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Abstract. The space of Laplace ultradistributions supported by a convex proper cone is in-
troduced. The Seeley type extension theorem for ultradifferentiable functions is proved. The
Paley-Wiener-Schwartz type theorem for Laplace ultradistributions is shown. As an application,
the structure theorem and the kernel theorem for this space of ultradistributions are given.

1. Introduction. The theory of ultradistributions introduced by C. Roumieu [7] and
A. Beurling [1] is a natural generalisation of the theory of Schwartz distributions. It was
systematically investigated by H. Komatsu in his fundamental papers [3] and [4]. In par-
ticular he proved the structure theorem and the kernel theorem for the spaceD′(Mp)(Ω) of
ultradistributions. Moreover he described the image of this space under Fourier-Laplace
transformation (the Paley-Wiener-Schwartz type theorem).

In a similar way G. Łysik [5] introduced and studied the space L′(Mp)

(ω) (Γv) of Laplace
ultradistributions of Beurling type supported by a half line Γv := [v,∞). We emphasise
that this space of ultradistributions is convenient for the study of Laplace transformation.

On the other hand, in the theory of the hyperbolic equations it is convenient to
consider distributions and ultradistributions supported by a cone (see Chapter III in [9]).

Hence it seems to be natural to introduce the space of Laplace ultradistributions
supported by a cone. In the paper we define and study this space for closed convex fat
proper cones in Rn following G. Łysik’s approach.

The paper is organised as follows. In the first sections we introduce the notations and
the notions of cones and of ultradistributions.
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Section 4 contains one of the main results of the paper — the Seeley type extension
theorem for Laplace ultradifferentiable functions supported by a cone. As an application
we show completeness of this space of functions.

The second main result — the Paley-Wiener-Schwartz type theorem for Laplace ul-
tradistributions supported by a cone — is given in Section 5. Following G. Łysik [5], as
a corollary we obtain the structure theorem for this space of ultradistributions.

As an application, in the last section we show the version of the kernel theorem. In this
way we generalise our earlier result [6] to the convex proper cones.

2. Notation and cones in Rn. Let us denote by ‖ · ‖ the Euclidean norm in Rn (or
Cn). We set 〈x〉 = 1 + |x| for x ∈ R and similarly 〈z〉 = 1 + |z| for z ∈ C.

For any ε > 0 and S ⊆ Rn let (S)ε denote the set {x ∈ Rn : dist (x, S) ≤ ε}.
Sn denotes the unit n-sphere in Rn+1.

Let us consider Γ ⊆ U ⊆ Rn, such that U open in Rn, Γ is relatively closed in U and
Γ ⊆ Int Γ (i.e. Γ is a fat set). Then for k ∈ N0 ∪ {∞} we set

Ck(Γ ) := {f : Γ → C | there exists g ∈ Ck(U) such that g|Γ = f}.
We write D for the differential operator d

dx .

Let {Pτ}τ∈T , be a family of vector spaces. Then lim−→
τ∈T

Pτ (resp. lim←−
τ∈T

Pτ ) denotes the

inductive limit (resp. projective limit) of Pτ , τ ∈ T.
A cone in Rn (with vertex at 0) is a set Γ ⊆ Rn with the property that if x ∈ Γ , then

also λx ∈ Γ for all λ > 0.
If Γ is a cone in Rn (with vertex at 0) and v ∈ Rn then the set Γv := Γ + v is called

a cone in Rn with vertex at v.
For a given cone Γ in Rn (with vertex at 0), the set

Γ ∗ := {ξ : ξ · x ≥ 0, ∀x ∈ Γ}
is said to be dual to Γ . The same set Γ∗ is also called dual to Γv = Γ + v.

Observe that Γ ∗ is a closed convex cone with vertex at 0 (see [9]). If, in addition,
Int Γ ∗ 6= ∅ then a cone Γ (or, generally, a cone Γv) is called proper.

We say that x is less than y in Γ -sense if y − x ∈ Int Γ ; we then write x <Γ y.
Similarly we write x ≤Γ y if y − x ∈ Γ .

3. Laplace ultradistributions. Let (Mp)p∈N0 be a sequence of positive numbers sat-
isfying the conditions (see [3]):

(M.0) M0 = M1 = 1;
(M.1) (logarithmic convexity) M2

p ≤Mp−1Mp+1 for p ∈ N;
(M.2) (stability under ultradifferential operators) there are constants A,H such that

Mp ≤ AHp min
0≤q≤p

MqMp−q for p ∈ N0;

(M.3) (strong non-quasi-analyticity) there is a constant A such that
∞∑

q=p+1

Mq−1

Mq
≤ Ap Mp

Mp+1
for p ∈ N0.
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Let mp := Mp/Mp−1 for p ∈ N. Observe that (M.1) is equivalent to saying that the
sequence mp is non-decreasing. By (M.3) we have mp →∞.

The associated function of the sequence (Mp) is defined byM(ρ) := supp∈N0
ln ρp

Mp
for

ρ > 0.
An ultradifferential operator P (D) of class (Mp) is defined by P (D) :=

∑
α∈Nn0

aαD
α,

where aα ∈ C satisfy the following condition: there are constants K < ∞ and C < ∞
such that |aα| ≤ C K|α|

M|α|
for α ∈ Nn0 .

The entire function Cn 3 z 7→ P (z) :=
∑
α∈Nn0

aαz
α is called a symbol of class (Mp).

We will introduce some spaces of ultradifferentiable functions and of ultradistribu-
tions.

Definition 3.1 (see [3]). Let Ω be a fat set in Rn. The space E(Mp)(Ω) of ultradifferen-
tiable functions on Ω of class (Mp) is defined as

E(Mp)(Ω) := lim
←−

K⊂⊂Ω

E(Mp)(K),

where for any compact subset K of Ω

E(Mp)(K) := lim
←−
h>0

E(Mp)
h (K)

and for any h > 0

E(Mp)
h (K) :=

{
ϕ ∈ C∞(K) : ‖ϕ‖(Mp)

K,h := sup
y∈K

sup
α∈Nn0

|Dαϕ(y)|
h|α|M|α|

<∞
}
.

Definition 3.2 (see [3]). Let Γv be a closed fat cone in Rn. The space D′(Mp)(Γv) of
ultradistributions on Γv of class (Mp) is defined as the dual space of

D(Mp)(Γv) := lim
−→

K⊂⊂Γv

lim
←−
h>0

D
(Mp)
K,h (Γv),

where for any compact subset K of Γv and any h > 0

D
(Mp)
K,h (Γv) :=

{
ϕ ∈ C∞(Γv) : suppϕ ⊂ K and ‖ϕ‖(Mp)

K,h := sup
y∈K

sup
α∈Nn0

|Dαϕ(y)|
h|α|M|α|

<∞
}
.

Definition 3.3 (see [5]). Let ω ∈ (R ∪ {∞})n and let Γv be a closed fat cone in Rn.
The space L′(Mp)

(ω) (Γv) of Laplace ultradistributions supported by a cone Γv is defined as
the dual space of

L
(Mp)

(ω) (Γv) := lim
−→

a<
Γ∗ω

L(Mp)
a (Γv),

where for any a <Γ∗ ω

L(Mp)
a (Γv) := lim

←−
h>0

L
(Mp)
a,h (Γv),

and for any h > 0

L
(Mp)
a,h (Γv) :=

{
ϕ ∈ C∞(Γv) : ‖ϕ‖(Mp)

Γv,a,h
:= sup

y∈Γv
sup
α∈Nn0

|e−a·yDαϕ(y)|
h|α|M|α|

<∞
}
.

Observe that the space L(Mp)

(ω) (Γv) is nonempty if and only if Γv is a proper cone.
In this case we have
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Lemma 3.4. Assume that Γv is a closed fat proper cone in Rn. Then D(Mp)(Γv) is a
dense subspace of L(Mp)

(ω) (Γv). Thus L
′(Mp)

(ω) (Γv) is a subspace of the space D′(Mp)(Γv) of
ultradistributions.

Proof. Making appropriate translation we can assume that Γv = Γ is a cone with vertex
at 0. Let ϕ ∈ L

(Mp)

(ω) (Γ ). Then there exist a <Γ∗ b <Γ∗ ω such that ϕ ∈ L
(Mp)
a (Γ ) ⊂

L
(Mp)
b (Γ ). By the Denjoy-Carleman-Mandelbrojt theorem (see Theorem 4.2 in [3]) there

exists a function ψ ∈ D(Mp)(Γ ) such that 0 ≤ ψ(y) ≤ 1 for y ∈ Γ , ψ(y) = 1 for ||y|| ≤ 1
and ψ(y) = 0 for ||y|| ≥ 2. Put

ϕν(y) := ψ

(
1
ν
y

)
ϕ(y) for y ∈ Γ and ν ∈ N.

Then ϕν(y) ∈ D(Mp)(Γv). Analogously to Lemma 3.4 in [5] we obtain that

ϕν → ϕ in L(Mp)
b (Γ ) as ν →∞

and the proof is complete.

Example 3.5. The function

Γv 3 y 7→ expz y := ey·z

belongs to L(Mp)

(ω) (Γv) if and only if Re z <Γ∗ ω. Moreover, for any a <Γ∗ ω and h > 0 we
have

‖ expz ‖
(Mp)
Γv,a,h

= sup
y∈Γv

sup
α∈Nn0

|e−a·yzαey·z|
h|α|M|α|

≤ e(Re z−a)·v sup
α∈Nn0

|zα|
h|α|M|α|

= e(Re z−a)·v expM
(
|z1|
h

)
· · · expM

(
|zn|
h

)
<∞

with Re z <Γ∗ a.

Definition 3.6. For a ∈ Rn and ω ∈ (R ∪ {∞})n we define

Ya := span {expc}c≤Γ∗a, Y(ω) =
⋃

a<Γ∗ω

Ya.

Analogously to Proposition 1 in [5] one can prove

Lemma 3.7. Let Γv be a closed fat proper cone in Rn and b <Γ∗ a. Then L
(Mp)
b (Γv) is

contained in the closure of Ya in L(Mp)
a (Γv). Thus Y(ω) is dense in L(Mp)

(ω) (Γv).

4. The Seeley type theorem. In this section we show the extension type theorem for
the space L(Mp)

a (Γv) of Laplace ultradifferentiable functions. For this purpose we prove
the following lemmas

Lemma 4.1. Let Γ 6= Rn be a closed convex fat cone in Rn (n > 1) with vertex at 0. Fix
a > 0. Then there exists a linear continuous extension operator

E1: E(Mp)(Γ ∩ {x ∈ Rn : ||x|| ≥ a})→ E(Mp)(Rn).

Proof. Let Φ : R+ × Sn−1 → Rn denote the spherical coordinate transformation. Since
the ultradifferentiable functions of class (Mp) are stable under real analytic coordinate
transformations (see [4], p. 626), Φ gives the isomorphism of the space E(Mp)(Γ ∩ {x ∈
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Rn : ||x|| ≥ a}) onto E(Mp)([a,∞) × S), where S is a convex compact set in Rn−1

satisfying [a,∞)× S = Φ−1(Γ ∩ {x ∈ Rn : ||x|| ≥ a}). So, it is sufficient to construct a
linear continuous extension operator

Ẽ1: E(Mp)([a,∞)× S)→ E(Mp)(Rn).

To this end, fix ε ∈ (0, a/2) and define a covering {Uk}k∈N0 of [a,∞) × S by the sets
Uk := (a+ k − ε, a+ k + 1 + ε)× (S)ε for k = 1, 2, . . ..

Next, by Proposition 5.2 in [3], we may construct an ultradifferentiable locally finite
partition of unity {ψk}k∈N0 subordinate to {Uk}k∈N0 . Moreover in this partition of unity
we can put ψk(x) := ψ0(x− (k, 0, ..., 0)) for k ∈ N0. Hence the functions ψk satisfy:

1) ψk ∈ E(Mp)((a− ε,∞)× (S)ε);
2) suppψk ⊂ Uk;
3)
∑
ψk(x) = 1 on [a,∞)× S;

4) the family {ψk}k∈N0 is equibounded in E(Mp)((a− ε,∞)× (S)ε).

Furthermore, let Ẽ1,k (for k ∈ N0) be a linear continuous extension operator for
ultradifferentiable functions on the convex compact set Ûk := [a+k− ε, a+k+ 1 + ε]×S
(see Proposition 4.7 in [2]):

Ẽ1,k: E(Mp)(Ûk)→ E(Mp)(Rn),

such that:

1) supp Ẽ1,k(ψ) ⊂ (Ûk)ε for every ψ ∈ E(Mp)(Ûk);
2) if ψ ∈ E(Mp)(Ûk) and suppψ ⊂ (a + k − ε, a + k + 1 + ε) × S then supp Ẽ1,k(ψ) ∩
([a,∞)× S) = suppψ.

Since for every k ∈ N0 the set Ûk is isometric to Û1, we also can assume that:

3) the family {Ẽ1,k}k∈N0 of operators is equicontinuous.

Now, for every ϕ ∈ E(Mp)([a− ε,∞)× S) one can define Ẽ1 by

Ẽ1(ϕ) :=
∑
k∈N0

Ẽ1,k(ψkϕ).

Observe that by the properties of the functions {ψk}k∈N0 and the mappings {Ẽ1,k}k∈N0 ,
Ẽ1 is a linear continuous extension operator from E(Mp)([a − ε,∞) × S) to E(Mp)(Rn).
Hence in Cartesian coordinates we obtain a linear continuous extension operator

E1: E(Mp)(Γ ∩ {x ∈ Rn : ||x|| ≥ a})→ E(Mp)(Rn),

which completes the proof.

Lemma 4.2. Let Γ be a closed convex fat cone in Rn (n > 1) with vertex at 0. Then there
exists a linear continuous extension operator

Ẽ: E(Mp)(Γ )→ E(Mp)(Rn).

Proof. Fix ε ∈ (0, 1). By Proposition 5.2 in [3], there exists a partition of unity {ψ1, ψ2}
subordinate to V1 := (Γ ∩ {x ∈ Rn : ||x|| > 1})ε, V2 := (Γ ∩ {x ∈ Rn : ||x|| < 1})ε
satisfying:
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1) ψi ∈ E(Mp)((Γ )ε) for i = 1, 2;
2) suppψi ⊂ Vi for i = 1, 2;
3) ψ1(x) + ψ2(x) = 1 on Γ .

Let E1: E(Mp)(Γ ∩ V 1) → E(Mp)(Rn) be a linear continuous extension operator con-
structed in Lemma 4.1.

Moreover, by Proposition 4.7 in [2], we have also a linear continuous extension operator
E2: E(Mp)(Γ ∩ V 2)→ E(Mp)(Rn).

Obviously we may assume that if ψ ∈ E(Mp)(Γ ∩ V i) and suppψ ⊂ Γ ∩ Vi then
suppEi(ψ) ∩ Γ = suppψ for i = 1, 2.

Now we can define Ẽ by

Ẽ(ϕ) := E1(ψ1ϕ) + E2(ψ2ϕ) for every ϕ ∈ E(Mp)(Γ ).

Observe that Ẽ: E(Mp)(Γ )→ E(Mp)(Rn) is a continuous linear extension mapping.

Theorem 4.3. Assume that Γv is a closed convex fat cone in Rn with vertex at v. Then
for every closed cone Γ ′v′ ⊆ Rn satisfying Γv ⊂ Int Γ ′v′ there exists a linear continuous
extension operator

E:L(Mp)
a (Γv)→ L(Mp)

a (Rn)

such that suppE(ϕ) ⊂ Γ ′v′ for every ϕ ∈ L(Mp)
a (Γv).

Proof. Obviously in the case Γv = Rn it is sufficient to put E := Id. For n = 1 the cone
Γv is an interval [v,∞) or (−∞, v] and the assertion is valid (see for instance [5] or [6]).

Hence we can assume that n ≥ 2 and Γv 6= Rn. Clearly, we can also put v = 0.
Applying Lemma 4.2 we see that there exists a linear continuous extension operator

Ẽ:L(Mp)
0 (Γv)→ L

(Mp)
0 (Rn).

Since the operations of multiplication

expa:L(Mp)
0 (Rn)→ L(Mp)

a (Rn) and exp−a:L(Mp)
a (Γv)→ L

(Mp)
0 (Γv)

are linear and continuous isomorphisms, we define a linear continuous extension operator

E′:L(Mp)
a (Γv)→ L(Mp)

a (Rn)

by the formula

E′(ϕ) := expa ·Ẽ(exp−a ·ϕ) for every ϕ ∈ L(Mp)
a (Γv).

By Proposition 5.2 in [3], there exists a cut-off function χΓv,Γ ′v′
∈ L(Mp)

0 (Rn) such that
0 ≤ χΓv,Γ ′v′

(x) ≤ 1 for x ∈ Rn, χΓv,Γ ′v′
(x) = 1 for x ∈ Γv and χΓv,Γ ′v′

(x) = 0 for
x ∈ Rn \ Γ ′v′ . Since the multiplication by χΓv,Γ ′v′

is a linear continuous isomorphism in

L
(Mp)
a (Rn), we can construct a linear continuous extension operator

E:L(Mp)
a (Γv)→ L(Mp)

a (Rn)

as

E(ϕ) := χΓv,Γ ′v′
· E′(ϕ) for every ϕ ∈ L(Mp)

a (Γv).

Clearly suppE(ϕ) ⊂ Γ ′v′ for every ϕ ∈ L
(Mp)
a (Γv).
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Using the extension mapping E constructed in Theorem 4.3 and following the proof
of Proposition 5.1 in [8] we obtain

Corollary 4.4. Let Γv be a closed convex fat cone in Rn. Then the space L(Mp)
a (Γv) is

complete.

5. The Paley-Wiener-Schwartz type theorem. In this section we shall prove that
the Laplace transform defines an isomorphism between the space L′(Mp)

(ω) (Γv) of Laplace
ultradistributions and some space of holomorphic functions with given growth condition.

Definition 5.1. The Laplace transform of u ∈ L′(Mp)

(ω) (Γv) is a function defined by

Lu(z) := u[expz] for Re z <Γ∗ ω.

Observe that by Example 3.5 the Laplace transform is well defined.

Theorem 5.2. Let Γv be a closed fat proper cone in Rn with vertex at v, u ∈ L′(Mp)

(ω) (Γv)
and F (z) := Lu(z) for Re z <Γ∗ ω. Then F is a holomorphic function on Re z <Γ∗ ω and
for every a <Γ∗ ω there exist h(a) > 0 and C(a) <∞ such that

|F (z)| ≤ C(a)ev·Re z expM
(
|z1|
h(a)

)
· · · expM

(
|zn|
h(a)

)
for Re z <Γ∗ a.

Proof. Since u is a linear functional on L
(Mp)

(ω) (Γv) and the mapping z 7→ expz is holo-
morphic on {Re z <Γ∗ ω}, it follows that F (z) satisfies our assertion.

Theorem 5.3. Let Γv be a closed fat proper cone in Rn, ω1, ω2 ∈ (R ∪ {∞})n satisfies
ω1 ≤Γ∗ ω2, u1 ∈ L

′(Mp)

(ω1) (Γv), u2 ∈ L
′(Mp)

(ω2) (Γv). If Lu1(z) = Lu2(z) for Re z <Γ∗ ω1 then

u1 = u2 in L′(Mp)

(ω1) (Γv).

Proof. Fix ϕ ∈ L(Mp)

(ω1) (Γv). It is sufficient to show that u1[ϕ] = u2[ϕ]. For this purpose

choose b <Γ∗ ω1 such that ϕ ∈ L(Mp)
b (Γv) and take b <Γ∗ a <Γ∗ ω1. By the assumption

u1[expc] = u2[expc] for every c ≤Γ∗ a. Hence the proof follows from Lemma 3.7.

To prove the converse of Theorem 5.2 we need a few lemmas. The first one is a version
of Lemma 9.1 in [8] (see also Lemma 3.7 in [5]).

Lemma 5.4. Let Γv be a closed fat proper convex cone in Rn with vertex at v. Suppose
that a ∈ Rn and G is a holomorphic function on the set {z ∈ Cn : Re z ≤Γ∗ a} satisfying
the estimation

|G(z)| ≤ C

〈z1〉2 · · · 〈zn〉2
ev·Re z for some C <∞.

Then
g(y) := (2πi)−n

∫
c+iRn

G(z)e−y·z dz for y ∈ Rn

defines correctly a function g such that:

a) g does not depend on the choice of c ≤Γ∗ a;
b) g is a continuous function on Rn;
c) supp g ⊂ Γv;
d) the function Γv 3 y 7→ ea·yg(y) is bounded;
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e) g ∈ L′(Mp)

(a) (Γv);
f) G(z) = Lg(z) for Re z <Γ∗ a.

Proof. See the proof of Lemma 9.1 in [8].

Lemma 5.5. Let Γ be a convex proper cone in Rn with vertex at 0. Then there exists
a linear transformation Φ: Rn → Rn satisfying the following conditions:

1) Φ(Γ ) ⊂ Rn+,
2) ‖x‖ ≤ ‖Φ(x)‖ for every x ∈ Rn.

Proof. Since Γ is a proper cone with vertex at 0, we can find A ∈ SO(n,R) such that

A(Γ ) ⊂ R+ × Rn−1 and A(Γ ) ∩
(
{0} × Rn−1

)
= {0}.

Next, we can choose a sufficiently large λ ≥ 1 such that for the linear operator
S: Rn → Rn defined by

S(x1, . . . , xn) := (λx1, x2, . . . , xn)

there exists T ∈ SO(n,R) satisfying T (S(A(Γ ))) ⊂ Rn+.
To finish the proof, it is sufficient to put Φ(x) := T (S(A(x))).

Lemma 5.6. Let Φ: Rn → Rn be the linear transformation constructed in the previous
lemma. If Φ̂: Cn → Cn is the complexification of Φ (i.e. Φ̂(x+ iy) := Φ(x) + iΦ(y)) then

‖z‖ ≤ ‖Φ̂(z)‖, (1)

|zi| ≤
√
n max
j=1,...,n

|Φ̂j(z)| for i = 1, . . . , n, (2)

〈z1〉 · · · 〈zn〉 ≤
√
n
n〈Φ̂1(z)〉n · · · 〈Φ̂n(z)〉n. (3)

Proof. By Lemma 5.5

‖z‖2 = ‖x‖2 + ‖y‖2 ≤ ‖Φ(x)‖2 + ‖Φ(y)‖2 = ‖Φ̂(z)‖2

and (1) holds. Hence

|zi|2 ≤ ‖z‖2 ≤ ‖Φ̂(z)‖2 ≤ n max
j=1,...,n

|Φ̂j(z)|2 for i = 1, . . . , n,

which gives (2). To prove (3) observe that by (2)

〈zi〉 = 1 + |zi| ≤ 1 +
√
n( max
j=1,...,n

|Φ̂j(z)|) ≤
√
n max
j=1,...,n

〈Φ̂j(z)〉 ≤
√
n〈Φ̂1(z)〉 · · · 〈Φ̂n(z)〉.

Thus
〈z1〉 · · · 〈zn〉 ≤

√
n
n〈Φ̂1(z)〉n · · · 〈Φ̂n(z)〉n,

which completes the proof.

Lemma 5.7. Let Γv be a proper cone in Rn, ω ∈ Rn and k > 0. Then there exists a symbol
P of class (Mp) non-vanishing on {z ∈ Cn : Re z ≤Γ∗ ω} and such that

expM(k|z1|) · · · expM(k|zn|)
|P (z)|

≤ C

〈z1〉2 · · · 〈zn〉2
for Re z <Γ∗ ω.



LAPLACE ULTRADISTRIBUTIONS 237

Proof. Let Φ̂(z) be the complexification of the linear transformation with respect to Γ ∗

constructed in Lemma 5.5. By (2)

expM(k|zi|) ≤ expM(k
√
n max
j=1,...,n

|Φ̂j(z)|)

≤ expM(k
√
n|Φ̂1(z)|) · · · expM(k

√
n|Φ̂n(z)|).

This gives

expM(k|z1|) · · · expM(k|zn|) ≤
(

expM(k
√
n|Φ̂1(z)|) · · · expM(k

√
n|Φ̂n(z)|)

)n
. (4)

Since mp →∞ as p→∞, we can choose p0 ∈ N such that

mp > 2k|Φ̂i(ω)|+ k and |mp − kΦ̂i(z)| ≥ k|Φ̂i(z)|

for i = 1, . . . , n, p ≥ p0 and Re z <Γ∗ ω.
Fix i ∈ {1, . . . , n}. By Lemma 5.5

Re Φ̂i(z) = Φi(Re z) ≤ Φi(ω) for Re z ≤Γ∗ ω.

Let

Pi(z) := (Φ̂i(ω − z) + 1)p0+1
∞∏
p=p0

(
1− k

√
nΦ̂i(z)
mp

)
for z ∈ Cn

Then Pi(z) does not vanish on {z ∈ Cn : Re z ≤Γ∗ ω}. On the other hand, by the
Hadamard factorisation theorem (Propositions 4.5 and 4.6 in [3]), Pi(z) is a symbol of
class (Mp). Moreover, it satisfies the inequality (see Lemma 3 in [5])

expM(k
√
n|Φ̂i(z)|)

|Pi(z)|
≤ Ci

〈Φ̂i(z)〉2
for Re z ≤Γ∗ ω, (5)

with some Ci <∞.
Taking P (z) := P1(z)n · · ·Pn(z)n we see that P (z) is also a symbol of class (Mp)

non-vanishing on {z ∈ Cn : Re z ≤Γ∗ ω}. Furthermore, by (3)–(5) we have

expM(k|z1|) · · · expM(k|zn|)
|P (z)|

≤
(

expM(k
√
n|Φ̂1(z)|) · · · expM(k

√
n|Φ̂n(z)|)

|P1(z)| · · · |Pn(z)|

)n
≤ Cn1 · · ·Cnn
〈Φ̂1(z)〉2n · · · 〈Φ̂n(z)〉2n

≤ nnCn1 · · ·Cnn
〈z1〉2 · · · 〈zn〉2

for Re z <Γ∗ ω.

Theorem 5.8. Let ω ∈ Rn and Γv be a closed convex fat proper cone in Rn with vertex
at v ∈ Rn. Moreover, let F be a function holomorphic on {Re z <Γ∗ ω} and such that for
every a <Γ∗ ω there exist h(a) > 0 and C(a) <∞ satisfying

|F (z)| ≤ C(a)ev·Re z expM
(
|z1|
h(a)

)
· · · expM

(
|zn|
h(a)

)
for Re z <Γ∗ a.

Then there exists exactly a unique Laplace ultradistribution S ∈ L′(Mp)

(ω) (Γv) satisfying

F (z) = LS(z) for Re z <Γ∗ ω. (6)
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Proof. Fix a <Γ∗ ω and choose ω̃ ∈ Rn such that a <Γ∗ ω̃ <Γ∗ ω. By Lemma 5.7 there
exists a symbol P (z) of class (Mp) such that∣∣∣∣F (z)

P (z)

∣∣∣∣ ≤ Cev·Re z

〈z1〉2 · · · 〈zn〉2
for Re z ≤Γ∗ ω̃.

Put G(z) := F (z)
P (z) . By Lemma 5.4 there exists g ∈ L′(Mp)

(a) (Γv) satisfying Lg(z) = G(z) for
Re z <Γ∗ a.

Let Sa := P (−D)g(z). Then Sa ∈ L
′(Mp)

(a) (Γv) and LSa(z) = P (z)Lg(z) = P (z)G(z) =

F (z) for Re z <Γ∗ a. The formula S = Sa on L
(Mp)

(a) (Γv) for every a <Γ∗ ω defines correctly

a functional S ∈ L′(Mp)

(ω) (Γv), which satisfies (6).

Combining Theorems 5.2, 5.3 and 5.8 we obtain

Theorem 5.9 (Paley-Wiener-Schwartz type theorem). Let Γv be a closed convex fat
proper cone in Rn with vertex at v. Then a function F (z) is the Laplace transform of
the unique Laplace ultradistribution u ∈ L′(Mp)

(ω) (Γv) if and only if F (z) is a holomorphic
function on the set {Re z <Γ∗ ω} and for every a <Γ∗ ω there exist h(a) > 0 and
C(a) <∞ such that

|F (z)| ≤ C(a)ev·Re z expM
(
|z1|
h(a)

)
· · · expM

(
|zn|
h(a)

)
for Re z <Γ∗ a.

By the proof of Theorem 5.8 we obtain the characterisation of Laplace ultradistribu-
tions supported by a cone. In this way we extend the result of G. Łysik (see Theorem 5
in [5]) to the proper convex cone.

Theorem 5.10 (Structure theorem). Let Γv be a closed convex fat proper cone in Rn with
vertex at v. Then an ultradistribution S ∈ D′(Mp)(Rn) belongs to the space L′(Mp)

(ω) (Γv) if
and only if for every a <Γ∗ ω there exist an ultradifferentiable operator Pa of class (Mp)
and a continuous function ga on Rn supported by Γv and satisfying:

a) |ga(y)| ≤ Ce−a·y for y ∈ Γv;
b) |Lga(z)| ≤ C

〈z1〉2···〈zn〉2 for Re z <Γ∗ a;

c) S = Pa(D)ga in L
′(Mp)

(a) (Γv).

6. The kernel theorem. In the last section we shall prove the kernel theorem for
Laplace ultradistributions L′(Mp)

(ω) (Γv). This version of the kernel theorem is a generalisa-
tion of Theorem 1 in [6] to the closed convex fat proper cones.

Definition 6.1. Let v1 ∈ Rn1 , v2 ∈ Rn2 , ω1 ∈ (R∪{∞})n1 , ω2 ∈ (R∪{∞})n2 . Moreover
we assume that Γ 1

v1 ⊂ Rn1 and Γ 2
v2 ⊂ Rn2 are proper closed fat convex cones.

We denote by L′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2)) the space of Laplace ultradistributions on Γ 1

v1

with values in L′(Mp)

(ω2) (Γ 2
v2), i.e.

A ∈ L′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2))
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if for any ϕ ∈ L(Mp)

(ω1) (Γ 1
v1) we have A[ϕ] ∈ L′(Mp)

(ω2) (Γ 2
v2) and the mapping

L
(Mp)

(ω1) (Γ 1
v1) 3 ϕ 7→ A[ϕ] ∈ L′(Mp)

(ω2) (Γ 2
v2)

is linear and continuous.

Theorem 6.2 (The kernel theorem). The mapping

IMp
: L′(Mp)

(ω1,ω2)(Γ
1
v1 × Γ 2

v2)→ L
′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2))

such that for any Ã ∈ L′(Mp)

(ω1,ω2)(Γ
1
v1 × Γ 2

v2)

IMp
(Ã)[ϕ][ψ] := Ã[ϕ⊗ ψ] for ϕ ∈ L(Mp)

(ω1) (Γ 1
v1), ψ ∈ L(Mp)

(ω2) (Γ 2
v2),

where ϕ ⊗ ψ denotes the function Γ 1
v1 × Γ 2

v2 3 (x, y) 7→ ϕ(x)ψ(y), is a linear topological
isomorphism of L′(Mp)

(ω1,ω2)(Γ
1
v1 × Γ 2

v2) onto L′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2)).

Proof. Following the proof of Theorem 1 in [6], we can show that the operator IMp
is

well defined and continuous.
Next we construct a continuous inverse operator

I−1
Mp

: L′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2))→ L

′(Mp)

(ω1,ω2)(Γ
1
v1 × Γ 2

v2)

such that

IMp
I−1
Mp

= Id
L
′(Mp)
(ω1) (Γ1

v1
,L
′(Mp)
(ω2) (Γ2

v2
))

and I−1
Mp
IMp

= Id
L
′(Mp)
(ω1,ω2)(Γ

1
v1
×Γ2

v2
)
.

To this end fix A ∈ L
′(Mp)

(ω1) (Γ 1
v1 , L

′(Mp)

(ω2) (Γ 2
v2)) and take any a1, a2, d1, d2 such that

aj <Γj∗ dj <Γj∗ ωj (for j = 1, 2). By Corollary 4.4 and the Mazur-Orlicz theorem (see
Theorem 2 in [6]) there exist cA <∞ and h > 0 such that

|A[ϕ][ψ]| ≤ cA||ϕ||
(Mp)
Γ1,d1,h

||ψ||(Mp)
Γ2,d2,h

for ϕ ∈ L(Mp)
d1

(Γ1), ψ ∈ L(Mp)
d2

(Γ2). (7)

By the Hahn-Banach theorem (7) holds for ϕ ∈ L
(Mp)
d1,h

(Γ1) and ψ ∈ L
(Mp)
d2,h

(Γ2). Put
ζj := bj + iηj where bj ∈ Rnj , with aj <Γj∗ bj <Γj∗ dj and ηj = (ηj1, ..., ηjnj ) ∈ Rnj for
j = 1, 2. Since there exist cj , kj (kj := 〈bj〉

h ) such that

|| expζj ||
(Mp)
Γj ,dj ,h,

≤ cj
nj∏
i=1

expM(kj〈ηji〉),

the function Γj 3 xj 7→ expζj xj belongs to L
(Mp)
dj ,h

(Γj) (for j = 1, 2). So we conclude from
(7) that

|A[expζ1 ][expζ2 ]| ≤ cAc1c2
n1∏
i=1

expM(k1〈η1i〉)
n2∏
i=1

expM(k2〈η2i〉). (8)

Let Φ ∈ L(Mp)
a1,a2(Γ1 × Γ2). Then the Laplace transform LΦ given by

LΦ(ζ1, ζ2) :=
∫

Γ1×Γ2

Φ(x1, x2)e−ζ1·x1−ζ2·x2 dx1 dx2 for aj <Γj∗ Re ζj (j = 1, 2)

satisfies
|LΦ(ζ1, ζ2)| ≤ c||Φ||(Mp)

Γ1×Γ2,(a1,a2),1 =: cΦ <∞. (9)
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Put P (ζ1, ζ2) := P (1)(ζ1)P (2)(ζ2), where P (j)(ζj) is a symbol of class (Mp) non-vanishing
on {z ∈ Cnj : Re z ≤Γj∗ ωj} and constructed in Lemma 5.7 (for j = 1, 2). Hence P (ζ1, ζ2)
is also a symbol of class (Mp) and it satisfies the inequality (see Lemma 3 in [5])

expM(k1|ζ11|) · · · expM(k1|ζ1n1 |) expM(k2|ζ21|) · · · expM(k2|ζ2n2 |)
|P (ζ1, ζ2)|

≤ K ′

〈η11〉2 · · · 〈η1n1〉2〈η21〉2 · · · 〈η2n2〉2
(10)

with some K ′ <∞.
Now we can define the mapping I−1

Mp
by

I−1
Mp

(A)[Φ] :=
( 1

2πi

)n1+n2

P (Dx1 , Dx2)
∫

b1+iRn1

∫
b2+iRn2

A[expζ1 ][expζ2 ]
LΦ(ζ1, ζ2)
P (ζ1, ζ2)

dζ1 dζ2.

(11)
From (8)–(10) we obtain∣∣∣A[expζ1 ][expζ2 ]

LΦ(ζ1, ζ2)
P (ζ1, ζ2)

∣∣∣
≤ cAc1c2cΦ

expM(k1〈η11〉) · · · expM(k1〈η1n1〉) expM(k2〈η21〉) · · · expM(k2〈η2n2〉)
|P (ζ1, ζ2)|

≤ K

〈η11〉2 · · · 〈η1n1〉2〈η21〉2 · · · 〈η2n2〉2

with some K <∞. Therefore the integral in (11) is convergent.
Since the ultradifferential operator

P (Dx1 , Dx2) : L(Mp)
a1,a2

(Γ1 × Γ2)→ L(Mp)
a1,a2

(Γ1 × Γ2)

is continuous (see Theorem 2.12 in [3]), we have for h > 0 sufficiently small

|I−1
Mp

(A)[Φ]| ≤ CcA||Φ||
(Mp)

Γ1×Γ2,(a1,a2),h

with some C <∞. Thus I−1
Mp

(A) ∈ L′(Mp)

(ω1,ω2)(Γ
1
v1 × Γ 2

v2).
Next, repeating the proof of Theorem 1 in [6] we obtain that the operator I−1

Mp
is

continuous and satisfies

IMpI−1
Mp

= Id
L
′(Mp)
(ω1) (Γ1

v1
,L
′(Mp)
(ω2) (Γ2

v2
))

and I−1
Mp
IMp = Id

L
′(Mp)
(ω1,ω2)(Γ

1
v1
×Γ2

v2
)

and the proof is complete.
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