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Abstract. Applying methods of plane Power Geometry we are looking for the asymptotic

expansions of solutions to the fifth Painlevé equation in the neighbourhood of its singular and

nonsingular points.

1. Introduction. The results obtained. We consider an ordinary differential equa-
tion of order n of the form

P (z, w,w′, . . . , w(n)) = 0, (1)

where z is an independent, w is a dependent complex variable, P is a polynomial of its
variables.

By means of two-dimensional Power Geometry [2, 4, 1] we obtain asymptotic expan-
sions of solutions to the equation (1) in the neighbourhood of z = 0 and z =∞. We are
looking for the expansions of the form

w = cr(z)zr +
∑
s∈K

cs(z)zs, (2)

where cr(z), cs(z), r, s ∈ C, K ⊂ {s : Re s > Re r} for the expansions in the neighbour-
hood of z = 0 and K ⊂ {s : Re s < Re r} for the expansions in the neighbourhood of
z =∞; the set K is countable.
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We obtain the following six types of expansions of solutions to (2):
Type 1. cr(z) and cs(z) are constant (power expansions).
Type 2. cr(z) is constant, cs(z) are polynomials in log z (power-logarithmic).
Type 3. cr(z) and cs(z) are power series in log z (complicated expansions).
Type 4. r, s ∈ R, cr(z) is a finite sum of powers of zi with complex coefficients and cs(z)
are power series over zi (half-exotic). Here and below i =

√
−1.

Type 5. r, s ∈ R, cr(z) and cs(z) are series in zi, and cr is a sum of countable number of
terms, the set of power exponents of zi in cr is bounded either from above or from below
(exotic expansions).
Type 6. r, s ∈ R, cr(z) and cs(z) are series in zi, and cr is a sum of countable number
of terms, the set of power exponents of zi in cr is bounded neither from above nor from
below (super-exotic expansions).

If the expansion in the text below is not said to be convergent we cannot say anything
about its convergence and it can be interpreted as a formal asymptotic expansion of
solution.

Typical examples of set K for expansions of types 1–3 in case z → 0 are given in
Fig. 1. Exponents of z for the other types of expansions are given in Fig. 2 (for half-exotic
expansions), in Fig. 3 (for exotic expansions), in Fig. 4 (for super-exotic expansions). As
was mentioned before, r, s ∈ R, but in the figures we also take into account the exponents
of zi in sums cs(z) and cr(z).

-

6

Re s

Im s

Im r

Re r

s s s s

Fig. 1

-

6

Re s

Im s

r

ss ss
s

ss
ss

c
c

c

#
#

#
#

#

Fig. 2

-

6

Re s

Im s

r

ss
ss

ss
ss
s

ss
ss
s

c
c

c

Fig. 3

-

6

Re s

Im s

r

sss
ss
s

ss
s
s
ss

ss
ss
ss

Fig. 4

We consider the fifth Painlevé equation (P5)

w′′ =
( 1

2w
+

1
w − 1

)
(w′)2 − w′

z
+

(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)
w − 1

, (3)
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where α, β, γ, δ are complex parameters, z is an independent, w is a dependent complex
variable. The fifth Painlevé equation (3) has two singular points: z = 0 and z = ∞.
The aim of the present work is to find all asymptotic expansions of solutions to the P5

equation of six types described above near the singular points of the equation and to find
all asymptotic expansions of solutions to the equation near its nonsingular point z = z0,
z0 6= 0, z0 6=∞.

Remark. Here and below the coefficients cs and csj , j = 1, . . . , 10, which are not said to
be arbitrary are uniquely determined and can be found as solutions of a system of linear
equations with non-zero determinant.

Theorem 1.1. In the neighbourhood of z = 0 there exist the following families of asymp-
totic expansions corresponding to the edge G(1)

3 and to the vertex G(0)
3 = (0, 3) obtained

from the corresponding families of expansions of solutions to the sixth Painlevé equation:

A0 : w = 1 + crz
r +

∑
s∈K

csz
s, (4)

where Re r ∈ (0, 1), K = {s : s = r + lr + m(1 − r), l,m ∈ Z, l,m ≥ 0, l + m > 0},
cr ∈ C \ {0} is an arbitrary constant. This family of asymptotic expansions exists for all
values of parameters of the equation.

Bτ0 : w = 1− zρ
(
cρ +

∞∑
k=1

c̃kz
kρ
)

+
∑
s∈K

csz
s, (5)

where ρ 6= 0, iρ ∈ R is an arbitrary constant, K = {s : Re s ≥ 0, ρ+lρ+m(1−ρ), l,m ≥ 0,
l + m > 0, l,m ∈ Z}, τ = sgn(Im ρ). This family of asymptotic expansions exists if
|α|+ |β| 6= 0.

The families w−1(z) for the families B+
0 and B−0 are the same.

Let us define θ1 =
√

2β −
√
−2α and θ2 =

√
2β +

√
−2α.

Bτj , j = 1, 2 : w = (−1)j+1
√
−β/α+

∑
s∈K

csjz
s =

(−1)j+1
√
−β/α

1 + C1zτθj
+
∑
s∈K

csjz
s, (6)

where K = {s : Re s ≥ 1, l + mτθj , l,m ≥ 0, l + m > 0, l,m ∈ Z}, C1 is an arbitrary
constant. The expansions exist if α · β 6= 0, Re θj = 0, j = 1, 2.

If Re
(√

2β + (−1)j
√
−2α

)
6= 0 we put kj = θj · sgn(Re θj).

Bj , j = 1, 2 : w = (−1)j+1
√
−β/α+

∑
s

csjz
s, (7)

s ∈ {s : s = l +mkj , l,m ≥ 0, l +m > 0, l,m ∈ Z}, ckjj is an arbitrary constant. The
expansions exist if α · β 6= 0, Re θj 6= 0, θj /∈ Z, j = 1, 2.

If C1 = 0 the set of power exponents in the expansion (6) is a subset of Z and this
family coincides with the family (7) with ckjj = 0, i.e. with m = 0.

Bj , j = 1, 2 : w = (−1)j+1
√
−β/α+

∞∑
s=1

csj(ln z)zs, (8)
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where csj are constant for s < kj, ckjj = akjj + bkjj ln z, akjj is an arbitrary constant,
bkjj is constant and uniquely defined, the coefficients csj for s > kj are polynomials in
ln z with uniquely determined coefficients. The expansions exist if α · β 6= 0, Re θj 6= 0,
θj ∈ Z \ {0}, j = 1, 2. Also if α · β 6= 0, α+ β = 0 there exists a family B2 defined by the
formulae (8) or (7).

B3 : w = ϕ0 +
∞∑
m=1

ϕmz
m,

ϕ0 = 1− 2
α+ β

1
ln2 z

+
c−3

ln3 z
+
∞∑
s=4

c−s
lns z

=
2(α+ β)

(α+ β)2(ln z + C3)2 + 2α
, (9)

where c−3, C3 ∈ C\{0} are arbitrary constants, here and below ϕm(z), ϕmj(z) are series
in decreasing powers of ln z. The expansions exist if αβ 6= 0, α+ β 6= 0.

Bj , j = 4, 5 : w = ϕ0j +
∞∑
m=1

ϕmjz
m,

ϕ0j = 1 + (−1)j
1
−α

1
ln z

+
c−2j

ln2 z
+
∞∑
s=3

c−sj
lns z

=
(−1)j√

−2α ln z + C4

, (10)

where c−2j = C4 ∈ C \ {0}. The expansions exist if αβ 6= 0, α+ β 6= 0.

B6,Bτ6 : w = 1 + cρz
ρ +

∑
s∈K

csz
s,

K = {s : s = ρ+ lρ+m, l,m ≥ 0, l +m > 0, l,m ∈ Z}, ρ = ±
√
−2α, (11)

where cρ ∈ C\{0}. If Re ρ > 0 the family is of Type 1, we denote it by B6, if Re ρ = 0 we
obtain two families of Type 5 denoted by Bτ6 , τ = sgn(Im ρ). The families exist if α 6= 0,
β = 0.

B8,9 : w = 1 + cρz
ρ +

∑
s∈K

csz
s, (12)

where ρ is an arbitrary imaginary constant, ρ2 = 2β, Im ρ > 0 for the family B8, Im ρ < 0
for the family B9, K = {s : Re s ≥ 1, s = ρ+ l(1−ρ)+m, l,m ≥ 0, l+m > 0, l,m ∈ Z},
cρ is an arbitrary non-zero constant. The families exist if α = 0, β 6= 0.

B10 : w = c0 +
∞∑
s=1

csz
s, (13)

where c0 /∈ {0, 1} is an arbitrary constant. The families exist if α = 0, β = 0.

A1 : w = 1 + crz
r +

∑
s

csz
s, (14)

r = − sgn(Re(
√
−2β))

√
−2β, s ∈ {s : s = r − lr + m, l,m ≥ 0, l + m > 0, l,m ∈ Z},

cr is an arbitrary non-zero constant. The expansions exist if α = 0, β 6= 0.
The family A2 is obtained by the symmetry (23) from the family A1, it exists if β = 0.

The families of expansions listed in the theorem below also can be found in [4].
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Theorem 1.2. In the neighbourhood of z = 0 there exist the following eight families of
expansions, corresponding to the edge G(1)

4 :

H1 : w = 1− 2δ
γ
z +

∑
s∈K

csz
s,

where a = sgn
(
Re(γ/

√
−2δ)

)
γ/
√
−2δ, K = {s : s = l + m + ma, l,m ∈ Z, l,m ≥ 0,

l + m > 0}, ca+1 is an arbitrary constant. The family exists if γδ 6= 0, γ2/2δ = −p2,
p ∈ R \ N. If a ∈ Q the expansion converges according to Theorem 1.7.2 [4].

H2 : w = 1−2δ
γ
z +

∞∑
s=1

csz
s,

where cs, 1 ≤ s ≤ a, are constants and cs, s ≥ a+2, are polynomials in log z with uniquely
defined coefficients, ca+1 = A log z + C, where C is an arbitrary constant. H2 exists if
γδ 6= 0, γ2/2δ = −n2, n ∈ N.

H3 : w = 1− δ
γ
z − γ

2
(ln z + C)2

z +
∞∑
p=2

ϕpz
p,

where C is an arbitrary constant, ϕp are series in decreasing powers of log z with uniquely
defined coefficients.

Hτ1 : w = 1 +
(
−2δ
γ

+ Cziτγ/
√

2δ
)
z +

∑
Re s>1

csz
s, γ2/δ ∈ R+, τ = ±1, C 6= 0;

H4 : w = 1 +
(
crz

ir − γ

r2
+
γ2 − 2δr2

4crr4
z−ir

)
z +

∑
Re s>1

csz
s,

where r ∈ R \ {0}, cr ∈ C, r and cr are arbitrary constants.
The families H1, Hτ1 , H2 and H3 are one-parametric, the family H4 is two-parametric.
If γ 6= 0, δ = 0, then the families H3 and H4 exist (we should substitute δ = 0 in the

corresponding formulae). If γ = 0, δ 6= 0, there exist two families of expansions

H(1)
j , j = 5, 6 : w = 1 + (−1)j

√
−2δ (ln z + C) z +

∞∑
p=2

ϕpz
p,

where C is an arbitrary constant, ϕp are series in decreasing powers of log z with uniquely
defined coefficients. Also the family H4 exists (we should substitute γ = 0 in the corre-
sponding formulae).

Theorem 1.3. If αβδ 6= 0 in the neighbourhood of z = ∞ there exist five asymptotic
expansions of solutions to the equation (3) (power expansions):

Dk : w = (−1)k
√
β

δ

1
z

+
(
−2β
δ

+ (−1)k
γ

2δ

√
β

δ

)
1
z2

+
∞∑
s=3

csk
zs

,

E1 : w = −1 +
2γ
δz

+
∞∑
s=2

cs
zs
,

Fk : w = (−1)k
√
− δ
α
z + 2 + (−1)k

1
2

γ√
−αδ

+
∞∑
s=1

cs,k
zs

,

where cs, csk are uniquely defined complex constants, k = 1, 2.
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Theorem 1.4. If α = 0, δ 6= 0 in the neighbourhood of z = ∞ there exist two families
V+, V−. They are defined by the formulae:

Vσ : w = Cz(1−σγ/
√
−2δ) exp

{
σ
√
−2δ z +

∞∑
s=2

cs
z−s+1

−s+ 1

}
, (15)

where C is an arbitrary constant, σ = ±1, Re(σ
√
−δz) > 0.

If β = 0, δ 6= 0, there exist two families of expansions U1, U2, which can be obtained
from V1, V2 by the symmetry (23). If δ = 0, γ 6= 0 there exist two families for α = 0 and
two more for β = 0. They are of an analogous form.

Theorem 1.5. If αβγ 6= 0, δ = 0 in the neighbourhood of z = ∞, there exist five
asymptotic expansions of solutions to the equation (3) (power expansions):

Dk, k = 3, 4 : w = (−1)k
√
−β
γ

1√
z

+
β

γ

1
z

+
∞∑
s=3

cs,k
zs/2

,

E2 : w = 1,

Fk, k = 3, 4 : w = (−1)k
√
−γ
α

√
z + 1 +

∞∑
s=1

cs,k
zs/2

,

where cs, csk are uniquely defined complex constants.

Theorem 1.6. In the neighbourhood of the nonsingular point z = z0 of the equation (3)
there exist 10 families of asymptotic expansions of its solutions:

Oj , j = 1, 2 : w = (−1)j
√
−2β
z0

(z − z0) +
∞∑
s=2

csj(z − z0)s; (16)

they exist if β 6= 0.

Oj , j = 3, 4 : w = (−1)j
z0√

2α(z − z0)
+
∞∑
s=0

csj(z − z0)s; (17)

they exist if α 6= 0.

O5 : w =
∞∑
s=0

cs(z − z0)s, (18)

where c0, c1 ∈ C are arbitrary constants, c0 6= 0, c0 6= 1. It exists for all values of
parameters of the equation.

Oj , j = 6, 7 : w = 1 + (−1)j
√
−2δ (z − z0) +

∞∑
s=2

csj(z − z0)s,

these expansions exist if δ 6= 0.

O8 : w = 1− γ

2z0
(z − z0)2 +

∞∑
s=4

cs(z − z0)s,

where c4 is an arbitrary constant. The expansion exists when γ 6= 0, δ = 0.

O9 : w =
∞∑

s=−2

cs(z − z0)s, (20)
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where c−2 is an arbitrary constant. The expansion exists when α = 0.

O10 : w =
∞∑
s=2

cs(z − z0)s, (21)

where c2 is an arbitrary constant. The expansion exists when β = 0.

2. Methods and algorithms of Power Geometry. Now we introduce the main no-
tions of plane Power Geometry.

Let us be given an ordinary differential equation of the form (1), we call the left
part of this equation a differential sum. To each differential monomial a(z, w) in the
differential sum (1) we put in correspondence its two-dimensional vector power exponent
Q(a(z, w)) = (q1, q2) according to the following rule:

Q(czrws) = (r, s);

Q
(dlw
dzl

)
= (−l, 1);

Q(a(z, w)b(z, w)) = Q(a(z, w)) +Q(b(z, w)).

The set of all vector power exponents of differential monomials in the differential sum
P (z, w) (1) is called a support of the differential sum P (z, w) and is denoted by S(P ). The
convex hull Γ(P ) of a support S(P ) is called a polygon of the differential sum P (z, w),
the boundary ∂Γ(P ) of Γ(P ) consists of vertices Γ(0)

j and edges Γ(1)
j .

To find asymptotic forms of solutions to the equation (1) we work with the truncated
equations, corresponding to the vertices (and edges) of the polygon of the differential
sum P (z, w). These truncated equations contain all the terms of the equation, the power
exponents of which belong to this vertex (or edge) of the polygon of the differential sum
P (z, w). Solutions of the truncated equations are called the truncated solutions.

Let us consider an edge having an external normal (n1, n2). The normal cone of the
edge is a ray λ(n1, n2), where λ > 0. If we consider a vertex belonging to the edges
having external normals (n11, n21) and (n21, n22) we define the normal cone of the vertex
as λ1(n11, n21) + λ2(n12, n22), where λ1 > 0 and λ2 > 0. If a normal cone of a vertex
or of an edge intersects with a part of a plane where n1 > 0, solution to the truncated
equation corresponding to it can give asymptotic form of solutions to the equation under
consideration in the neighbourhood of infinity, if a normal cone intersects with n1 < 0,
the situation is the same (replacing neighbourhood of infinity by the neighbourhood of
zero).

More detailed description of the Power Geometry methods can be found in [2, 4, 1].

3. The fifth Painlevé equation. Let us represent the P5 equation (3) in the form of
a differential sum (a polynomial in z, w,w′, w′′), i.e. multiply it by z2w(w − 1) and put
all the terms of the equation to the right part of the equation:

f(z, w) def= −z2w(w − 1)w′′ + z2
(3

2
w − 1

2

)
(w′)2 − zw(w − 1)w′

+ (w − 1)3(αw2 + β) + γzw2(w − 1) + δz2w2(w + 1) = 0. (22)
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The P5 equation (3) is invariant under the substitution

w 7→ 1
w
, (23)

the parameters of the equation transform under this substitution according to the fol-
lowing rule:

(α, β, γ, δ) 7→ (−β,−α,−γ, δ). (24)

We will use this fact later.
The polygon Γ(f) for the equation (22) in the case αβγδ 6= 0 is shown in Fig. 5. The

edges Γ(1)
j , j = 1, 2, 3, give the expansions in the neighbourhood of z =∞, the edge Γ(1)

4

gives the expansions near z = 0. The vertices of the polygon Γ(f) correspond to algebraic
equations, i.e. the equations not containing any derivatives of w. Such algebraic equations
corresponding to the vertices consist of the only term of the form czq1wq2 , these equations
have only trivial solutions z = 0 and w = 0.
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4. Asymptotic expansions of solutions in the neighbourhood of zero. The fol-
lowing truncated equation corresponds to the edge Γ(1)

4

−z2w(w − 1)w′′ + z2
(3

2
w − 1

2

)
(w′)2 − zw(w − 1)w′ + (w − 1)3(αw2 + β) = 0. (25)

We are looking for the solution of the equation (25) in the form w = c, c = const, c 6= 0.
We obtain the equation

(c− 1)3(αc2 + β) = 0. (26)

If α = 0 and β = 0 every c satisfies equation (26), if α = 0, β 6= 0, equation (26) has
a solution c = 1, if α 6= 0, equation (26) has solutions c = 1 and c1,2 = ±

√
−β/α. The

differential operator (the first variation of (25)) on the substitution z = c is equal to

L = −z2c(c− 1)
d2

dz2
− c(c− 1)z

d

dz
+ (c− 1)2(5αc2 + β).

For c 6= 0 the operator L vanishes only at c = 1. Thus w = 1 is a special solution of the
equation (25).
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We substitute w = 1 + w̃ into (3) and obtain an equation g(z, w̃) = 0 with polygon
Γ̃ = Γ(g) having edges G(1)

j , j = 1, 2, 3, 4, and vertices (see Fig. 6). As we consider the
case z → 0, the appropriate truncated solutions can be given by equations corresponding
to vertex (0, 2) and edges G(1)

3 , G
(1)
4 .

The truncated equation corresponding to the vertical edge G(1)
3 can be transformed

to the truncated equation corresponding to a vertical edge of the polygon of the sixth
Painlevé equation [4], the asymptotic forms of solutions to the fifth Painlevé equation
corresponding to the vertical edge of the polygon can be obtained from those of the
vertical edge of the polygon of the sixth Painlevé equation. Moreover, as the sets of the
power exponents of the polygons of both equations have the same bases, the structure of
the expansions and the set K in (2) remains the same in the expansions of solutions to the
fifth and sixth Painlevé equations. The same situation holds to the equation corresponding
to a vertex (0, 2) of Γ(f). So we obtain Theorem 1.1.

As we consider the remaining edge G(1)
4 we obtain the results formulated in Theorem

1.2 (in fact, these results can also be obtained from one of the truncated equations
corresponding to a polygon of the third Painlevé equation).

More detailed description of our results obtained concerning the expansions in the
neighbourhood of z = 0 can be found in [8].

5. Asymptotic expansions of solutions in the neighbourhood of infinity. Now
we pass to the analysis of the expansions of solutions to the fifth Painlevé equation in
the neighbourhood of infinity. As was written above, only the edges Γ(1)

j , j = 1, 2, 3
(Fig. 5) give the expansions in the neighbourhood of z = ∞. If αβδ 6= 0 we obtain the
following asymptotic expansions of solution to the P5 equation. For all the expansions
in this case the set K is a subset of Z. All these expansions have been known before [9].
The expansions obtained are listed in Theorem 1.3.

If αβγ 6= 0, δ = 0 a polygon of the equation is shown in Fig. 7, only the edges Γ̃(1)
j ,

j = 1, 2, 3, give the expansions in the neighbourhood of z = ∞, truncated equations
corresponding to the vertices remain algebraic and, as was explained above, do not give
any expansions of solutions. For all the expansions in this case the set K is a subset of
1
2Z = { 1

2k, k ∈ Z}. The expansions obtained are listed in Theorem 1.4.
For every expansion of the ten listed before, except the exact solution E2, there exist

two corresponding exponential additions of the form b(z)Ceϕ(z), where C is an arbitrary
constant, ϕ′(z), b(z) are power expansions [5]. For example, for the expansion E1 these
exponential additions have the following form

w = Cz−1/2 exp
{

(−1)m
√
−δ

2
z +

∞∑
s=1

bsm
zs

}
,

where bsm are uniquely defined complex constants, C is an arbitrary constant. Here
and below we fix a branch of complex square root such that

√
1 = 1, we obtain that

as |z| → ∞ these exponential expansions are small in the part of the complex plane
(−1)m Re

√
−δ/2 z < 0.
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If α = 0, βγδ 6= 0, a polygon of the equation is shown in Fig. 8, only the edges
G

(1)
j , j = 1, 2, 3, give the expansions in the neighbourhood of z =∞, truncated equations

corresponding to the appropriate vertices remain algebraic and do not give any expansions
of solutions. Expansions corresponding to the non-horizontal edges remain the same, so
we should pay attention only to a horizontal edge G(1)

3 .
The edge G(1)

3 corresponds to the truncated equation

−z2w2w′′ +
3
2
z2w(w′)2 − zw2w′ + βw3 + γzw3 + δz2w3 = 0. (27)

We perform a logarithmic substitution to equation (27), i.e. substitute ζ = (lnw)′ to it:

−z2ζ ′ +
1
2
z2ζ2 − zζ + β + γz + δz2 = 0,

we find appropriate asymptotic forms of solutions to this equation and we obtain that
solutions of the fifth Painlevé equation have the families defined by formula (15), where
C is an arbitrary constant, csm are uniquely defined constants, m = 1, 2. As the edge
G

(1)
3 is an upper one for the polygon of the fifth Painlevé equation, w → ∞, so these

expansions exist for z, i.e. (−1)m Re(
√
−δz) > 0. The formula (15) does not work in case

δ = 0, but the analogous calculations can also be performed in case δ = 0 [5].
If δ = γ = 0 the fifth Painlevé equation (22) can be solved directly [4].
More detailed description of our results obtained concerning the expansions in the

neighbourhood of z =∞ can be found in [5].

6. Asymptotic expansions of solutions in the neighbourhood of the nonsingu-
lar point of the equation. To explore the expansions near the nonsingular point z = z0

(z0 6= 0, z0 6=∞) of the equation we perform the transformation z = t+z0 which permits
us to apply to the transformed equation the algorithms of Power Geometry described
above.

If αβγδ 6= 0 a polygon of the transformed equation is shown in Fig. 9, only the edges
Γ(1)
j , j = 1, 2, 3, and the vertices (0, 0), (−2, 2), (−2, 3) and (0, 5) belonging to these edges

give the expansions in the neighbourhood of t = 0. The vertices (0, 0) and (0, 5) do not



SOLUTIONS TO THE FIFTH PAINLEVÉ EQUATION 123

give any expansions as the truncated equations associated with them are algebraic, the
vertices (−2, 2) and (−2, 3) do not give appropriate asymptotic forms.

The truncated equation corresponding to the edge Γ(1)
1 gives two families (16) of

asymptotic expansions of solutions to the P5 equation (3).
The truncated equation corresponding to the edge Γ(1)

3 gives two families (17) of
asymptotic expansions of solutions to the P5 equation (3).
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The edge Γ(1)
2 corresponds to the following truncated equation:

f̂
(1)
2 (t, w) def= z2

0ww
′′ − 1

2
z2

0(w′)2 − z2
0w

2w′′ +
3
2
z2

0w(w′)2 = 0. (28)

We are looking for the solution to the equation (28) in a form w = c0, substituting
w = c0 to (28), we obtain an identical equality. If we substitute w = c0, c0 6= 0 to the
first variation δf̂

(1)
2 /δw we obtain an operator L5 = z2

0c0(1 − c0) d2

dt2 , which is equal to
the zero-operator iff c0 = 1 (as c0 6= 0), so we should consider the case c0 = 1 separately.
The characteristic polynomial [4] of L5 is equal to c0(1 − c0)z2

0k(k − 1) and has the
roots k1 = 0 and k2 = 1. The only root k = 1 belongs to the set K = {k > 0}, it is
the only critical value. We consider this set K as the expansion is in increasing powers
of t, so power exponents s of t in the expansion should satisfy this inequality: Re s ≥ 0,
s 6= 0. Compatibility condition [4] is satisfied. So we obtain a family (18) of asymptotic
expansions of solutions to the P5 equation (3) and 3-dimensional Power Geometry permits
us to work with a wider class of functions.

Theorem 6.1. Expansions of seven families Oj, j = 1, 2, 5, 6, 7, 8, 10, are Taylor series
and converge in the neighbourhood of z = z0, expansions of the other three families O3,
O4, O9 are Laurent series and converge in the deleted neighbourhood of z = z0.

The proof of this theorem is based on the Cauchy theorem and can be found in [6].
The families of expansions Oj , j = 1, 2, 3, 4, 5, 6, 7, 9, 10, are not new and can be found
in [9, 10], the family O8 is a new one.

More detailed description of our results obtained concerning the expansions of solu-
tions in the neighbourhood of the nonsingular point can be found in [6].
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The further exploration of expansions of solutions to the fifth Painlevé equation can
be performed using methods of 3-dimensional Power Geometry [3]. The first results con-
cerning the fifth Painlevé equation obtained using these methods can be found in [7].
We can briefly explain the difference between the expansions obtained by means of two-
and three-dimensional Power Geometry: let z → 0, we consider a function ψ(z), we fix
z = reiϕ. An order of a function as z → 0 is

p−(ψ(z), ϕ) = lim
r→0

ln |ψ(reiϕ)|
ln |r|

.

Two-dimensional Power Geometry permits us to obtain asymptotic forms w = ψ(z) of
solutions for which p−(ψ′(z), ϕ) = p−(ψ(z), ϕ)− 1.

References

[1] A. D. Bruno, Asymptotic behavior and expansions of solutions to an ordinary differential

equation, Uspekhi Mat. Nauk 59 (2004), no. 3, 31–80; English transl.: Russian Math.

Surveys 59 (2004), 429–480.

[2] A. D. Bruno, Plane Power Geometry for single ODE and Painlevé equations, International
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