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Abstract. For a Fuchsian system

dY

dx
=
( p∑
j=1

Aj
x− tj

)
Y, (F)

t1, t2, . . . , tp being distinct points in C and A1, A2, . . . , Ap ∈ M(n × n; C), the number α of

accessory parameters is determined by the spectral types s(A0), s(A1), . . . , s(Ap), where A0 =

−
∑p
j=1Aj . We call the set z = (z1, z2, . . . , zα) of α parameters a regular coordinate if all entries

of the Aj are rational functions in z. It is not yet known that, for any irreducibly realizable set

of spectral types, a regular coordinate does exist. In this paper we study a process of obtaining

a new regular coordinate from a given one by a coalescence of eigenvalues of the matrices Aj .

Since a regular coordinate is a set of unknowns of the deformation equation for (F), this process

gives a reduction of deformation equations. As an example, a reduction of the Garnier system

to Painlevé VI is described in this framework.

1. Regular coordinates. We fix integers n and p. Let Oj (0 ≤ j ≤ p) be a conjugacy
class of M(n×n; C). We assume that, for each Oj , there is no integral difference between
distinct eigenvalues. Moreover we assume

p∑
j=0

trOj = 0. (1)

We set

M =M(O0,O1, . . . ,Op) =
{

(A0, A1, . . . , Ap) ∈ O0 ×O1 × . . .×Op ;
p∑
j=0

Aj = O
}
/ ∼,
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where (A0, A1, . . . , Ap) ∼ (B0, B1, . . . , Bp) if there is P ∈ GL(n; C) such that Aj =
PBjP

−1 (0 ≤ j ≤ p). We denote (O0,O1, . . . ,Op) by ~O. We say that ~O is realizable if
M( ~O) 6= ∅, and that ~O is irreducibly realizable if there exists [(A0, A1, . . . , Ap)] ∈M( ~O)
such that the common invariant subspaces of A0, A1, . . . , Ap are trivial. To characterize
the (irreducibly) realizable tuples ~O is a fundamental problem, which is called Deligne–
Simpson Problem (DSP) by Kostov. DSP is solved by Kostov [9], Crawley-Boevey [2]
and Oshima [13].

The set M can be regarded as a moduli space of Fuchsian systems of differential
equations. Let t1, t2, . . . , tp be distinct points in C, and A1, A2, . . . , Ap be matrices in
M(n× n; C). Consider the Fuchsian system

dY

dx
=
( p∑
j=1

Aj
x− tj

)
Y, (2)

and set

A0 = −
p∑
j=1

Aj .

The accessory parameters of the system (2) can be understood as a coordinate system
of M(O0,O1, . . . ,Op), where Oj is the conjugacy class of Aj . The deformation of the
system (2) is described by the system of partial differential equations

∂Ai
∂ti

= −
∑
k 6=i

[Ai, Ak]
ti − tk

,

∂Aj
∂ti

=
[Ai, Aj ]
ti − tj

(j 6= i)

for (A1, A2, . . . , Ap), where [(A0, A1, . . . , Ap)] ∈ M(O0,O1, . . . ,Op) with A0 normalized
to the Jordan canonical form. Thus the deformation is a system of partial differential
equations for the accessory parameters. Then, in order to describe the deformation equa-
tion explicitly, we have to find a coordinate system of M, which is the theme of this
article.

We want to find a good coordinate system. For the case n = 2 and p = 3, Okamoto
[11] and Inaba–Iwasaki–Saito [6] constructed beautiful coordinate systems for the moduli
space M, which are fairly useful for the analysis of the Painlevé VI equation. Such
constructions, however, are very hard even for this particular case, and then similar
constructions for general M seem to be beyond our scope. We look for another kind of
good coordinate systems.

Definition 1.1. Let α be the dimension of the moduli space M =M(O0,O1, . . . ,Op).
A coordinate system (z1, z2, . . . , zα) ofM is called a regular coordinate if, for a represen-
tative (A0, A1, . . . , Ap) of a generic point ofM, all entries of the matrices A0, A1, . . . , Ap
are rational functions of (z1, z2, . . . , zα).

Jimbo–Miwa–Môri–Sato [7] gave a set of variables for a tuple (A1, A2, . . . , Ap) of
matrices such that all entries of the matrices are rational in the variables, and that
the variables are canonical with respect to the Hamiltonian structure of the deforma-
tion equation. Thus these variables are good ones, but do not give a regular coordinate
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since the number of the variables exceeds the number α of the accessory parameters.
Fuji–Suzuki [4] and Tsuda [15] obtained a same deformation equation in different ways.
Their deformation equation is written in a coordinate obtained from JMMS variables by
reducing the number of the variables. In the work [14] of classifying deformation equa-
tion of dimension 4, Sakai got 4 types of deformation equations which are also written
in coordinates from JMMS variables. These coordinates are canonical coordinates with
respect to the Hamiltonian structure, and we find that they are regular coordinates.
Alday–Gaiotto–Tachikawa [1] conjectured the coincidence of the partition function of
the four-dimensional gauge theory and the correlation function of the conformal field
theory. In studying AGT conjecture Yamada [16] obtained deformation equations from
Fuji–Suzuki–Tsuda equation by changing the spectral types of the matrices Ai.

Looking at these works, I noticed it important to study the regular coordinates in
general extent. In this paper we consider two kinds of transformations of the tuple
(A0, A1, . . . , Ap), one is Katz’s operations and the other is coalescences of eigenvalues, and
study the behavior of regular coordinates under these transformations. The former trans-
formation keeps the deformation equations invariant ([5]), while the latter one gives a
reduction of deformation equations. Explicit regular coordinates are also given for several
particular cases.

2. Formulation of the problem. In the following we assume that the conjugacy classes
Oj (0 ≤ j ≤ p) are semi-simple. For a semi-simple conjugacy class O of M(n × n; C),
the partition of n which represents the multiplicities of the eigenvalues is called the
spectral type of O, and is denoted by s(O). For a semi-simple conjugacy class O with
s(O) = (m1,m2, . . . ,ml), we set

z(O) =
l∑
i=1

mi
2, (3)

which is the dimension of the centralizer of any representative ofO. For A ∈ O, we also use
the notation s(A) and z(A) in place of s(O) and z(O), respectively, and call s(A) the spec-
tral type of A. For a tuple ~O = (O0,O1, . . . ,Op), the tuple (s(O0), s(O1), . . . , s(Op)) of
the spectral types is called the spectral type of ~O, and is denoted by s( ~O). If
~O = (O0,O1, . . . ,Op) is irreducibly realizable, the dimension α of M(O0,O1, . . . ,Op)
is given by

α = (p− 1)n2 −
p∑
j=0

z(Oj) + 2. (4)

This is shown essentially in [8], where the index of rigidity is given by 2 − α. It is also
known that α is an even integer.

We are interested in finding a regular coordinate for a given irreducibly realizable ~O.
The following lemmas give basic techniques.

Lemma 2.1. For any generic pair A,B of n×n-matrices, there exists a similar transfor-
mation which sends A to an upper triangular matrix and B to a lower triangular matrix
simultaneously.
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Proof. First we assume that A, B are diagonalizable, and take eigenvectors u1, u2, . . . , un
(resp. v1, v2, . . . , vn) of A (resp. B) such that u1, . . . , un−1, vn are linearly independent.
We set

Aui = aiui, Bvi = bivi (1 ≤ i ≤ n).

We show that, for i = 2, 3, . . . , n− 1, there is a vector u′i such that

u′i ∈ 〈u1, . . . , ui〉,
Bu′i ∈ biu′i + 〈u′i+1, . . . , u

′
n−1, vn〉,

Suppose that the assertion holds for i + 1, . . . , n − 1, and assume that u1, . . . , ui, u
′
i+1,

. . . , u′n−1, vn are linearly independent. Then vi can be written in these vectors

vi = c1u1 + . . .+ ciui + ci+1u
′
i+1 + . . .+ cn−1u

′
n−1 + cnvn

with scalars c1, c2, . . . , cn. We set

u′i = c1u1 + . . .+ ciui.

Then clearly u′i ∈ 〈u1, . . . , ui〉, and we have

Bu′i = B(vi − ci+1u
′
i+1 − . . .− cn−1u

′
n−1 − cnvn)

∈ bivi + 〈u′i+1, . . . , u
′
n−1, vn〉

= bi(u′i + 〈u′i+1, . . . , u
′
n−1, vn〉) + 〈u′i+1, . . . , u

′
n−1, vn〉

= biu
′
i + 〈u′i+1, . . . , u

′
n−1, vn〉,

which shows the assertion for i. Thus, the similar transformation by the matrix

P = (u1, u
′
2, . . . , u

′
n−1, vn)

sends A and B to upper and lower triangular matrices, respectively.
In the above we assumed that u1, . . . , ui, u

′
i+1, . . . , u

′
n−1, vn are linearly independent

in each step. We understand that the pair A,B is generic if these conditions are satisfied
for some sets of eigenvectors u1, . . . , un and v1, . . . , vn.

The above proof can be modified to the case that A or B is not diagonalizable.

Lemma 2.2. Let C be a diagonalizable n× n-matrix with spectral type (m1,m2, . . . ,ml).

(i) C can be parametrized by

n2 −
l∑
i=1

mi
2 = n2 − z(C)

parameters besides the eigenvalues.
(ii) Denote the eigenvalue of multiplicity mi by ci. We set

m′i = n−m1 −m2 − . . .−mi

for i = 1, 2, . . . , l.
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Then C can be generically parametrized as follows:

C = c1 +
(
C1

U1

)(
Im′

1
P1

)
,

C1 + P1U1 = c2 − c1 +
(
C2

U2

)(
Im′

2
P2

)
,

C2 + P2U2 = c3 − c2 +
(
C3

U3

)(
Im′

3
P3

)
,

...

Cl−1 + Pl−1Ul−1 = cl − cl−1,

where Ci, Ui, Pi are m′i ×m′i, mi ×m′i and m′i ×mi-matrices, respectively, and the
scalars in the right hand sides are scalar matrices of appropriate sizes. The entries
of Pi and Ui (1 ≤ i ≤ l − 1) are the parameters.

Proof. First we note that

rank(C − c1) = n−m1 = m′1.

Then, if the first m′1 columns of C−c1 are linearly independent, we get the decomposition

C − c1 =
(
C1

U1

)(
Im′

1
P1

)
. (5)

Using (5), we get

(C − c1)(C − c2) =
(
C1(C1 + P1U1 − d2) C1(C1 + P1U1 − d2)P1

U1(C1 + P1U1 − d2) U1(C1 + P1U1 − d2)P1

)
,

where d2 = c2 − c1. Since

rank((C − c1)(C − c2)) = m′2 and rank
(
C1

U1

)
= m′1,

we have
rank(C1 + P1U1 − d2) = m′2.

Then we get the decomposition

C1 + P1U1 − d2 =
(
C2

U2

)(
Im′

2
P2

)
,

if the first m′2 columns of C1 + P1U1 − d2 are linearly independent. Continuing similar
arguments, we get the parametrization in the assertion (ii). The parameters are given by
the entries of Pi and Ui (1 ≤ i ≤ l − 1), and hence the number of the parameters is

l−1∑
i=1

m′i ·mi +
l−1∑
i=1

mi ·m′i = 2
∑
i 6=j

mimj = (m1 + . . .+ml)2 −
l∑
i=1

mi
2,

which implies the assertion (i).

We shall use the above lemmas to construct a regular coordinate for a given ~O =
(O0,O1, . . . ,Op). First assume that there are two Oj with spectral type (1n). We may
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take
s(O0) = s(Op) = (1n).

By Lemma 2.1, we can take a representative (A0, A1, . . . , Ap) of a generic point ofM( ~O)
such that

A0 =

a01 O
. . .

∗ a0n

 , Ap =

ap1 ∗
. . .

O apn

 , (6)

where a0i 6= a0j (i 6= j) and api 6= apj (i 6= j). We parametrize A1, . . . , Ap−1 according
to Lemma 2.2(ii). By Lemma 2.2(i), we see the number of the parameters we use is

p−1∑
j=1

(n2 − z(Aj)) = (p− 1)n2 −
p−1∑
j=1

z(Oj). (7)

The maximal subgroup of GL(n; C) which leaves the form (6) invariant is

GL(1)n = GL(1; C)×GL(1; C)× . . .×GL(1; C).

Since the center C× acts trivially, the effective action is given by GL(1)n/C× ∼= GL(1)n−1.
Then we can normalize n−1 off-diagonal entries of A1, . . . , Ap−1 to arbitrary values. This
normalization is a system of algebraic equations for the parameters, which we call the
system (N).

Next we look at the relation
p∑
j=0

Aj = O. (8)

The diagonal entries of (8) give n relations
p−1∑
j=1

((i, i)-entry of Aj) = −a0i − api (1 ≤ i ≤ n). (9)

If we take a sum of these n relations, we get
p∑
j=0

trAj = 0,

which is a relation for the eigenvalues and is already assumed in (1). Then we have n− 1
independent relations among (9), which we call the system (D).

Thus we have 2(n − 1) relations (N) and (D) for the parameters of A1, . . . , Ap−1. If
these relations are independent and solvable, the number of the parameters is reduced
from (7) to

(p− 1)n2 −
p−1∑
j=1

z(Oj)− 2(n− 1) = (p− 1)n2 −
p−1∑
j=1

z(Oj)− z(O0)− z(Op) + 2 = α.

Note that the off-diagonal entries of A0 and Ap are written linearly in terms of the entries
of A1, . . . , Ap−1 by the relation (8). Hence, if the system (N) and (D) is independent and
solvable, and if the solution of the system can be written rationally in α parameters, the
parameters make a regular coordinate for M( ~O).

This method can be directly applied to the following particular case.
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Proposition 2.3. In the case

s(O0) = s(O1) = . . . = s(Op) = (1n),

we have a regular coordinate for M(O0,O1, . . . ,Op).

Proof. In this case we have

α = (p− 1)n2 − (p+ 1)n+ 2.

We may assume that A0 and Ap are of the form (6). We denote the eigenvalues of Aj
by aj1, aj2, . . . , ajn for 0 ≤ j ≤ p. According to Lemma 2.2(ii), we can parametrize
A1, . . . , Ap−1 as

Aj = aj1 +

(
Cj1
U j1

)(
In−1 P j1

)
,

Cj1 + P j1U
j
1 = aj2 − aj1 +

(
Cj2
U j2

)(
In−2 P j2

)
,

...

Cjn−1 + P jn−1U
j
n−1 = ajn − aj,n−1,

(10)

for 1 ≤ j ≤ p−1. Here, for 1 ≤ k ≤ n−1, U jk and P jk are 1×(n−k) and (n−k)×1-matrices,
respectively, and so we set

U jk =
(

(ujk)1 . . . (ujk)n−k
)
, P jk =

 (pjk)1
...

(pjk)n−k

 .

By the action of GL(1)n−1, we can normalize U1
1 to

U1
1 =

(
1 1 . . . 1

)
. (11)

Namely we have (u1
1)1 = . . . = (u1

1)n−1 = 1. By (10), the i-th diagonal entry of Aj is
given by

aj,n−i+1 −
n−i∑
k=1

(pjk)i(u
j
k)i + U jn−i+1P

j
n−i+1

for 1 ≤ i ≤ n. We put this into the relation (9) for 1 ≤ i ≤ n− 1 to obtain
p−1∑
j=1

n−i∑
k=1

(pjk)i(u
j
k)i −

p−1∑
j=1

U jn−i+1P
j
n−i+1 = a0i +

p−1∑
j=1

aj,n−i+1 + api.

Since we have normalized U1
1 as (11), this relation can be written as

(p1
1)i +

∑
1≤j≤p−1, 1≤k≤n−i

(j,k)6=(1,1)

(pjk)i(u
j
k)i −

p−1∑
j=1

U jn−i+1P
j
n−i+1 = a0i +

p−1∑
j=1

aj,n−i+1 + api. (12)

Hence every entry of P 1
1 is a polynomial of the entries of U jk and P jk with (j, k) 6= (1, 1).

The number of these entries is α, and hence they make a regular coordinate.
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Now we relax the condition s(O0) = s(Op) = (1n). Let us consider the case

s(O0) = (m, 1n−m), s(Op) = (1n)

with 1 < m < n. If we take a representative (A0, A1, . . . , Ap) with A0, Ap of the form (6),
and if we assume a01 = . . . = a0m, we should have

A0 =



a01 O
. . .

O a01

O

∗
a0,m+1 O

. . .
∗ a0n


,

because A0 is diagonalizable. This form of A0 is left invariant by the action of GL(m)×
GL(1)n−m. Then, by using this action, we can normalize the principal m×m part of Ap
to a diagonal matrix. Thus we have

Ap =



ap1 O
. . .

O apm

∗

O

ap,m+1 ∗
. . .

O apn


.

Then the principal m×m part of the relation (8) becomes a system of algebraic equations
for the parameters of A1, . . . , Ap−1. In this way, we can increase the number of the
equations of the system (D) by m2−m, which is just the difference of z(O0) for s(O0) =
(1n) and for s(O0) = (m, 1n−m), and hence the difference of α.

For the case
s(O0) = (m, 1n−m), s(Op) = (m′, 1n−m

′
)

with 1 < m′ ≤ m < n, the above argument holds without any modification. In this case,
if we take ap1 = . . . = apm′ , the action of GL(m′) × GL(1)n−m

′
leaves the normalized

forms of A0 and Ap invariant. Then we can normalize m′2 entries of A1, . . . , Ap−1 by this
action, which increases the number of the equations of the system (N) by m′2−m′. Just
as above, the last number coincides with the difference of z(Op) and hence of α.

To consider more complicated cases, we use the following lemma.

Lemma 2.4. Let A and B be a generic pair of diagonalizable n × n-matrices of spectral
types (m1,m2) and (n1, n2), respectively, with m1 > n1. Then there exists P ∈ GL(n; C)
such that

P−1AP =

a1In1 O O

O a1Im1−n1 O

∗ O a2Im2

 , P−1BP =

b1In1 O ∗
O b2Im1−n1 O

O O b2Im2

 ,

where ai (resp. bi) is the eigenvalue of A (resp. B) of multiplicity mi (resp. ni) for i = 1, 2.
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Proof. We set n1 = k, m1 − n1 = l and m2 = m. We may assume that A and B are of
lower and upper triangular form, respectively. Since A and B are diagonalizable, we have

A =

a1Ik O O

O a1Il O

A31 A32 a2Im

 , B =

b1Ik B12 B13

O b2Il O

O O b2Im

 ,

where A31, A32, B12 and B13 are m×k, m× l, k× l and k×m-matrices, respectively. We
transform A and B by a matrix P of the form

P =

Ik P12 O

O Il O

O P32 Im

 .

Then we have

P−1AP =

a1Ik O O

O a1Il O

A31 X32 a2Im

 , P−1BP =

b1Ik X12 B13

O b2Il O

O O b2Im

 ,

with
X12 = B12 + (b1 − b2)P12 +B13P32,

X32 = A32 +A31P12 + (a2 − a1)P32.

From the relations X12 = O and X32 = O, we obtain the linear equation(
A31 (a2 − a1)Im

(b1 − b2)Ik B13

)(
P12

P32

)
= −

(
A32

B12

)
for P12 and P32. The determinant of the matrix in the left hand side does not vanish for
a generic pair (A,B), and hence we find a matrix P in the assertion of the lemma.

By using Lemma 2.4 repeatedly, we obtain the following assertion.

Proposition 2.5. Let A and B be a generic pair of diagonalizable n × n-matrices of
spectral types

s(A) = (m1,m2, . . . ,mp), s(B) = (n1, n2, . . . , nq).

We set

Mk =
k∑
i=1

mi, Nl =
l∑

j=1

nj

for 1 ≤ k < p and 1 ≤ l < q, and set M0 = N0 = 0. Then there exists P ∈ GL(n; C) such
that

P−1AP =


a1Im1 O . . . O

∗ a2Im2 . . . O
...

...
. . .

...
∗ ∗ . . . apImp

 , P−1BP =


b1In1 ∗ . . . ∗
O b2In2 . . . ∗
...

...
. . .

...
O O . . . b2Inq

 ,

where, among the lower off-diagonal entries of P−1AP , the (i, j)-entry is 0 if Nl−1 + 1 ≤
j < i ≤ Nl for some l, and among the upper off-diagonal entries of P−1BP , the (i, j)-
entry is 0 if Mk−1 + 1 ≤ i < j ≤ Mk for some k. The maximal subgroup G of GL(n; C)
which leaves these forms of P−1AP and P−1BP invariant is

G = GL(l1)×GL(l2 − l1)× . . .×GL(lr − lr−1)×GL(n− lr),
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where (l1, l2, . . . , lr) is the increasing sequence of integers determined by

{M1,M2, . . . ,Mp−1, N1, N2, . . . , Nq−1} = {l1, l2, . . . , lr}.

Example 2.6. Let A,B be a generic pair of diagonalizable 10× 10-matrices of spectral
types

s(A) = (3, 3, 3, 1), s(B) = (2, 2, 2, 2, 2).

Then, by Proposition 2.5, we can send A,B by some P ∈ GL(10; C) to

P−1AP =



a1 0 0 0 0 0 0 0 0 0
0 a1 0 0 0 0 0 0 0 0
0 0 a1 0 0 0 0 0 0 0
a41 a42 0 a2 0 0 0 0 0 0
a51 a52 a53 0 a2 0 0 0 0 0
a61 a62 a63 0 0 a2 0 0 0 0
a71 a72 a73 a74 a75 a76 a3 0 0 0
a81 a82 a83 a84 a85 a86 0 a3 0 0
a91 a92 a93 a94 a95 a96 0 0 a3 0
a10,1 a10,2 a10,3 a10,4 a10,5 a10,6 a10,7 a10,8 0 a4


,

P−1BP =



b1 0 0 b14 b15 b16 b17 b18 b19 b1,10
0 b1 0 b24 b25 b26 b27 b28 b29 b2,10
0 0 b2 0 b35 b36 b37 b38 b39 b3,10
0 0 0 b2 0 0 b47 b48 b49 b4,10
0 0 0 0 b3 0 b57 b58 b59 b5,10
0 0 0 0 0 b3 b67 b68 b69 b6,10
0 0 0 0 0 0 b4 0 0 b7,10
0 0 0 0 0 0 0 b4 0 b8,10
0 0 0 0 0 0 0 0 b5 0
0 0 0 0 0 0 0 0 0 b5


.

The maximal subgroup of GL(10; C) which leaves the forms of these matrices invariant
is

GL(2)×GL(1)×GL(1)×GL(2)×GL(2)×GL(1)×GL(1).

Now we can formulate our problem in general. Let an irreducibly realizable tuple
~O = (O0,O1, . . . ,Op) be given. We can take a representative (A0, A1, . . . , Ap) of a generic
point ofM( ~O) such that a pair of two matrices, say A0, Ap, is normalized as in Proposi-
tion 2.5. We read A0 = A and Ap = B, and use the same notation as in the proposition.
We parametrize the other matrices A1, . . . , Ap−1 according to Lemma 2.2(ii). Note that
the number of the parameters is given by (7). Let G be the maximal subgroup of GL(n; C)
which leaves the normalized forms of A0 and Ap invariant. By the action of G, we can nor-
malize dimG−1 entries of A1, . . . , Ap−1, which gives a system (N) of algebraic equations
for the parameters of A1, . . . , Ap−1. On the other hand, by the normalization, the diago-
nal entries of A0 and Ap are the eigenvalues, and both of the off-diagonal (i, j)-entries of
A0 and Ap are 0 if Mk−1 < i, j ≤Mk for some k or Nl−1 < i, j ≤ Nl for some l. Then, for
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these (i, j), the (i, j)-entries of the relation (8) give a system (D) of algebraic equations
for the parameters of A1, . . . , Ap−1.

Our problem is to parametrize the solutions of (N) and (D). If the solutions are ex-
pressed rationally in α parameters, the parameters make a regular coordinate forM( ~O).

The problem can be regarded as a uniformization of a system of algebraic equations.
Also it can be regarded as a construction problem of representations of quivers.

3. Katz operations

Definition 3.1 ([8], [3]). Let (A1, A2, . . . , Ap) be a tuple of n× n-matrices.

(i) Let (a1, a2, . . . , ap) be a point in Cp. The operation

(A1, A2, . . . , Ap) 7→ (A1 + a1, A2 + a2, . . . , Ap + ap)

is called the addition with parameters (a1, a2, . . . , ap).
(ii) Let λ be a point in C. Define pn× pn-matrices G1, G2, . . . , Gp by

Gi =
p∑
j=1

Eij ⊗ (Aj + δijλ) (1 ≤ i ≤ p),

where Eij is the p × p-matrix with the only nonzero entry 1 at (i, j)-th position
(1 ≤ i, j ≤ p). Let K and L be the subspaces of Cpn defined by

K =


v1...
vp

 : vi ∈ KerAi (1 ≤ i ≤ p)

 , L = Ker(G1 +G2 + . . .+Gp).

It is easy to see that K and L are invariant subspaces for (G1, G2, . . . , Gp). Then
(G1, G2, . . . , Gp) induces the action (Ḡ1, Ḡ2, . . . , Ḡp) on the quotient space
Cpn/(K + L). The operation

(A1, A2, . . . , Ap) 7→ (Ḡ1, Ḡ2, . . . , Ḡp)

is called the middle convolution with parameter λ.

The addition and the middle convolution are called the Katz operations. The Katz
operations can be uniquely extended to operations for tuples (A0, A1, . . . , Ap) with sum
zero. Moreover it is easy to see that the Katz operations induce maps from the mod-
uli space M(O0,O1, . . . ,Op) to other moduli spaces by sending [(A0, A1, . . . , Ap)] to
[(A0 + a0, A1 + a1, . . . , Ap + ap)] and to [(Ḡ0, Ḡ1, . . . , Ḡp)]. It is shown that the Katz
operations do not change the number of accessory parameters and the irreducibility.

In general, for any matrix A, we have a basis {v1, v2, . . . , vl} of KerA such that every
entry of vi (1 ≤ i ≤ l) is a rational function of the entries of A. Noting this fact, we
obtain the following result.

Theorem 3.2. If a moduli spaceM(O0,O1, . . . ,Op) has a regular coordinate, the images
of the Katz operations also have regular coordinates.

The moduli spaces M( ~O) for the irreducibly realizable tuples ~O are classified by the
Katz operations, which induces the classification of the spectral type s( ~O). A spectral
type s( ~O) is called basic if the rank is minimum among the class it belongs.
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Thanks to Theorem 3.2, for finding regular coordinates, we have only to consider the
moduli spaces corresponding to basic spectral types. It is shown by Oshima [13] that,
for every value of α, there are only finitely many basic spectral types. The basic spectral
types with α = 2 are classified by Kostov [10], and those with α = 4 are classified by
Oshima [12]. Here we give the list of those spectral types.

The case α = 2:
(11, 11, 11, 11), (13, 13, 13), (22, 14, 14), (33, 222, 16).

The case α = 4:
(11, 11, 11, 11, 11), (21, 21, 13, 13), (31, 22, 22, 14), (22, 22, 22, 211),

(211, 14, 14), (221, 221, 15), (32, 15, 15), (23, 23, 2211), (33, 2211, 16),

(44, 24, 22211), (44, 332, 18), (55, 3331, 25), (66, 444, 2511).
Among these spectral types, owing to Proposition 2.3, we already know that regular

coordinates exist for the cases (11, 11, 11, 11), (11, 11, 11, 11, 11) and (13, 13, 13). For the
other cases, we find regular coordinates except the cases (44, 332, 18), (55, 3331, 25) and
(66, 444, 2511). We note the results.

(22, 14, 14)

A1 =


a1

a2
O

∗ a3

a4

 , A2 =


b1

b2
∗

O
b3

b4

 ,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
, C1 + P1U1 = c2 − c1,

where

U1 =
(

1 u12

1 1

)
, P1 =

(
p11 p12

p21 p22

)
.

Then (u12, p21) is a regular coordinate.

(33, 222, 16)

A1 =



a1

a1
O O

∗ a2

a2
O

∗ ∗ a3

a3


, A2 =



b1
b2

∗ ∗

O
b3

b4
∗

O O
b5

b6


,

A0 = c1 +
(
C1

U1

)(
I3 P1

)
, C1 + P1U1 = c2 − c1,

where

U1 =

1 u12 u13

1 u22 u23

1 1 1

 , P1 =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 .

Then (p11, p21) is a regular coordinate.
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(21, 21, 13, 13)

A2 =

a1 O

a2

∗ a3

 , A3 =

b1 ∗
b2

O b3

 ,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
, C1 + P1U1 = c2 − c1,

A1 = d1 +
(
D1

V1

)(
I2 Q1

)
, D1 +Q1V1 = d2 − d1,

where

U1 =
(
1 1

)
, P1 =

(
p1

p2

)
, V1 =

(
v1 v2

)
, Q1 =

(
q1
q2

)
.

Then (p1, p2, v1, v2) is a regular coordinate.

(31, 22, 22, 14)

A2 =


a1

a1
O

∗ a2

a2

 , A3 =


b1

b2
∗

O
b3

b4

 ,

A0 = c1 +
(
C1

U1

)(
I3 P1

)
, C1 + P1U1 = c2 − c1,

A1 = d1 +
(
D1

V1

)(
I2 Q1

)
, D1 +Q1V1 = d2 − d1,

where

U1 =
(
1 1 1

)
, P1 =

p1

p2

p3

 , V1 =
(
v11 v12
v21 v22

)
, Q1 =

(
q11 q12
q21 q22

)
.

Then (v21, v22, q21, q22) is a regular coordinate.

(22, 22, 22, 211)

A2 =


a1

a1
O

∗ a2

a2

 , A3 =


b1

b1
∗

O
b2

b3

 ,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
, C1 + P1U1 = c2 − c1,

A1 = d1 +
(
D1

V1

)(
I2 Q1

)
, D1 +Q1V1 = d2 − d1,

where

U1 = I2, P1 =
(
p11 p12

p21 p22

)
, V1 =

(
v11 v12
1 v22

)
, Q1 =

(
q11 q12
q21 q22

)
.

Then (q12, q21, q22, v22) is a regular coordinate.
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(211, 14, 14)

A1 =


a1

a2
O

∗ a3

a4

 , A2 =


b1

b2
∗

O
b3

b4

 ,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
,

C1 + P1U1 = c2 − c1 +
(
C2

U2

)(
1 P2

)
, C2 + P2U2 = c3 − c2,

where

U1 =
(

1 u12

1 1

)
, P1 =

(
p11 p12

p21 p22

)
, U2 = (v), P2 = (q).

Then (u12, p12, v, q) is a regular coordinate.

(221, 221, 15)

A1 =


a1

a1
O O

∗ a2

a2
O

∗ ∗ a3

 , A2 =


b1

b2
∗ ∗

O
b3

b4
∗

O O b5

 ,

A0 = c1 +
(
C1

U1

)(
I3 P1

)
,

C1 + P1U1 = c2 − c1 +
(
C2

U2

)(
1 P2

)
, C2 + P2U2 = c3 − c2,

where

U1 =
(

1 u12 u13

1 1 1

)
, P1 =

p11 p12

p21 p22

p31 p32

 , U2 =
(
v1
v2

)
, P2 =

(
q1 q2

)
.

Then (u12, p21, v2, q2) is a regular coordinate.

(32, 15, 15)

A1 =

a1 O
. . .

∗ a5

 , A2 =

b1 ∗
. . .

O b5

 ,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
, C1 + P1U1 = c2 − c1,

where

U1 =

1 u12

1 u22

1 1

 , P1 =
(
p11 p12 p13

p21 p22 p23

)
.

Then (u12, u22, p21, p22) is a regular coordinate.
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(23, 23, 2211)

A1 =



a1

a1
O O

∗ a2

a2
O

∗ ∗ a3

a3


, A2 =



b1
b1

∗ ∗

O
b2

b2
∗

O O
b3

b4


,

A0 = c1 +
(
C1

U1

)(
I2 P1

)
,

C1 + P1U1 = c2 − c1 +
(
C2

U2

)(
I2 P2

)
, C2 + P2U2 = c3 − c2,

where

U1 =
(

1 0 1 0
0 1 0 1

)
, P1 =


1 p12

p21 p22

p31 p32

p41 p42

 ,

U2 =
(
v11 v12
v21 v22

)
, P2 =

(
q11 q12
q21 q22

)
.

Then (v11, v12, v21, q22) is a regular coordinate.

(33, 2211, 16)

A1 =



a1

a1
O O

∗ a2

a2
O

∗ ∗ a3

∗ a4


, A2 =



b1
b2

∗ ∗

O
b3

b4
∗

O O
b5 ∗

b6


,

A0 = c1 +
(
C1

U1

)(
I3 P1

)
, C1 + P1U1 = c2 − c1,

where

U1 =

1 u12 u13

1 u22 u23

1 1 1

 , P1 =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 .

Then (u22, u23, p22, p23) is a regular coordinate.
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(44, 24, 22211)

A1 =



a1

a1
O O O

∗ a2

a2
O O

∗ ∗ a3

a3
O

∗ ∗ ∗ a4

a4


,

A2 =



b1
b1

∗ ∗ ∗

O
b2

b2
∗ ∗

O O
b3

b3
∗

O O O
b4

b5


,

A0 = c1 +
(
C1

U1

)(
I4 P1

)
, C1 + P1U1 = c2 − c1,

where

U1 =


1 0 u13 u14

0 1 1 u24

1 0 1 0
0 1 0 1

 , P1 =


p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44

 .

Then (u13, u14, p41, p42) is a regular coordinate.

It is not yet known whether regular coordinates exist for the remaining cases
(44, 332, 18), (55, 3331, 25) and (66, 444, 2511).

4. Coalescence of eigenvalues. The spectral type of a diagonalizable matrix changes
when two eigenvalues coalesce. Then any spectral type is obtained from (1n) by an iter-
ation of coalescences of the eigenvalues.

Since we have a regular coordinate for M( ~O) with spectral type (1n, 1n, . . . , 1n) by
Proposition 2.3, we may have regular coordinates for other spectral types by coalescences
of eigenvalues. In some particular cases, we can actually have regular coordinates in this
way.

Proposition 4.1. We have a regular coordinate for M(O0,O1, . . . ,Op) with spectral
type

(21n−2, 1n, . . . , 1n).

Proof. We regard ~O = (O0,O1, . . . ,Op) as a result of a coalescence of a tuple ~C =
(C0, C1, . . . , Cp) of spectral type (1n, 1n, . . . , 1n). Let (A0, A1, . . . , Ap) be a representative
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of a generic point of M(~C). We parametrize (A0, A1, . . . , Ap) by using the regular co-
ordinate as in the proof of Proposition 2.3. We consider the coalescence a02 → a01. As
explained in Section 2, this induces two relations

p−1∑
j=1

((1, 2)-entry of Aj) = 0,
p−1∑
j=1

((2, 1)-entry of Aj) = 0. (13)

If n ≥ 4 and p ≥ 3, (13) becomes a system of linear equations in (u1
2)1, (u2

2)2, and the
coefficient matrix is (

(p1
2)1 −(p2

2)1
−(p1

2)2 (p2
2)2

)
,

which is generically non-singular. Thus we obtain a regular coordinate from one forM(~C)
by eliminating (u1

2)1 and (u2
2)2.

If n = 3 and p ≥ 3, (13) becomes a system of linear equation in (u1
2)1, (u2

2)1 with
non-singular coefficient matrix, and hence we obtain a regular coordinate by eliminating
them. Similarly, if n ≥ 4 and p = 2, we can eliminate (p1

2)1, (p1
2)2. In the case n = 3 and

p = 2, the result of the coalescence is rigid, and hence M( ~O) becomes a point.
When n = 2 and p ≥ 3, we use another normalization. We set

A0 =
(
a1

a2

)
, Ap =

(
b1

b2

)
,

Aj = cj1 +
(
dj
vj

)(
1 qj

)
, dj + qjvj = cj2 − cj1 (1 ≤ j ≤ p− 1),

and normalize q1 = 1 by the action of GL(1). Then v1 is determined by the trace condition,
and hence the system (13) becomes

p−1∑
j=2

(qj − 1)vj = a1 + b1 +
p−1∑
j=1

cj2,

p−1∑
j=2

qj(qj − 1)vj =
p−1∑
j=2

(cj2 − cj1)qj − a1 − b1 − c11 −
p−1∑
j=2

cj2,

(14)

which is a system of linear equations in v2, . . . , vp−1. If p ≥ 4, we can solve this system
in v2, v3, and hence get a regular coordinate after the coalescence. If p = 3, the result of
the coalescence is rigid. Finally the case n = 2 and p = 2 is rigid.

Definition 4.2. Suppose thatM(~C) has a regular coordinate, and that we obtainM( ~O)
from M(~C) by a coalescence of eigenvalues. If M( ~O) has a regular coordinate and if
the regular coordinate is rational in the regular coordinate for M(~C), we say that the
coalescence induces a good reduction from M(~C) to M( ~O).

Since a regular coordinate becomes the unknowns of the deformation equation, a good
reduction gives a reduction formula of deformation equations forM(~C) to the deformation
equation for M( ~O).

Example 4.3. We consider the sequence of coalescences

(16, 16, 16)→ (313, 16, 16)→ (33, 16, 16).
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We take a regular coordinate for (16, 16, 16) according to Proposition 2.3:

A0 =

a1 O
. . .

∗ a6

 , A2 =

b1 ∗
. . .

O b6

 ,

A1 = c1 +
(
C1

U1

)(
I5 P1

)
,

C1 + P1U1 = c2 − c1 +
(
C2

U2

)(
I4 P2

)
,

C2 + P2U2 = c3 − c2 +
(
C3

U3

)(
I3 P3

)
,

C3 + P3U3 = c4 − c3 +
(
C4

U4

)(
I2 P4

)
,

C4 + P4U4 = c5 − c4 +
(
C5

U5

)(
1 P5

)
,

C5 + P5U5 = c6 − c5.

We normalize U1 =
(
1 1 . . . 1

)
, and determine P1 by (12). Then the entries of

U2, P2, U3, P3, U4, P4, U5 and P5 make a regular coordinate.
We consider the first coalescence (16, 16, 16) → (313, 16, 16) by taking c5, c6 → c4.

Then

U4 = O, P4 = O, U5 = O, P5 = O,

and the entries of U2, P2, U3 and P3 make a regular coordinate after the first coalescence.
Thus the first coalescence induces a good reduction.

Next we consider the second coalescence (313, 16, 16) → (33, 16, 16) by taking
c2, c3 → c1. After the second coalescence, we obtain the parametrization

A1 = c1 +
(
D1

V1

)(
I3 Q1

)
, D1 +Q1V1 = c4 − c1,

where

V1 =

v11 − (a4 + b4 + c1) v12 − (a4 + b4 + c1) v13 − (a4 + b4 + c1)
v21 − (a5 + b5 + c1) v22 − (a5 + b5 + c1) v23 − (a5 + b5 + c1)

1 1 1

 ,

Q1 =

q11 q12 q13
q21 q22 q23
q31 q32 q33


with the relation(

v11 v12 v13
1 1 1

)q11q21
q31

 =
(

0
1

)
,

(
v21 v22 v23
1 1 1

)q12q22
q32

 =
(

0
1

)
,
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q13 = a1 + b1 + c4 + (a4 + b4 + c1)q11 + (a5 + b5 + c1)q12 − q11v11 − q12v21,
q23 = a2 + b2 + c4 + (a4 + b4 + c1)q21 + (a5 + b5 + c1)q22 − q21v12 − q22v22,
q33 = a3 + b3 + c4 + (a4 + b4 + c1)q31 + (a5 + b5 + c1)q32 − q31v13 − q32v23.

Thus (v11, v12, v21, v22, q11, q21, q12, q22) makes a regular coordinate after the second coa-
lescence. This regular coordinate can be written in terms of the regular coordinate before
the second coalescence as follows. We set

U2 =
(
u21 u22 u23 u24

)
, U3 =

(
u31 u32 u33

)
,

P2 =


p21

p22

p23

p24

 , P3 =

p31

p32

p33

 .

Then we have
v11 = (1− p31)(u31 − u33)− p32(u32 − u33)− p24(u21 − u24),

v12 = −p31(u31 − u33) + (1− p32)(u32 − u33)− p24(u22 − u24),

v13 = −p31(u31 − u33)− p32(u32 − u33)− p24(u23 − u24),

v21 = (1− p21)(u21 − u24)− p22(u22 − u24)− p23(u23 − u24),

v22 = −p21(u21 − u24) + (1− p22)(u22 − u24)− p23(u23 − u24),

v23 = −p21(u21 − u24)− p22(u22 − u24) + (1− p23)(u23 − u24),

q11 = p31,

q21 = p32,

q31 = p33,

q12 = p21 + p31p24,

q22 = p22 + p32p24,

q32 = p23 + p33p24.

Thus the second coalescence also induces a good reduction.

Example 4.4. In the proof of Proposition 4.1, we see that the coalescence (11, 11, . . . , 11)
→ (2, 11, . . . , 11) induces a good reduction. We shall show that, when p = 4, this good
reduction gives a reduction formula of the Garnier system in two variables to the sixth
Painlevé equation.

Take p = 4 and retain the notation in the proof of Proposition 4.1, so that s(~C) =
(11, 11, 11, 11, 11), s( ~O) = (2, 11, 11, 11, 11). We have a regular coordinate (v2, v3, q2, q3)
forM(~C). By a coalescence a2 → a1, we get ~O, and have a regular coordinate (q2, q3) for
M( ~O). By solving (14) in v2 and v3, we have

v2 =
a1 + b1 + c11 + c22 + c32 + (c21 − c22)q2 + (a1 + b1 + c12 + c22 + c31)q3

(q2 − 1)(q3 − q2)
,

v3 =
a1 + b1 + c11 + c22 + c32 + (a1 + b1 + c12 + c21 + c32)q2 + (c31 − c32)q3

(q3 − 1)(q2 − q3)
.

(15)
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The deformation equation for M(~C) is the Garnier system in two variables, and that
for M( ~O) is the sixth Painlevé equation. Then we can regard (v2, v3, q2, q3) as the un-
knowns of the Garnier system, and (q2, q3) as the unknowns of the sixth Painlevé equa-
tion. Hence, if we put (15) into the Garnier system and set a2 = a1, we obtain the sixth
Painlevé equation. In this way, we get the reduction formula.
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