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Abstract. This article continues earlier work of the author on non-linear systems of ordinary

differential equations, published in Asymptotic Analysis 15 (1997), MR no. 98g:34015b. There,

a completely formal theory was presented, while here we are concerned with a semi-formal

approach: Solutions of non-linear systems of ordinary meromorphic differential equations are

represented as, in general divergent, power series in several free parameters. The coefficients, aside

from an exponential polynomial, a general power and integer powers of the logarithm, contain

holomorphic functions that are the multi-sums of formal power series. In J. Écalle’s terminology

such a semi-formal solution may be regarded as a transseries. In the author’s opinion, however,

they are best understood as power series in several variables. In this setting, we shall define

and investigate the non-linear analogues of normal solutions, Stokes multipliers, and central

connection coefficients, well known in the linear case. Moreover, we shall briefly address the

question of convergence of the semi-formal series occurring. In particular, we wish to point out

that in the cases when the series, due to the small denominator phenomenon, fails to converge,

it is natural to be content with what shall be called partial convergence of the series, meaning

that some of the variables are set equal to 0, leaving a power series in fewer variables that then

converges.

1. Introduction. Throughout this article, we shall be concerned with a ν-dimensional
non-linear system of ordinary differential equations of the form

zr+1x′ = ǧ(z, x), (1)
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where the Poincaré rank r is a positive integer, x = (x1, . . . , xν)T is a vector of dimension
ν ≥ 1, and

ǧ(z, x) =
∑
|p|≥1

gp(z)xp = G(z)x+
∑
|p|≥2

gp(z)xp (2)

is a ν-dimensional formal power series in the variables x1, . . . , xν . As usual, the row
vector p = (p1, . . . , pν) denotes a multi-index, |p| := p1 + . . .+ pν denotes the length of p,
and xp := xp11 · . . . · xpνν . Let e(j) denote the multi-index with a single 1 in position j and
0’s elsewhere. The square matrix

G(z) = [g1(z), . . . , gν(z)], gj(z) := ge(j)(z), 1 ≤ j ≤ ν, (3)

shall be named the linear part of ǧ(z, x), and zr+1x′ = G(z)x will be referred to as the
linear system corresponding to (1). We emphasize that we assume (formally) ǧ(z, 0) = 0,
so x(z) ≡ 0 is a (formal) solution of (1). While the power series (2) may diverge for every
x 6= 0, we require the coefficients gp(z) to be holomorphic functions in a fixed disc Dρ of
radius ρ > 0 about the origin. Therefore, we may expand

∀ p ∈ Nν0 \ {0} : gp(z) =
∞∑
k=0

gp,kz
k, z ∈ Dρ . (4)

Systems (1) satisfying these requirements will henceforth be called semi-formal systems,
in contrast to (purely) formal systems which have been studied, e.g., in [2, 3]. There, the
notation ĝ(z, x), resp. ĝp(z), instead of ǧ(z, x), resp. gp(z), was used, and the coefficients
ĝp(z) were allowed to be formal power series in z. If the power series (2), for every fixed
z ∈ Dρ, converges for some x with xk 6= 0 for every k = 1, . . . , ν, then we shall speak of
a convergent system. In such a case we shall usually write g(z, x) instead of ǧ(z, x).

Every convergent or semi-formal system may also be regarded as a formal one, and all
formal systems have been shown in [2, 3] to admit a complete formal solution, where the
adjective complete indicates that the formal solution is a (formal) power series in ν free
parameters c = (c1, . . . , cν)T ∈ Cν and has invertible linear part; see Lemma 4.1 for
more details. In [4] it has been shown that all the formal power series occurring in such
a complete formal solution are multi-summable in the sense of J. Écalle [19, 20, 21]—
also compare [5] for a convenient reference to the theory of multi-summability and its
application to linear systems. Here, we are concerned with semi-formal solutions, of which
some are obtained from a formal one by replacing all formal power series by their sums.
Other semi-formal solutions, however, correspond to solutions of initial value problems,
and we shall in particular discuss how the various kinds of semi-formal solutions are
interrelated.

Remark 1.1. Since solutions of (1), even in the linear case, in general have a logarithmic
branch point at the origin, it is natural to consider the variable z on the universal covering
surface, denoted by Sρ, of the punctured disc D′ρ := Dρ \ {0}.

For most of the investigations to follow, it shall be convenient to restrict to a system
whose linear part has certain additional properties. We shall say that a system (1) is
normalized, provided that the following condition holds:
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(N) The corresponding linear system zr+1x′ = G(z)x has a formal fundamental solution
X̂(z) = F̂ (z)zLeQ(z), where

(a) F̂ (z) is a formal matrix power series whose constant term is the identity matrix.

(b) Q(z) = diag [q1(z), . . . , qν(z)] is a diagonal matrix of, not necessarily distinct,
polynomials in the variable w := z−1 without constant terms. The degrees of
all these polynomials then are not larger than r.

(c) L = Λ + N , with a diagonal matrix Λ = diag [λ1, . . . , λν ] and a nilpotent
matrix N that commutes with both Λ and Q(z). Moreover, we require that
there exists an integer m such that Reλk ∈ [m,m+ 1) for k = 1, . . . , ν.

It is well known [7, 8, 22, 5] that a linear system can always be transformed to a
normalized one by means of a change of variable, by replacing z by zµ with a natural
number µ, and a linear transformation x = T (z)x̃, where the ν × ν matrix T (z) is
holomorphic in a disc about the origin and invertible for z 6= 0. However, note that
detT (z) may vanish at the origin, so the transformation T (z) shall be called meromorphic
to emphasize that T−1(z) will, in general, have a pole at the origin. Such transformations
may also be applied to a non-linear system, so that for our purpose we may always
assume that (1) is normalized. However, observe that the transformation x = T (z)x̃ may
change the Poincaré rank r of our system. Moreover, it may be so that for a normalized
system the linear part G(z) vanishes for z = 0, in which case all polynomials qj(z) have
degrees strictly less than r. If we would even allow a transformation T (z) that is “truely
meromorphic”, i.e., has a pole at the origin, then we could also achieve that the integer m
occurring in assumption (N) is non-negative. However, such a transformation, applied to
a non-linear system, may make the coefficients gp(z) for |p| ≥ 2 have poles at the origin,
the order of which will, in general, be a multiple of |p|. This we do not want to do, and
so we will have to allow m to be an arbitrary integer.

Remark 1.2. Note that the theory of linear systems implies uniqueness of the formal
solution X̂(z) occurring in (N).

2. Singular vs. non-singular directions. Given a matrix Q(z) as in (N) and a multi-
index p = (p1, . . . , pν) 6= 0, we define polynomials q(z, p) in z−1 and complex numbers
λ(p) by

q(z, p) =
ν∑
j=1

pjqj(z), λ(p) = r +
ν∑
j=1

pj(λj − r). (5)

While the polynomials q(z, p) play a role here, the numbers λ(p) shall be used in a later
section! In case p = e(k), the polynomial q(z, p) equals qk(z), for k = 1, . . . , ν. For these
multi-indices of length 1, the degrees and leading terms of q(z, p) − qj(z) are of great
importance for linear systems when discussing multi-summability of formal solutions, or
the Stokes multipliers. The same applies in the non-linear theory as well, but for arbitrary
multi-indices p: For some p and 1 ≤ j ≤ ν, it may happen that q(z, p) − qj(z) vanishes
identically; if not, it has a non-zero degree k(p, j) which is at most equal to r and shall
be named the corresponding level. One can easily give examples, even in the linear case,
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showing that the set of levels can be any subset of {1, . . . , r}. In order to keep notation
as simple as possible, we shall here consider the “worst case” and regard every natural
number k ∈ {1, . . . , r} as a possible level. So when we shall speak of multi-summability in
this article, we shall always mean (r, r−1, . . . , 1)-summability (observe that it is standard
notation to label the levels of summability in decending order). However, note that for
some of the levels k the set of singular directions which we are going to define below
may be empty, because there may not be any polynomial q(z, p)− qj(z) of degree equal
to k. In such a case we shall speak of an irrelevant level. Compare this to the discussion
of optimal summability types in [5, p. 173] to see that such irrelevant levels can then be
disregarded.

Given a natural number µ and a level k ∈ {1, . . . , r}, we say that a number τ ∈ R is
singular of level (k, µ), provided that a multi-index p of length |p| ≤ µ and a j ∈ {1, . . . , ν}
exist, so that deg(q(z, p)− qj(z)) = k, and such that for positive real ξ we have

lim
ξ→0+

ξk
(
q(ξeiτ , p)− qj(ξeiτ )

)
∈ R+ . (6)

In other words, if q denotes the highest coefficient of q(z, p)− qj(z), then τ is a possible
value for arg q1/k. Occasionally, we shall also speak of a singular direction of level k,
provided that a µ exists so that this direction is singular of level (k, µ). The set of all
singular directions of level k can be empty; if not, then it is a countable set of period
2π/k, meaning that τ is singular of that level whenever τ ± 2π/k is so, too. Note that
in the linear theory only singular directions of level (k, 1) play a role. The set of singular
directions of level (k, µ) is a discrete subset of R, but the same may not be the case for
all singular directions of level k, as the following examples show:

• Suppose that ν = 2 and q1(z) = z−1, q2(z) ≡ 0. Then q(z, p) − qj(z) either is ≡ 0
or has a highest coefficient which is either −1 or a positive integer. Consequently,
the only level is k = 1, and the singular directions are integer multiples of π.

• Suppose that ν = 2 and q1(z) = (1 + i)z−1, q2(z) = −
√

2 z−1. Again, the only
level is k = 1, but the highest coefficient of q(z, p) − qj(z), in case j = 2, equals
p1 − (p2 − 1)

√
2 + ip1. The real part of this number never vanishes, but will get

arbitrarily small for some multi-indices p = (p1, p2), while its imaginary part goes
off to +∞. Hence singular directions accumulate at the values π/2 modulo 2π, but
not at the values −π/2 modulo 2π. The same can be seen to hold for j = 1.

• Suppose that ν = 4 and q1(z) = 1/z, q2(z) = −1/z, q3(z) = i/z, q4(z) = −i/z.
Then the set of highest coefficients of q(z, p)− qj(z) consists of all numbers a+ ib

with arbitrary a, b ∈ Z. Therefore, the singular directions here are a dense subset
of R.

Remark 2.1. Given µ ∈ N, we shall say that a direction τ is singular of order µ, provided
that a k ∈ {1, . . . , r} exists so that τ is singular of level (k, µ). While the set of all singular
directions can be dense in R, observe that the set singular directions of order µ always
is discrete. A vector d ∈ Rr, which we shall here (matching the decreasing order of the
levels of summability) conveniently write as

d = (dr, dr−1, . . . , d1)T ,
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shall be named a non-singular multi-direction of order µ ∈ N, provided that each dk is
not among the singular directions of level (k, µ), and in addition

|dk − dk−1| ≤
π

2

( 1
k − 1

− 1
k

)
=
π

2
1

k(k − 1)
, 2 ≤ k ≤ r. (7)

For the meaning of (7), refer to the theory of multi-summation [5, p. 161]. If a multi-
direction d is non-singular of order µ for every µ, we shall simply call it non-singular.
Since the sets of singular directions of level k are countable, we conclude that the set of
non-singular multi-directions is not empty. More precisely, for every open interval J ⊂ R
we can always find a non-singular multi-direction d with dr ∈ J . Also, please bear in
mind for later that here we have modified the notation commonly used in the theory of
multi-summability and enumerated the coordinates of a multi-direction in reverse order.

3. Log-exponential expressions. In this section, we shall consider a fixed multi-
direction d = (dr, dr−1, , . . . , d1)T satisfying (7). Moreover, we shall also consider a poly-
nomial in z−1 with vanishing constant term and of degree at most r, denoted as q(z), and
a complex numbers λ. In the application to a system (1), q(z) and λ shall be related to
the polynomials q(z, p), resp. the numbers λ(p) defined above, but this is not important
at the moment.

We say that a function x(z), holomorphic on Sρ, is a log-exponential expression, ab-
breviated as l-ee, in the multi-direction d of degree m ∈ N0, whenever it is of the form

x(z) = zλeq(z)
m∑
j=0

fj(z)(log z)j , fm(z) 6≡ 0, (8)

where each fj(z) is the sum in the multi-direction d of a formal power series f̂j(z) =∑
k f

(j)
k zk (recall that in this article the type of multi-summability is always equal to

(r, r − 1, . . . , 1)). Since we shall always consider a fixed multi-direction d, we shall also
speak of a l-ee for short, but observe that such an expression always depends upon d.
Hence a l-ee is a polynomial of degree m in log z, with coefficients that either vanish
identically or are l-ee of degree m = 0, and we also consider the zero polynomial x(z) ≡ 0
as a l-ee. For x(z) 6≡ 0, we shall refer to the pair (q(z), λ) as the type of the l-ee, bearing in
mind that λ can be replaced by λ− µ for any µ ∈ N, with a corresponding change of the
coefficient functions fj(z). If the type (q(z), λ) vanishes, we shall occasionally speak of a
logarithmic expression. To every l-ee x(z) we have a corresponding formal l-ee, namely

x̂(z) = zλeq(z)
m∑
j=0

f̂j(z)(log z)j , (9)

obtained by replacing the functions fj(z) by the corresponding formal power series f̂j(z).
Such formal expressions have been introduced, e.g., in Coddington and Levinson’s clas-
sical book [14]. However, note that to an arbitrary formal l-ee we may not have a cor-
responding l-ee x(z) in the multi-direction d, since some (or all) f̂j(z) may fail to be
multi-summable in this multi-direction. Even if they are so multi-summable, their sums
being denoted by fj(z), then x(z) as in (8) may not admit holomorphic continuation
to Sρ and thus will not be a l-ee in the above sense. However, in the application we
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have in mind here, all x(z) will satisfy linear inhomogeneous first order ODE from which
holomorphy on Sρ will follow.

It has been shown in [14] that, if we restrict Reλ to any half-open interval of unit
length, then with respect to a natural interpretation of equality of formal l-ees, every
formal l-ee x̂(z) has a unique representation in the form (9), and therefore in particular
its type is uniquely defined. The same is true for proper (i.e., not formal) l-ees, as we
show now:

Proposition 3.1. Let J be any half-open interval of unit length, and restrict to l-ee with
Reλ ∈ J . Then every l-ee x(z) 6≡ 0 has a unique representation of the form (8), and
therefore in particular its type is uniquely defined.

Proof. Suppose that (8) holds. The theory of multi-summability implies existence of a
sector S of opening more than π/r and bisecting direction dr in which fj(z) ∼= f̂j(z) =∑∞
k=kj

f
(j)
k zk as z → 0 in S. Without loss of generality we may assume that f (j)

kj
6= 0 for

all j = 0, . . . ,m, except when all f (j)
k vanish, in which case we may choose kj as large as

we please. Let k := min{k0, . . . , km}, and choose the maximal value of j ∈ {0, . . . ,m} so
that kj = k. Then we conclude that

x(z)e−q(z)z−λ−kj (log z)−j −→ f
(j)
kj

( 6= 0) (S 3 z → 0).

From this observation uniqueness of q(z) and λ follows. Moreover, since integer powers
of z times a finite number of integer powers of log z form an asymptotic scale, the theory
of asymptotic expansions implies that all f̂j(z) are uniquely determined. The theory of
multi-summability then gives uniqueness of their sums fj(z).

In view of the above proposition, to every l-ee x(z) there corresponds a unique formal
l-ee x̂(z) which we shall name its asymptotic expansion in the multi-direction d. Con-
versely, if x̂(z) is given, if all f̂j(z) are multi-summable in the multi-direction d, and if
the sums fj(z) are such that x(z), given by (8), can be continued onto S, then we say
that x̂(z) is multi-summable in the multi-direction d, and we call x(z) the sum of x̂(z) in
this multi-direction. Every d for which this is so shall also be referred to as a non-singular
multi-direction for x̂(z).

For a fixed multi-direction d, the set of l-ees of a given type can be easily seen to
be closed with respect to addition and differentiation, and we now wish to show the
same for indefinite integration. More precisely, given a l-ee x(z) of type (q(z), λ), we shall
investigate whether there exists another such expression of the same type, so that

zy′(z) = x(z). (10)

That this is always so for formal l-ees x̂(z) resp. ŷ(z) has been shown in [22, p. 132],
where uniqueness of ŷ(z) has been discussed as well. The same can be done for proper
expressions under some natural condition linking d to q(z). This proposition possibly
exists in the literature on multi-summability, and certainly can be deduced from other,
slightly more restricted results, e.g., from a theorem in an article of Balser and Tovbis [10,
Theorem 3], but we choose to include its proof for the sake of the reader.
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Remark 3.2. Concerning the proof of the next proposition, observe that a function y(z)
is a solution of (10) if and only if we have

y(z) = c+
∫ z

z0

x(w)w−1 dw,

for arbitrary z0 6= 0 and c ∈ C, and any such y(z) is holomorphic in Sρ, since the same
holds by assumption for x(z). For the uniqueness part of proof it suffices to observe that a
non-zero constant is a log-exponential expression of a given type (q(z), λ) (and of degree
m = 0) if and only if q(z) ≡ 0 and −λ ∈ N0.

Proposition 3.3. For q(z), λ, and d as above, let a l-ee x(z) in the multi-direction d of
type (q(z), λ) and degree m ≥ 0 be given. Then the following statements are true:

(a) Assume that q(z) 6≡ 0. Moreover, let µ := deg q(z), and let q denote the highest
coefficient of q(z). If µdµ 6≡ arg q modulo 2π, then there exists a unique l-ee y(z) in
the multi-direction d such that (10) holds, and y(z) is of the same degree as x(z), but
may be rewritten so that it is of type (q(z), λ+ µ).

(b) Assume that q(z) ≡ 0 but −λ 6∈ N0. Then there exists a unique l-ee y(z) in the
multi-direction d such that (10) holds, and y(z) is of the same type and degree as
x(z).

(c) Assume that q(z) ≡ 0 and k0 := −λ ∈ N0. Then there exists a l-ee y(z) in the
multi-direction d such that (10) holds. The y(z) is of the same type as x(z), but in
general of degree m+ 1, and y(z) is unique up to an additive constant term.

Proof. For the question of uniqueness of y(z), compare Remark 3.2. Note that in all three
cases, if such a y(z) exists, it is of the form

y(z) = zλeq(z)
m+1∑
j=0

gj(z)(log z)j ,

allowing that gm+1(z) may be identically zero. Inserting into (10) and comparing coeffi-
cients of powers of log z, we obtain(

zq′(z) + λ+ z
d

dz

)
gm+1(z) = 0,

while for the remaining terms we have(
zq′(z) + λ+ z

d

dz

)
gj(z) = fj(z)− (j + 1)gj+1(z), 0 ≤ j ≤ m.

Since we want each gj(z) to be the multi-sum of some power series ĝj(z) =
∑
k g

(j)
k zk,

these series must be formal solutions of the above equations, with fj(z) replaced by
f̂j(z) =

∑
k f

(j)
k zk. In case (a), let µ(≤ r) and q be as above. Then the first equation

does not have a non-trivial formal power series solution, while the other ones hold if and
only if the coefficients g(j)

k satisfy identities of the form

qg
(j)
k + . . . = f

(j)
k−µ − (j + 1)g(j)

k−µ ∀ k ≥ 0,

with the right hand side vanishing for k < µ. These identities determine the coefficients
g

(j)
k uniquely, and in particular g(j)

0 = . . . = g
(j)
µ−1 = 0 for every j = 0, . . . ,m. Therefore,

we see that y(z) indeed may be rewritten as a l-ee of type (q(z), λ + µ). In case (b), we
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also see ĝm+1(z) = 0, and the recursion formula for j = 0, . . . ,m simplifies to

(λ+ k)g(j)
k = f

(j)
k − (j + 1)g(j)

k ∀ k ≥ 0, (11)

determining all the coefficients, since λ + k never vanishes. In the last case, the first
equation holds if and only if gm+1(z) = zk0c, with arbitrary c ∈ C. Inserting into the
identities (11) which still hold in this case, we can select c such that for j = m and k = k0

the right hand side vanishes, and then the coefficients g(m)
k are uniquely determined except

for g(m)
k0

which may be chosen arbitrarily. Proceeding to j = m− 1 and further, the same
arguments apply, showing existence of the formal series ĝj(z) plus the fact that they are
uniquely determined except for j = 0 for which g

(0)
k0

may have any value. Thus, formal
power series solutions always exist, and the proof can be completed using results from
the theory of multi-summation as in [5, p. 181] to ensure the summability of these formal
solutions.

Remark 3.4. We emphasize that in all cases except the last, there is only one way to
choose a solution of (10) so that the function y(z) is again a l-ee. The exceptional case
occurs in what is occasionally named the resonant case. In this case we shall always
choose the integral so that we do not have an “unnecessary integration constant”, or in
other words: We shall choose the coefficient of the power zk0 in g0(z) to be equal to zero.
For this unique solution of (10) we shall in all cases use the notation

y(z) =
∫
x(z)z−1 dz.

It is not obvious, however, whether our choice of the indefinite integral in the resonant
case is the most natural one, but we wish to make some unique choice in order to later
have a unique definition of sfn-solutions. Also, observe that the condition in case (a) may
be understood as follows: Consider the formal l-ee x̂(z) corresponding to x(z), and let ŷ(z)
denote the (unique) formal solution of (10). Then all singular multi-directions for x̂(z)
also are singular for ŷ(z). In addition, all d which are non-singular for x̂(z) may become
singular for ŷ(z) if µdµ ≡ arg q modulo 2π. Observe that this fact is in accordance with
the definition of singular directions given in Section 2 whenever q(z) = q(z, d)− qj(z) for
suitable j.

Remark 3.5. Regarding the condition in part (a) of Proposition 3.3, we observe the
following for later reference: The general theory of multi-summability ensures existence
of a (small) number ε > 0 such that, for all multi-directions d̃ with d̃j = dj for j 6= µ

and |d̃µ − dµ| < ε, the function x(z) is a l-ee in the multi-direction d̃, too. If µdµ 6≡ arg q
modulo 2π holds, then we may make ε so small that the condition remains valid when
dµ is replaced by d̃µ. So in this case, the function y(z) shall be a l-ee in all the multi-
directions d̃. On the other hand, if µdµ ≡ arg q modulo 2π, and ε is small enough, then
µ d̃µ 6≡ arg q modulo 2π holds for d̃µ 6= dµ. Hence for all multi-directions d̃ with d̃µ < dµ,
resp. d̃µ > dµ, we shall have a corresponding l-ee y−(z), resp. y+(z), but they may not
coincide! This, in a way, is the origin of Stokes’ phenomenon for l-ee.

Remark 3.6. For later application, note that the product of two l-ees of possibly different
types is another l-ee whose type is the sum of the types of the two factors!
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4. Semi-formal series in several variables. In this section we shall present a few
basics on formal power series in ν variables. One example of such a series already occurred
as the right hand side of (1), but since we wish to apply the identities and results derived
here to what shall be called semi-formal solutions of (1), we shall use a different notation:

By x̌(z, c) we are going to denote a power series in ν variables c = (c1, . . . , cν), with
vanishing constant term and coefficients that are functions in the variable z. In more
detail, such a series shall be written as

x̌(z, c) =
∑
|p|≥1

xp(z)cp = X(z)c+
∑
|p|≥2

xp(z)cp, (12)

with a multi-index p as in the introduction, and X(z) = [x1(z), . . . , xν(z)], xj(z) :=
xe(j)(z), denoting its linear part. The coefficients xp(z) will always be vectors of length ν
denoted as xp(z) = (x(p)

1 (z), . . . , x(p)
ν (z))T , where each x

(p)
j (z) is a function which is

holomorphic on Sρ—the algebra of all such functions shall be denoted by O(Sρ). So in
other words, the coefficients are holomorphic functions for 0 < |z| < ρ but may have a
logarithmic branch point at the origin. Thus we may also write

x̌(z, c) = (x̌1(z, c), . . . , x̌ν(z, c))T , x̌j(z, c) =
∑
|p|≥1

x
(p)
j (z)cp. (13)

The set of all such series shall be denoted by O(Sρ)ν0 [[c]], omitting the superscript ν in
case of ν = 1. The following special cases for series x̌(z, c) shall be important later on:

(a) If the coefficients xp(z) =: xp do not depend upon z for each multi-index p, we shall
denote the series by x̌(c), speaking of a constant series. The set of all constant series
shall be denoted as Cν0 [[c]].

(b) If the coefficients xp(z) all are holomorphic (and single-valued) at the origin, we shall
call x̌(z, c) a holomorphic series. For the set of all holomorphic series we shall write
O(Dρ)ν0 [[c]]. Observe that the right hand side of (1) is such a series, but with the
variables denoted by x1, . . . , xν . In short hand notation, this may be expressed by
writing g(z, x) ∈ O(Dρ)ν0 [[x]].

(c) As the most important situation, the coefficients xp(z) shall be l-ee, and in this case
we shall speak of a log-exponential series.

Occasionally we shall consider more general series, denoted as x̂(z, c), with coefficients
x̂p(z) that, instead of functions, are allowed to be formal logarithmic-exponential ex-
pressions. Such series shall be called formal ones, while the previous kind are named
semi-formal series to indicate that their coefficients are functions instead of formal ex-
pressions. The reader may verify that most of the formulas below hold for formal series
as well!

For semi-formal power series of the above form, an addition is always well defined,
and O(Sρ)ν0 [[c]] is a vector space over C. The space O(Sρ) even is an algebra with unit
element e(z) ≡ 1. Therefore O(Sρ)0[[c]] is an algebra, too, but does not have a unit
element with respect to multiplication, since it only contains series with vanishing con-
stant term. However, we may define for any ν ∈ N and any ν-dimensional multi-index
q = (q1, . . . , qν) 6= 0

∀ x̌(z, c) ∈ O(Sρ)ν0 [[c]] : x̌q(z, c) = x̌q11 (z, c) · . . . · x̌qνν (z, c) ∈ O(Sρ)0[[c]],
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setting x̌0
j (z, c) ≡ 1. Since we restrict ourselves to series with vanishing constant term,

we have
x̌q(z, c) =

∑
|p|≥|q|

xqp(z)cp,

with (scalar) coefficients xqp(z). One may check that these coefficients satisfy the identi-
ties

xq(1)+q(2),p(z) =
∑

|p(j)|≥|q(j)|
p(1)+p(2)=p

xq(1)p(1)(z)xq(2)p(2)(z) (14)

for all p with |p| ≥ |q(1)| + |q(2)|, where q(j) are multi-indices of length |q(j)| ≥ 1. This
formula allows for recursive computation of xqp(z) with |q| ≥ 2, while for q = e(k) we
have x̌q(z, c) = x̌k(z, c), implying that

xe(k)p(z) = x
(p)
k (z) ∀ p ∀ k = 1, . . . , ν.

As in [2, 3], we can define a formal composition: Let x̌(z, c), ǧ(z, c) ∈ O(Sρ)ν0 [[c]] be given,
and let G(z) denote the linear part of ǧ(z, c). Then

ǧ(z, x̌(z, c)) =
∑
|q|≥1

gq(z)x̌q(z, c) =
∑
|p|≥1

hp(z)cp, (15)

with coefficients hp(z) which are obtained, through insertion of the expansion for x̌q(z, c)
and a formal interchange of the order of summation, as

hp(z) = G(z)xp(z) +
∑
q

2≤|q|≤|p|

xqp(z)gq(z) ∀ p ∈ Nν0 , (16)

which clearly is a finite sum. In particular we conclude that the linear part of the formal
composition equals the product, in this order, of the linear parts of ǧ(c) and x̌(c).

Obviously, the formal power series with linear part I and xp = 0 whenever |p| ≥ 2
acts as an identity element with respect to formal composition. We say that a formal
series x̌(z, c) is invertible with respect to formal composition, provided that another series
y̌(z, c) exists so that y̌(z, x̌(z, c)) equals the identity element. The following lemma can
be easily verified and is in parts analogous to [3, Lemma 1], so we here omit its proof.
Note, however, that O(Sρ)ν0 [[c]] with respect to addition and formal composition is not
a ring but only a near-ring, meaning that one of the two distributional laws fails. This
fact shall not be of importance in this article and is included for the sake of completeness
only!

Lemma 4.1. With the notation introduced above, the following holds:

(a) O(Sρ)ν0 [[c]], with respect to termwise addition and formal composition, is a right near-
ring with unit element, and addition is commutative.

(b) A formal series x̌(z, c) ∈ O(Sρ)ν0 [[c]] is invertible with respect to formal composition
if and only if its linear part X(z) is invertible. This, in turn, is so if and only if
detX(z) 6= 0 for every z ∈ Sρ.

(c) The set of all invertible formal series is a non-abelian group with respect to formal
composition.
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For later reference, we shall write Gν(O(Sρ), c) for the group of all invertible formal
series from O(Sρ)ν0 [[c]]. An important subgroup of this group is Gν(C, c), i.e. the invertible
series whose coefficients are independent of the variable z.

5. Semi-formal solutions. Let a, not necessarily normalized, semi-formal system (1)
be given. For every semi-formal series as in (12) we may form the formal composition
ǧ(z, x̌(z, c)), given by the identities (15) and (16). Comparing coefficients in (1), we see
that x̌(z, c) formally is a solution if and only if for every multi-index p we have

zr+1x′p(z) = G(z)xp(z) +
∑

2≤|q|≤|p|

xqp(z)gq(z). (17)

For |p| = 1, the sum on the right of (17) is empty, showing that in this case xp(z) will
be an arbitrary solution vector of the linear system zr+1x′ = G(z)x. For 2 ≤ |q| ≤ |p|,
the recursion equations (14) imply that the functions xqp(z) only depend upon “earlier”
coefficients xq̃(z) with |q̃| ≤ |p|−1, and therefore (17) is an inhomogeneous linear system
from which we wish to compute the coefficient xp(z), assuming that the earlier ones
are known. So we note that the problem of finding a semi-formal solution is intimately
related to finding solutions of lower triangular systems—except for the fact that the set
of multi-indices is infinite and not well-ordered. Nonetheless we shall be able to develop
a theory which is analogous to that of reduced systems investigated in [9].

Suppose for the moment that for every p with |p| ≥ 1 we have selected a solution
xp(z) of (17). Then all coefficients xp(z) are holomorphic on the universal covering of
the disc D′ρ = {0 < |z| < ρ}, and altogether we obtain one selected semi-formal solution
x̌(z, c) ∈ O(Sρ)ν0 [[c]]. This solution shall be called complete, provided that its linear part
X(z) is invertible, i.e., is a fundamental solution of the corresponding linear system. In
other words, a complete semi-formal solution belongs to the group Gν

(
O(Sρ), c

)
. The

following lemma may be thought of as justifying the term complete semi-formal solution:

Lemma 5.1. Let a semi-formal solution x̌(z, c) of (1) be given. If we choose any
v(c) ∈ Cν

0 [[c]], the formal composition x̌(z, v(c)) is again a semi-formal solution of (1).
If x̌(z, c) even is a complete semi-formal solution of (1), then any other semi-formal
solution is of the form x̌(z, v(c)), with suitable v(c) as above.

Proof. The series x̌(z, c) is a semi-formal solution of (1) if and only if the two semi-formal
series zr+1x̌′(z, c) and g(z, x̌(z, c)) are equal, and this equality remains unchanged if we
substitute v(c) for c. For v(c) =

∑
|p|≥1 vpc

p, with vp ∈ Cν and c ∈ Cν , we conclude
from results in Section 4 that vq(c) =

∑
|p|≥|q| vqpc

p, with numbers vqp which may be
recursively obtained using an identity analogous to (14). Inserting v(c) into (12) and
formally interchanging the order of summation, we obtain in analogy to (16) that

x̌(z, v(c)) =
∑
|p|≥1

x̃p(z)cp, x̃p(z) = X(z)vp +
∑
q

2≤|q|≤|p|

vqpxq(z). (18)

Let y̌(z, c) =
∑
yp(z)cp be any semi-formal solution of (1), then the equation y̌(z, c) =

x̌(z, v(c)) is equivalent to yp(z) = x̃p(z) for every p 6= 0, and we intend to investigate
whether we can choose the vectors vp so that this is correct. Assume this being done
for all multi-indices p 6= 0 of a length strictly less than µ, with some given µ ∈ N—this
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assumption is void for µ = 1, since then the set of such p is empty. Then, for any
p of length µ, the coefficients yp(z) and x̃p(z) both satisfy the same inhomogeneous
linear system. Completeness of x̌(z, c) is equivalent with its linear part X(z) being a
fundamental solution of the corresponding homogeneous equation. Defining x̃p(z) by (18),
with arbitrarily chosen vp, we obtain the general solution of the inhomogeneous equation.
Consequently, it is possible to choose vp such that yp(z) = x̃p(z) holds.

As an application of the last lemma, we observe that for any semi-formal solution
x̌(z, c) its coefficients xp(z) all can be analytically continued from a given point z ∈ Sρ
to the corresponding point on the next sheet of the surface—this point being denoted by
ze2πi. Thus, the series x̌(ze2πi, c) also is a semi-formal solution. If x̌(z, c) is complete, we
conclude existence of m(c) ∈ Cν

0 [[c]] so that

x̌(ze2πi, c) = x̌(z,m(c)). (19)

The formal series m(c) shall be referred to as the monodromy function corresponding to
x̌(z, c). Writing M for the linear part of m(c), we find the monodromy relation X(ze2πi) =
X(z)M for the linear part of x(z, c). So we see that the matrix M is what in the linear
theory usually is called the monodromy factor for X(z), while the name monodromy
matrix is used for a different entity.

One particular type of semi-formal complete solutions is as follows: For some z0 ∈ Sρ
we choose the (unique) fundamental solution X(z) of the linear system corresponding
to (1) which satisfies the restriction X(z0) = I. Then, we define for every multi-index p
with |p| ≥ 2

xp(z) = X(z)
∫ z

z0

X−1(w)
[ ∑

2≤|q|≤|p|

xqp(w)gq(w)
] dw

wr+1
. (20)

These functions clearly satisfy (17), and xp(z0) = 0 for every such p. Hence for the
corresponding semi-formal solution x̌(z, c) we find (formally)

x̌(z0, c) = c.

Thus we consider this semi-formal solution as formally solving initial value problems
at the point z0. As a convenient notation for this kind of solution we choose to write
x̌(z, c; z0) =

∑
xp(z; z0)cp. If the system (1) is convergent, then it is well known that

the (unique) solution satisfying the initial condition x(z0) = c, with given c ∈ Cν , is
a holomorphic function of the initial data, for z in a disc about z0 of sufficiently small
radius. So in this case, we even have that x̌(z, c; z0), for every fixed z close to z0, converges
in some polydisc about the origin!

For x̌(z, c; z0) as above, let m(c; z0) denote the corresponding monodromy function.
Writing X(z; z0), resp. M(z0), for the linear part of x̌(z, c; z0), resp. m(c; z0), and ob-
serving that X(z0; z0) = I, xp(z0; z0) = 0 for all p of length ≥ 2, we obtain M(z0) =
X(z0e2πi; z0), while for all p of length ≥ 2 we have

mp(z0) = M(z0)
∫ z0e2πi

z0

X−1(w; z0)
[ ∑

2≤|q|≤|p|

xqp(w; z0)gq(w)
] dw

wr+1
. (21)
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While semi-formal solutions x̌(z, c; z0) occur naturally when studying (1) near a non-
singular point z0, the type we introduce next is of much greater interest when investigating
the behaviour of solutions as z approaches the origin in some given sector: Let us con-
sider a normalized system (1). The formal power series part F̂ (z) of the fundamental
solution X̂(z) is known to be multi-summable in every non-singular multi-direction d of
order 1, and we denote its sum by F (z, d). The matrix X(z, d) = F (z, d)zLeQ(z) then is
a fundamental solution of the linear system corresponding to (1). In [8], so-called normal
solutions have been introduced via a restriction of the form of their Stokes multipliers,
and in [6] they have been shown to be equal to some of the matrices X(z, d). In [1] other
families of normal solutions have been investigated, all of which coincide with the matri-
ces X(z, d) for particular choices of d. Here, we shall use the term normal solution for all
the matrices X(z, d), with arbitrary non-singular multi-directions d of order 1, and we
shall now introduce their non-linear analogues.

Theorem 5.2. Let a normalized system (1) be given. For every non-singular multi-
direction d there exists a semi-formal solution

x̌(z, c; d) =
∑
|p|≥1

xp(z; d)cp

whose linear part is the normal solution X(z, d) of the corresponding linear equation. The
coefficients xp(z; d) all are l-ees of type (q(z, p), λ(p)) which are recursively obtained by
means of the identity

xp(z; d) = X(z, d)
∫
X−1(z, d)

[ ∑
2≤|q|≤|p|

xqp(z; d)gq(z)
] dz

zr+1
, (22)

and they are uniquely defined if we choose the indefinite integral in the resonant case
according to the rule explained in Remark 3.4.

Proof. In the terminology introduced in Section 3, the entries in the jth column of X(z, d)
are l-ees of type (qj(z), λj) = (q(z, e(j)), λ(e(j))). Assume for some µ that we have chosen
xp̃(z) for all multi-indices p̃ of length strictly less than µ, so that they are such expressions
of corresponding types (q(z, p̃), λ(p̃)). Then we conclude from (14), using Remark 3.6, that
for any multi-index p of length |p| = µ the integrand on the right hand side of (22) is
a vector whose jth component is a l-ee xj(z) of type (q(z, p) − qj(z), λ(p) − λj). Hence,
we obtain from Proposition 3.3 existence of a corresponding l-ee yj(z), which in all three
cases may be regarded as being of the same type, so that (10) holds. Combining these
yj(z) into a vector and multiplying with X(z, d) then implies that xp(z, d) is a l-ee of
type (q(z, p), λ(p)). This vector either is unique anyway, or there is one choice which we
prefer since it does not introduce unnecessary free constants in the asymptotic expansion
of xp(z, d).

Remark 5.3. The semi-formal solution x̌(z, c; d), whose existence and uniqueness was
shown above, will be called the semi-formal normal solution, or for short: the sfn-solution,
of (1) in the multi-direction d. The coefficients xp(z) are l-ees of type (q(z, p), λ(p)).
Therefore, in view of (5), we can also write x̌(z, c; d) in the form (observe that we follow
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the convention and write Λ− r instead of Λ− rI)

x̌(z, c; d) = zr
∑
|p|≥1

`p(z; d)
(
eQ(z)zΛ−rc

)p
, (23)

with logarithmic expressions `p(z), i.e. l-ee of type (0, 0). Written in this form, x(z, c; d)
indeed is what is (unfortunately) called a transseries. So, roughly speaking the sfn-solution
is a formal power series, not in the variables cj , but in eqj(z)zλj−rcj , with 1 ≤ j ≤ ν, and
coefficients that are logarithmic expressions.

6. Connection problems. For any two non-singular multi-directions d and d̃, there
is a unique invertible matrix V (d̃, d) such that X(z, d) = X(z, d̃)V (d̃, d), and we shall
refer to this matrix as the corresponding Stokes multiplier. This notion here is used in
a wider sense than in other articles, since the two multi-directions can be completely
arbitrary, while in the linear theory one usually restricts them so that the matrix has as
few non-trivial elements as possible.

Since sfn-solutions are always complete, we conclude from Lemma 5.1:

• Given two non-singular multi-directions d and d̃, there exists a unique formal ex-
pression v̌(c; d̃, d) =

∑
p vp(d̃, d)cp for which

x̌(z, c; d) = x̌(z, v̌(c; d̃, d); d̃).

This v̌(c; d̃, d) will be referred to as the (formal) Stokes series corresponding to d
and d̃.

As a simple consequence from the definition of normal solutions and Stokes series, we
obtain the following result:

Theorem 6.1. For any normalized system (1), all Stokes series are invertible with respect
to formal composition, and for any three non-singular multi-directions d, d̃, d̂ we have
v̌(c; d, d) = c, i.e. is the identity element of Gν(C, c), while v̌(c; d̃, d) and v̌(c; d, d̃) are
inverse to one another. Moreover,

v̌(c; d̂, d) = v̌(v̌(c; d̃, d); d̂, d̃).

Altogether, this shows that the Stokes series form a subgroup of the group Gν(C, c).

Proof. Follows directly from the definitions with help of Lemma 4.1.

Given a normalized system (1), the set of corresponding Stokes series, which is a
subgroup of Gν(C, c) according to the last theorem, shall be named the Stokes group
corresponding to (1). For an analysis of the structure of v̌(c; d̃, d) for the case of two
singular directions that are close to another, refer to Theorem 6.3.

While the determination of the Stokes multipliers in the linear theory occasionally is
referred to as the lateral connection problem, one speaks of a central connection problem
to indicate that one wishes to link an arbitrary fundamental solution to any one of the
normal ones. Correspondingly, let us consider the semi-formal solutions corresponding to
an initial value problem, denoted as x̌(z, c; z0). Given any non-singular multi-direction d,
we obtain existence (and uniqueness) of ω̌(c; d, z0) ∈ Gν(C, c) with

x̌(z, c; z0) = x̌(z, ω̌(c; d, z0); d).
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We shall name ω̌(c; d, z0) the central connection series in the multi-direction d. It is clear
that, for two non-singular multi-directions d and d̃, the central connection series ω̌(c; d, z0)
and ω̌(c; d̃, z0) are related via the corresponding Stokes series:

Theorem 6.2. For arbitrary z0 ∈ S and any two non-singular multi-directions d and d̃,
we have

ω̌(c; d̃, z0) = v̌(ω̌(c; d, z0); d̃, d).

Proof. By definition, x̌(z, c; z0) = x̌(z, ω̌(c; d, z0); d) = x̌(z, ω̌(c; d̃, z0); d̃), and x̌(z, c; d) =
x̌(z, v̌(c; d̃, d); d̃). By substituting in the second identity ω̌(c; d, z0) for c and comparing
with the first one, the statement of the theorem follows.

In the linear theory, as presented in [8], normal solutions are a countable set of funda-
mental solutions, indexed according to a corresponding enumeration of Stokes rays—these
are not the same, but closely related to, what here are called singular directions. In the
non-linear case, however, the set of all singular directions is countable, but may be dense
in R. Therefore, in general, no enumeration of this set may exist for which the sector
bounded by the singular directions number ν − 1 and ν is free of other singular direc-
tions. On the other hand, for any fixed multi-index p only singular directions of order
µ = |p| are relevant for the definition of xp(z; d), and these directions are a discrete set!
As a consequence, the dependence of xp(z; d) on d, or in other words: the structure of
the coefficients of the Stokes series v(c; d̃, d), can be analysed as follows:

Theorem 6.3. Given k ∈ {1, . . . , r} and µ ∈ N, let d and d̃ be two multi-directions whose
coordinates dj and d̃j are non-singular of order µ, and so that

dj = d̃j ∀ j 6= k, dk < d̃k.

Without loss of generality, also assume that the open interval (dk, d̃k) is small, and so
that it contains exactly one singular direction d̂k of level (k, µ). Then, for every p with
|p| = µ, a non-zero element in the vector vp(d̃, d) can only occur in a position j with
deg(q(z, p)− qj(z)) = k and kd̂k ≡ arg q modulo 2π, where q = q(p, j) denotes the highest
coefficient of q(z, p)− qj(z).

Proof. In view of (22), we conclude from Proposition 3.3 for all values δ ∈ (dk, d̃k) with
δ 6= d̂k that

xq(z; d(δ)) =

{
xq(z; d) (dk < δ < d̂k)

xq(z; d̃) (d̂k < δ < d̃k)
∀ q with |q| ≤ µ.

On the other hand, for a given p with |p| = µ, the functions xp(z; d) and xp(z; d̃) will be
different, in general: On one hand, it can occur that d̂k even is a singular direction of order
µ−1, then the integrand on the right hand side of (22) shall, in general, change when d is
replaced by d̃. Since this integrand only involves terms xp̃(z; d) with |p̃| < µ, the functions
xqp(z; d̃) can be expressed as combinations of the functions in the multi-direction d, with
help of the coefficients vq(d̃, d) for multi-indices q of length at most µ− 1. On the other
hand, d̂k may not be singular of level µ − 1, and then xqp(z; d̃) = xqp(z; d) follows.
Therefore, in both cases we may say that for the integrand on the right hand side of (22)
the transition from d to d̃ can be made in terms of functions, resp. coefficients, of lower
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order. Consequently, a non-zero element in vp(d̃, d) can only result from the fact that we
may need to change the interpretation of the integral in (22) when switching from d to d̃.
According to Remark 3.5, this occurs only in a position j with deg q(z, p) − qj(z) = k

and kd̂k ≡ arg q modulo 2π, where q denotes the highest coefficient of q(z, p)− qj(z). In
particular, if no such j exists, then vp(d̃, d) = 0.

Observe that the last theorem in the linear case corresponds to the conditions on the
support of the Stokes multipliers given in [8, 22].

7. Convergence of sfn-solutions. In this final section we very informally address the
question of convergence of sfn-solutions, which is not the main point of this paper but of
great importance nonetheless:

It is a well known fact that the terms of a sfn-solution can grow so rapidly that
the series fails to converge for all values of z ∈ Sρ. The reason for this lies in what
is called the small denominator phenomenon, and to avoid this, some extra conditions
on the leading terms of the polynomials qj(z) have been used. From the list of articles
and books dealing with these and/or related questions we only mention a few relatively
recent ones by Ovidiu Costin [15, 16, 17, 18], and Braaksma and Stolovitch [13]. Boele
Braaksma [12] studied the corresponding situation for difference equations.

In the author’s opinion, the convergence of a sfn-solution in toto is not a very natural
question: Let a non-singular multi-direction d = (dr, . . . , d1) be given. Then the coeffi-
cients of x̌(z, c; d) are holomorphic in a sector Sd with bisecting direction dr and opening
larger than π/r, and their behaviour as z → 0 in S is known. So the series x̌(z, c; d) is
constructed to represent a family of solutions that have a clear behaviour as the variable
z approaches the origin in Sd. For this reason, it does not help if the series only converges
at such points in Sd that keep a distance from the origin. So instead it is natural to
require convergence of the series, if possible, for all z in a sectorial region G ⊂ Sd, i.e. a
region that has the origin as a boundary point. As we shall illustrate by examples, this
in general cannot occur for all values of c in some polydisc about the origin of Cν , even
when its radii are small! Therefore, it is more natural to investigate partial convergence
in the following sense:

• Given a subset J ⊂ {1, . . . , ν}, we say that x̌(z, c; d) is partially convergent of type J
in a sectorial regionG ⊂ Sd (for the definition of sectorial regions, compare [5]—here
it suffices to say that they always have the origin as a boundary point), provided
that for every closed subsector S of G there exists an r > 0 so that x̌(z, c; d)
converges uniformly (in z) for z ∈ S, for every c = (c1, . . . , cν)T with

cj = 0 (j 6∈ J), |cj | < r (j ∈ J).

As an example motivating the above definition, we consider a very simple decoupled
system of the form

zr+1x′j = aj(z)(xj + x2
j ), 1 ≤ j ≤ ν,

with polynomials aj(z) of degree at most r. One can verify that this system has the
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(complete) solution x(z, c) = (x1(z, c), . . . , xν(z, c))T with

xj(z, c) =
cjeqj(z)zλj

1− cjeqj(z)zλj
, zr(λj + zq′j(z)) = aj(z), 1 ≤ j ≤ ν.

Each xj(z, c) can be expanded into a (convergent) power series in the variable cj , con-
verging if and only if ∣∣cjeqj(z)zλj ∣∣ < 1 (1 ≤ j ≤ ν). (24)

For every non-singular multi-direction d, this is the sfn-solution of our system, which in
this decoupled case is independent of d. In order to have partial convergence in some
sectorial region G, in the sense defined above, we have to choose the type J so that in
this region the inequalities (24) hold for sufficiently small values of |cj |. This is the case
if and only if we choose J so that for each j ∈ J all eqj(z) remain bounded as z → 0 in G,
and in case that qj(z) vanishes identically, we have that Reλj ≥ 0.

The above example is very simple, but still depicts the general situation to a large
degree: a general sfn-solution can always be written in the form (23). Since the coefficients
`p(z; d) are of moderate behaviour at the origin (when restricting to a corresponding sec-
tor Sd), the exponential polynomials q(z; p) will dominate the behaviour of the terms of
the series. Therefore, in order to have partial convergence in a sectorial region G, it will
again be necessary to choose J so that no exponential polynomials remain that grow as
z → 0 in G. However, observe that in general one may be able to relax the condition on
the numbers λj , since a possible growth of the term zλ(p) may be compensated by the
corresponding coefficient `p(z; d). Nonetheless, note that in particular when all polyno-
mials vanish identically (which is an excellent situation in the linear theory, since then
no divergent power series enter the formal solution), it may occur that x̌(z, c; d) is not
partially convergent for any J but the empty set—this can also be observed from the
example given above! On the other hand, if all polynomials are non-zero, and if we select
J accordingly, then the corresponding series is convergent.

Note that if x̌(z, c; d) is partially convergent in a sectorial region G, then it represents a
family of solutions that are bounded at the origin (when approaching inside of G). Hence,
a natural question is whether this family includes all bounded solutions. Unfortunately,
the answer is negative: In the simple example of a decoupled system, assume that for some
j0 we have qj0(z) ≡ 0 and Reλj0 < 0. If we take cj = 0 for j 6= j0, the corresponding
sfn-solution is bounded at the origin, but the series is convergent outside of a disc around
the origin. Therefore, x̌(z, c; d) is not partially convergent for any J containing j0, hence
we cannot represent all bounded solutions by this series!

Acknowledgements. I am grateful to Masafumi Yoshino who, on the occasion of his
visit to Ulm in March 2011, brought the subject of this article back to my attention.
I had begun to write this paper some years ago, before busying myself with summation of
formal solutions of partial differential equations. During our collaboration on Integrability
of Hamiltonian systems and transseries expansions [11], and even more so in Yoshino’s
continuing research in this direction, it became clear that the notion of partial convergence
introduced in the final section of my article should be useful in this setting as well.
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