr and B = Gr,R,L. We recall that Gr is a
sheaf of algebras similar to the Colombeau one but constructed with an asymptotic scale
r = (rλ)λ ∈ (R∗+)Λ such that limΛ rλ = 0 and we specify below the construction of Gr,R
and Gr,R,L.

• The Gr,R = X r,R/N r,R subsheaf of Gr is constructed from any asymptotic scale
r = (rλ)λ ∈ (R∗+)Λ and any regular subset R of RN

+ by

X r,R(Ω) = {(uλ)λ ∈ [C∞(Ω)]Λ : ∀K b Ω ∃N ∈ R
∀α ∈ Nn pK,α(uλ) = O(r−N(|α|)

λ ) (rλ → 0)};
N r,R(Ω) = {(uλ)λ ∈ [C∞(Ω)]Λ : ∀K b Ω ∀m ∈ R

∀α ∈ Nn pK,α(uλ) = O(rm(|α|)
λ ) (rλ → 0)}.

• The Gr,R,L = X r,R,L/N r,R,L subpresheaf of Gr is obtained when adding to the
previous construction any L = (Lk) sequence specified in Subsection 2.3:

X r,R,L(Ω) = {(uλ)λ ∈ [C∞(Ω)]Λ : ∀K b Ω ∃N ∈ R ∃c > 0 ∃λ0 ∈ Λ

∀α ∈ Nn ∀λ ≺ λ0 sup
x∈K
|Dαuλ(x)| ≤ cr−N(|α|)

λ (cL|α|)|α|};

N r,R,L(Ω) = X r,R,L(Ω) ∩N r(Ω).

• The microlocal studies in Gr are based on the ”rough” rapidly decreasing functions
of the space

S∗(Ω) = {f ∈ C∞(Ω): ∀q ∈ N µq,0(f) < +∞},

with µq,α(f) = supx∈Ω(1 + |x|)q|∂αf(x)|; we have, for u ∈ E ′( Rn),

u ∈ C∞(Rn)⇔ F(u) ∈ S∗(Rn).

• The algebra Gr,Rs∗ (Ω) = X r,RS∗ (Ω)/N r
S∗(Ω) is constructed in the same way as previ-

ously (when R is a regular subset of RN
+ and Ω an open subset of Rn) from

X r,RS∗ (Ω) = {(fε)ε ∈ S∗(Ω)Λ : ∃N ∈ R ∀q ∈ N µq,0(fε) = O(r−N(q)
λ ) as λ→ 0};

N r
S∗(Ω) = {(fε)ε ∈ S∗(Ω)Λ : ∀N ∈ RN

+ ∀q ∈ N µq,0(fε) = O(rN(q)
λ ) as λ→ 0}.

4.2.1. The Gr,R-generalized wave front set

Definition 4.6. An element u ∈ Gr(Ω) is said microlocally (r,R)-regular at (x0, ξ0) ∈
Ω× (Rd\{0})(we set: u ∈ Gr,R(x0, ξ0)) if there exists some neighbourhood W of x0, some
ϕ ∈ D(W ), ϕ(x0) 6= 0, some conic neighbourhood Γ of ξ0 such that ϕ̂u ∈ Gr,Rs∗ (Γ).

Definition 4.7. The Gr,R-generalized wave front set WF (r,R)(u) of u ∈ Gr(Ω) is the
complement in Ω × (Rn\{0}) of the set of all pairs (x0, ξ0) such that u is microlocally
(r,R)-regular at (x0, ξ0).

Theorem 4.8. The projection of WF (r,R)(u) in Ω is equal to sing supp(r,R)(u).
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The proof follows the arguments involved in [21] using lemma 8.1.1.

Example 4.9. Taking λ = ε ∈ ]0, 1], rε = ε and R = Bo (the set of bounded sequences),
we obtain the G∞ microlocal analysis of elements in G (see [31, 37]).

Taking λ = ε ∈ ]0, 1] and rε = ε, we obtain for any R the GR microlocal analysis of
elements in G (see [12]).

4.2.2. The Gr,R,L-generalized wave front set. We begin by giving a characterization of
Gr,R,L-local regularity. When starting from previous cases (like G, GR or GL) the problem
is to change simultaneously the asymptotic scale into a new one, and the G∞-regularity
subordinated to L-conditions into GR-regularity subordinated to L-conditions. To do that
we have to mix carefully the techniques used in [12] and [29]. This study is done in [13].
In this subsection, we only give the definitions and results without proofs.

Theorem 4.10. Let x0 ∈ Ω ⊂ Rn and u ∈ Gr(Ω). Then, u is Gr,R,L at x0 (in the
sense of Definition 3.2) iff there exist some neighbourhood W of x0, a compact K such
W ⊂ K b Ω, a sequence of functions χk,each in DK(Ω) and valued in [0, 1] with χku = u

on W , a representative (uλ)λ of u, a regular sequence N ∈ R, a positive constant c, and
λ0 ∈ Λ such that for all ξ ∈ R

∀k ∈ N ∀λ ≺ λ0 |ξ|k|ûk,λ(ξ)| ≤ cr−N(k)
λ (cLk)k. (∗)

Definition 4.11. An element u ∈ Gr(Ω) is said to be microlocally (r,R, L)-regular at
(x0, ξ0) ∈ Ω × (Rn\{0}) (we write u ∈ Gr,R,L(x0, ξ0)) if there exist a neighbourhood W

of x0, a conic neighbourhood Γ of ξ0, a sequence (uk)k∈N of generalized functions, where
uk = χku and each χk is valued in [0, 1] and is in DK(Ω), with W ⊂ K b Ω, ukbeing
equal to u in W , a sequence N ∈ R, a positive constant c, and λ0 ∈ Λ such that (∗) holds
when ξ ∈ Γ.

Definition 4.12. The Gr,R,L-generalized wave front set WF (r,R,L)(u) of u ∈ Gr(Ω) is
the complement in Ω× (Rn\{0}) of the set of all pairs (x0, ξ0) such that u is microlocally
(r,R, L)-regular at (x0, ξ0).

Clearly, WF r,R,L(u) is a closed subset of Ω × (Rn\{0}); its projection in Ω is given
by the following result:

Theorem 4.13. The projection of WF (r,R,L)(u) in Ω is equal to sing supp(r,R,L)(u).

Example 4.14. Taking λ = ε ∈ ]0, 1], rε = ε , R = Bo (the set of bounded sequences),
we obtain for any L the GL microlocal analysis of elements in G (see [29]).

Taking λ = ε ∈ ]0, 1], rε = ε , R = Bo and Lk = k + 1, we get the GA microlocal
analysis of elements in G (see [34]).

Taking λ = ε ∈ ]0, 1], rε = eε
− 1

2s−1 , R = Bo and Lk = (k + 1)s, we obtain the Gs,∞
micolocal analysis of elements in Gs (see [6]).

4.2.3. Propagation of singularities under differential (or pseudo-differential) operators.
We distinguish two cases.

a) Summarizing the first investigations in the following results proved in [13] we have

Proposition 4.15. Suppose that (a, u) is in Gr(Ω)×Gr(Ω).
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(i) If a ∈ Gr,R(Ω) (resp. a ∈ Gr,R,L(Ω)), then WF (r,R)(au) ⊂ WF (r,R)(u) (resp.
WF (r,R,L)(au) ⊂WF (r,R,L)(u));

(ii) WF (r,R)(∂αu) ⊂WF (r,R)(u) and WF (r,R,L)(∂αu) ⊂WF (r,R,L)(u).

Proposition 4.16. Let P (∂) =
∑
|α|≤m aα∂

α be a differential operator in Gr(Ω). If the
coefficients aα lie in Gr,R(Ω) (resp. in Gr,R,L(Ω)), then

WF (r,R)(P (∂)u) ⊂WF (r,R)(u) (resp. WF (r,R,L)(P (∂)u) ⊂WF (r,R,L)(u)).

b) In the special case of G∞ singularities of G, we can quote the results based
on pseudo-differential operators and pseudo-differential techniques. In [18] analogues of
Hörmander definition of the distributional wave front set given in [22] are obtained by
characterizations of generalized wave front set in terms of intersection over some non-
ellipticity domains. This intersection is taken over all slow scale pseudo-differential oper-
ators a ∈ S̃

m

sc(Ω × Rn) (Definition 1.1) verifying some other regularity conditions. More
precisely, if Ellsc(a) denotes the set of all (x, ξ) ∈ Ω × T ∗(Ω)\{0}, where a is slow scale
micro-elliptic (Definition 1.2), Theorem 2.1 proves that, for all u ∈ G(Ω),

WF g(u) = WF sc(u) :=
⋂

a(x,D)∈ prΨ0(Ω)

a(x,D)u∈G∞(Ω)

Ellsc(a)c

where prΨ0(Ω) denotes the set of all properly supported slow scale operators of order 0.

4.3. The frequential microlocal analysis in L(Gc(Ω), C̃)

4.3.1. The generalized wave front set WFG(T ). Garetto in [17] (Definition 3.3) defines
the G-wave front set of a functional T ∈ L(Gc(Ω), C̃) as

WFG(T ) :=
⋂

a(x,D)∈prΨ0(Ω)

a(x,D)T∈G(Ω)

Ellsc(a)c.

And even the G∞-wave front set of T is defined in the same way by replacing G(Ω) by
G∞(Ω). Proposition 3.5 shows that the projection on Ω ofWFG(T ) is exactly sing suppGT .
When A is a properly supported pseudo-differential operator with symbol a ∈ S̃mρ,δ(Ω ×
Rn), the inclusion

WFG(AT ) ⊂WFG(T )

can be refined by introducing the concept of G-microsupport of a, denoted µ suppG(a).
It is the complement of all (x, ξ) ∈ Ω × T ∗(Ω)\{0} where a is G-smoothing (Definition
3.6). Then we have (Corollary 3.9)

WFG(a(x,D)T ) ⊂WFG(T ) ∩ µ suppG(a).

4.3.2. Fourier transform characterization of T and propagation of singularities. When
ϕ ∈ D(Ω) and T ∈ D′(Ω), we recall that the regularity of ϕT can be measured by the
rapid decay of its Fourier transform in some conic region Γ ⊂ Rn\{0}. Following this
idea, Garetto introduces the subset GS,0(Γ) of Gτ (Rn) (algebra of tempered generalized
functions) as follows:

GS,0(Γ) := {u = [uε] ∈ Gτ (Rn) : ∀l ∈ R ∃N ∈ N sup
x∈Γ

(1 + |x|)l|uε(x)| = O(ε−N )}
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which is similar to Gr,Rs∗ (Γ) introduced in Subsection 3.2. This leads to the following
Fourier transform characterization of T (see [18], 3.15 or [17], 3.10):

Theorem 4.17. Let T be a basic functional in L(Gc(Ω), C̃). Then (x, ξ) /∈ WFG(T ) if
and only if there exist a conic neighbourhood of ξ and a cutoff function Φ ∈ D(Ω) with
Φ(x) = 1 such that

F(ΦT ) ⊂ GS,0(Γ).

Then an extension of Theorem 4.1 follows (see [15], [17], 4.1):

Theorem 4.18. If A = a(x,D) is a properly supported pseudo-differential operator with
symbol a ∈ S̃

m

sc(Ω× Rn) and T a basic functional in L(Gc(Ω), C̃), then

WFG(AT ) ⊂WFG(T ) ⊂WFG(AT ) ∪ Ellsc(a)c.

5. The asymptotic microlocal analysis. Let Ω be an open set in X. Fix u = [uλ] ∈
A(Ω) and x ∈ Ω. The idea of the (a,F)-microlocal analysis is the following: (uλ)λ may
not tend to a section of F above a neighbourhood of x, that is, there may not exist
V ∈ Vx and f ∈ F(V ) such that lim

Λ
F(V ) uλ = f . Nevertheless, in this case, there may

exist V ∈ Vx, r ≥ 0 and f ∈ F(V ) such that lim
Λ
F(V ) aλ(r)uλ = f , that is [aλ(r)uλ|V ] is

in the subspace (resp. subalgebra) FA(V ) of A(V ) introduced in Subsection 2.5. These
preliminary remarks lead to the following concept and results which we summarize from
the results given in [27, 28, 14].

5.1. The (a,F)-singular parametric spectrum. We recall that a is a map from R+

to A+ such that a(0) = 1 and F is a presheaf of topological vector spaces (or topological
algebras). For any open subset Ω of X, u = [uλ] ∈ A(Ω) and x ∈ Ω, set

N(a,F),x(u) = {r ∈ R+ : ∃V ∈ Vx ∃f ∈ F(V ) lim
Λ
F(V ) (aλ(r)uλ|V ) = f}

= {r ∈ R+ : ∃V ∈ Vx [aλ(r)uλ|V ] ∈ FA(V )}.

It is easy to check that N(a,F),x(u) does not depend on the representative of u. If no
confusion may arise, we shall simply write N(a,F),x(u) = Nx(u).

Assume that

(a) ∀ λ ∈ Λ ∀(r, s) ∈ R+ aλ(r + s) ≤ aλ(r)aλ(s) and, for all r ∈ R+\{0}, the net
(aλ(r))λ converges to 0 in K;

(b) F is a presheaf of Hausdorff locally convex topological vector spaces.

Then, from Theorem 7 in [14] we have, for u ∈ A(Ω):

(i) If r ∈ Nx(u), then [r,+∞) is included in Nx(u). Moreover, for all s > r, there exists
V ∈ Vx such that: lim

Λ
F(V ) (aλ(s)uλ|V ) = 0. Consequently, Nx(u) is either empty,

or a sub-interval of R+.
(ii) More precisely, suppose that for x ∈ Ω, there exist r ∈ R+, V ∈ Vx and f ∈ F(V ),

nonzero on each neighbourhood of x included in V , such that

lim
Λ
F(V ) (aλ(r)uλ|V ) = f.

Then Nx(u) = [r,+∞).
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(iii) In the situation of (i) and (ii), we have: 0 ∈ Nx(u) iff Nx(u) = R+. Moreover, if
one of these assertions holds, the limits lim

Λ
F(V ) (aλ(s)uλ|V ) can be nonnull only

for s = 0.

Now, we set
Σ(a,F),x(u) = Σx(u) = R+\Nx(u); R(a,F),x(u) = Rx(u) = inf Nx(u).

According to the previous remarks and comments, Σ(a,F),x(u) is an interval of R+ of the
form [0, R(a,F),x(u)) or [0, R(a,F),x(u)], the empty set, or R+. This leads to the following
(see [14]):

Definition 5.1. The (a,F)-singular spectrum of u ∈ A(Ω) is the set

S(a,F)
A (u) = {(x, r) ∈ Ω× R+ : r ∈ Σx(u)}.

Example 5.2. Set X = Rd, E = C∞, F = Cp (p ∈ N = N ∪ {+∞}), f ∈ C∞(Ω). Set
u = [(ε−1f)ε] and v = [(ε−1 |ln ε| f)ε] in A(Ω) = G(Ω). Then, for all x ∈ R,

N(a,Cp),x(u) = [1,+∞) , N(a,Cp),x(v) = (1,+∞) , R(a,Cp),x(u) = R(a,Cp),x(v) = 1.

Remark 5.3. We have Σ(a,F),x(u) = ∅ iff N(a,F),x(u) = R+ and, according to The-
orem 7 in [14], iff 0 ∈ N(a,F),x(u), that is, there exist (V, f) ∈ Vx × F(V ) such that
lim
Λ
F(V ) (aλ(0)uλ|V ) = f . As aλ(0) ≡ 1, this last assertion is equivalent to x ∈ OFA(u).

Thus Σ(a,F),x(u) = ∅ iff x /∈ SFA (u).

Proposition 5.4. The projection of the (a,F)-singular spectrum of u on Ω is the F-
singular support of u.

5.2. Some properties of the (a,F)-singular parametric spectrum. We begin with
introducing the following notation. For u = [uλ] ∈ A, (Ω), the symbol

lim
Λ
F(V ) (aλ(r)uλ|V ) ∈ F(V )

means that there exists f ∈ F(V ) such that lim
Λ
F(V ) (aλ(r)uλ|V ) = f .

5.2.1. Linear and differential properties. It is easy to prove that for any u, v ∈ A(Ω),
we have

S(a,F)
A (u+ v) ⊂ S(a,F)

A (u) ∪ S(a,F)
A (v).

As a corollary, we have
S(a,F)
A (u) = S(a,F)

A (u1)

for any u, u0, u1 in A(Ω) such that

(i) u = u0 + u1, (ii) S(a,F)
A (u0) = ∅.

Assume that F is a sheaf of topological differential vector spaces, with continuous differ-
entiation, admitting E as a subsheaf of topological differential algebras. Then the sheaf
A is also a sheaf of differential algebras with ∂αu = [∂αuλ] for any α ∈ Nd and u ∈ A(Ω),
where (uλ)λ is an arbitrary representative of u. The independence of ∂αu from the choice
of a representative follows directly from the definition of J(IA,E,P). It follows that if u is
in A(Ω) and Cα in E(Ω), then

S(a,F)
A (P (∂)u) ⊂ S(a,F)

A (u),
where P (∂) =

∑
|α|≤m Cα∂

α for α ∈ Nd.
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5.2.2. Nonlinear properties. If F is a presheaf of algebras, the (a,F)-singular spectrum
inherits new properties with respect to nonlinear operations, as seen in the following
results (see in [14]):

Theorem 5.5. Suppose that F is a presheaf of algebras. For u, v ∈ A(Ω) denote:

D0 = SFA (u) ∩ SFA (v); D1 = SFA (u)\D0; D2 = SFA (v)\D0.

Then the (a, F )-singular asymptotic spectrum of uv satisfies

S(a,F)
A (uv) ⊂ {(x, ξ) : x ∈ D1, ξ ∈ Σx(u)} ∪ {(x, ξ) : x ∈ D2, ξ ∈ Σx(v)}

∪{(x, ξ) : x ∈ D0, ξ ∈ Ex(u, v)},

where

Ex(u, v) =
{

[0, sup Σx(u) + sup Σx(v)], if Σx(u) 6= R+ and Σx(v) 6= R+

R+, if Σx(u) = R+ or Σx(v) = R+

for any x ∈ D0.

Corollary 5.6. If F is a presheaf of topological algebras, then

S(a,F)
A (up) ⊂ {(x,Hp,x(u)) : x ∈ SFA (u)}

for u ∈ A(Ω) and p ∈ N∗, where

Hp,x(u) =
{

[0, p sup Σx(u)], if Σx(u) 6= R+

R+, if Σx(u) = R+.

5.3. Some examples and applications to partial differential equations. In this
subsection we shall give some examples of (a,F)-singular spectra of solutions to nonlinear
partial differential equations given in ([14], Subsection 4.2). Throughout we shall suppose
that Λ = ]0, 1], X = Rd, E = C∞, F = Cp (1 ≤ p ≤ ∞) or F = D′, aε(r) = εr. The
results will hold for any (C, E ,P)-algebra

A = H(A,E,P)/J(IA,E,P)

such that (aε(r))ε ∈ A+ for all r ∈ R+ and the hypothesis given in 2.6.2 holds.

5.3.1. On the singular spectrum of powers of the delta function. We can compare the
(a,Cp)-singular spectrum and the (a,D′)-singular spectrum of powers of the delta func-
tion. Given a mollifier of the form

ϕε(x) =
1
εd
ϕ

(
x

ε

)
, x ∈ Rd,

where ϕ ∈ D(Rd), ϕ ≥ 0 and
∫
ϕ(x)dx = 1, its class in A(Rd) defines the delta function

δ(x) as an element of A(Rd). Its powers are given by (m ∈ N)

δm = [ϕmε ] =
[

1
εmd

ϕm
(
.

ε

)]
.

Clearly, the C0-singular spectrum is given by

S(a,C0)
A (δm) =

(
0, [0,md]

)
.
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Differentiating ϕm(x) and observing that for each derivative there is a point x at which
this function does not vanish we obtain the (a,Cp)-singular spectrum of δm :

S(a,Cp)
A (δm) =

(
0, [0,md+ p]

)
.

Given now a test function ψ ∈ D(Rd), we have∫
ϕmε (x)ψ(x) dx =

∫
1

εmd−d
ϕm(x)ψ(εx) dx,

thus the (a,D′)-singular spectrum of δm is

S(a,D′)
A (δm) = ∅ for m = 1, S(a,D′)

A (δm) =
(
0, [0,md− d[

)
for m > 1.

5.3.2. The strength of a singularity. We point out the following remark (see [14], Sub-
section 4.3): when studying the propagation and interaction of singularities in semilinear
hyperbolic systems, Rauch and Reed in [36] defined the strength of a singularity of a
piecewise smooth function. This notion is recalled in the one-dimensional case. Assume
that the function f: R→ R is smooth on ]−∞, x0] and on [x0,∞[ for some point x0 ∈ R.
The strength of the singularity of f at x0 is the order of the highest derivative which
is still continuous across x0. For example, if f is continuous with a jump in the first
derivative at x0, the order is 0; if f has a jump at x0, the order is −1. Travers [39] later
generalized this notion to include delta functions. Slightly deviating from his definition,
but in line with the one of [36], it is possible to define the strength of singularity of the
k-th derivative of the delta function at x0, ∂kxδ(x− x0), to be −k − 2.

We can find the relation between the strength of a singularity of a function f at x0

and the singular spectrum of [f ∗ ϕε], where ϕε is a convenient mollifier. More precisely
we consider a function f : R → R which is smooth on (−∞, x0] and on [x0,∞) for
some point x0 ∈ R; actually only the local behaviour near x0 is relevant. A mollifier
ϕε(x) = 1

εϕ(xε ) is fixed as in 5.3.1 and the corresponding embedding of D′(R) into the
(C, E ,P)-algebra A(R) is denoted by ι. In particular, ι(f) = [f ∗ ϕε]. If f is continuous
at x0, then limε→0 f ∗ ϕε = f in C0. If f has a jump x0, this limit does not exist in C0,
but limε→0 ε

rf ∗ ϕε = 0 in C0 for every r > 0. Then we have the following result:

Proposition 5.7. Let x0 ∈ R. If f : R → R is a smooth function on (−∞, x0] and on
[x0,∞) or f(x) = ∂kxδ(x − x0) for some k ∈ N, then the strength of the singularity of f
at x0 is −n if and only if

Σ(a,C1),x0

(
ι(f)

)
= [0, n].

Here n ∈ N and aε(r) = εr.
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Boston, 1989.

[4] J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux
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[34] S. Pilipović, D. Scarpalézos and V. Valmorin, Real analytic generalized functions, preprint.

[35] J. Rauch, Singularities of solutions to semilinear wave equation, J. Math. Pures et Appl.

58 (1979), 299–308.

[36] J. Rauch and M. Reed, Jump discontinuities of semilinear, strictly hyperbolic equations

in two variables: Creation and propagation, Comm. Math. Phys. 81 (1981), 203–227.
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