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Abstract. We will consider the nonlinear partial differential equation

(E) t7(0/0t)"u = F(t,x,{(0/0t)"(9/0x) u}jtja|<L.j<m)

(with v > 0 and 1 < m < L) and show the following two results: (1) (Maillet type theorem) if
(E) has a formal solution it is in some formal Gevrey class, and (2) (Gevrey regularity in time)
if (E) has a solution u(t,z) € C*°([0,T], £} (V) it is in some Gevrey class also with respect
to the time variable ¢. It will be explained that the mechanism of these two results are quite
similar, but still there appears some difference between them which is very interesting to the
author.

1. Introduction. We denote by ¢ the time variable in R;, and by x = (x1,...,2,)
the space variable in R?. We use the notation: N = {0,1,2,...}, N* = {1,2,...}, a =
(a1,...,00) EN" a| =1+ ... + apn, Oy = 0/0t, Oy = (0s,, ..., 0y, ) with 0, = 0/0x;
(i=1,...,n)and 9y = 9g} ---Ogn.

For o > 1 and an open subset V of R? we denote by £17F(V) the set of all functions
f(z) € C>=(V) satistying the following: for any compact subset K of V' there are C' > 0
and h > 0 such that

fe% < || 1o n
I;leaf(dam f(@)| < Chall® VaeN

A function in the class 5{”}(‘/) is called a function of the Gevrey class of order o.
The class £{1} (V) is nothing but the set of all analytic functions on V' and usually
is denoted by A(V). For convenience, we set E{H(V) = C(V). If 1 < 0y < 09 < 0
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we have
AWV) c glor(vy c glos(v) c o= (v).

Thus, functions in the class £{71}(V) are closer to analytic functions than those in
Ele2}(V); in this sense, we can say that functions in £{71}(V) are more regular than
those in 1721 (V).

For an interval [0,7] = {t € R : 0 < t < T} we denote by C*°([0,T], {7} (V)) the
set of all infinitely differentiable functions u(t,z) in t € [0, 7] with values in £{7}(V)
equipped with the usual local convex topology.

Similarly, for s > 1 and ¢ > 1 we denote by £{=7}([0, T] x V) the set of all functions
u(t,z) € C([0,T] x V) satisfying the following: for any compact subset K of V there
are C > 0 and h > 0 such that

max  |0F0%u(t, z)| < CRFHIE®|all” Y(k,a) € N x N,
(t,x)€[0,T|xK

Obviously, we have
el=o3((0,1] x V) c ([0, 7], (V)).
In the case s = o we write £17}([0, 7] x V) instead of £177}([0, T] x V).
In this paper, we will consider the nonlinear partial differential equation
(1.1) 107w = F(t,2,{0] 05 u} j 1 a|<L.j<m)

where v > 0 and L > m > 1 are integers, and F(t,2,{2j,a}jt+|a|<L,j<m) 15 a suitable
function in a Gevrey class (for the precise assumptions, see Section . And, we will
consider the following problem on Gevrey regularity in time:

PrROBLEM 1.1. Let u(t,z) € C*=([0,T],E17}(V)) be a solution of (T.1); can we have the
result u(t,z) € E17H([0, T] x V) for a suitable s > 17 If this is true, determine the precise
bound of the index s of the time regularity.

Some particular cases are studied by Hannah—Himonas—Petronilho [HHP| (for KdV
equation), Lysik [L1] (for KdV equation), Gramchev-Lysik [GL1] [GL2|] (for semilinear
heat equation), Tahara [T1] (for linear Fuchsian equation) and Kinoshita—Taglialatela
[K'T] (for linear hyperbolic equation). In this paper, we will show a general result on the

equation (1.1)).

2. Maillet type theorem. Let v € N, m € N*, L € N*, A be a subset of {(j,a) €
NxN':j+]af <L, j <m}and d = #A (the cardinal of A). We will consider the
following nonlinear partial differential equation

(2.1) OO u = F(t,2,{0] 0%} (j.ayen)-
For simplicity we write
Du = {8]05u}j.ayen :
we denote the corresponding variable by z = {2j o }(j,a)ea € R<. Let © be an open subset

of Ry x R x R4, and let F(t,z,z) be a C* function on . Let s; > 1,0 > 1 and sg > 1,
let T > 0, and let V' be an open subset of R”. The main assumptions are as follows.
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a;) v>0,L>m>1,81>1and o > s9 > 1.
as) A is asubset of {(j,a) e NxN":j+|a| <L, j<m}.
) F(t,z,2) € Elv22}(Q).
) u(t,z) € C>([0,T),E17H(V)) is a solution of on [0,7] x V; this involves the
property: (t,z) € [0,T] x V = (t,x, Du(t, x)) € Q.

<

3
ayq

Before considering Problem we analyze a formal power series on this solution. Let

(2.2) at,x) =Y up(2)t* € ETHV)[[H]

be the formal Taylor expansion at ¢t = 0 of the solution u(t,z) in a4), and let us look for
Gevrey type estimates of the coefficients ug(z) (k =1,2,...).

In the case o =1 (that is, in the analytic case), we have many results on Gevrey type
estimates of the coefficients of a formal power series solution (see Ouchi [0], Gérard-
Tahara [GT], Shirai [S], Lysik [L2], and their references), and such results are called
Maillet type theorem.

In order to state our result in the general case, we define

DEFINITION 2.1. For a formal power series f(t,z) = 2 k>0 ar(2)tk € EHV)[[t] we
define the valuation of f(t,x) in t (which we denote by val,(f)) by
val,(f) = min{k € N : ag(z) # 0 on V}

(if ax(z) = 0 on V for all k € N, we set val,(f) = 00). If f(t,z) € C=([0,T],E}H (V) we
define val;(f) by using the formal Taylor expansion of f(¢,x) at ¢t = 0.

Under the conditions aj)-ay4) we set

kpo = vl (O (£, Du(t,2)).V ). (j.0) € A

0%j.a
and we suppose:
(2.3) {kj,a >~y —m+ 7, if (j,a) € A and |a| =0,
kjo>v—m+j+1, if (j,a) € A and |a| > 0.
Then, if we use the norm
(2.4) W, = 3 1% fﬂK o for f(a) € (V) and K € V
la|>0

(where ||02 f||x denotes the maximum norm on K, and p is a parameter) we can apply
the same arguments as in references quoted above and we have

THEOREM 2.2 (Maillet type theorem). Suppose the conditions ay)-as) and (2.3). Then
the coefficients ug(z) (kK = 1,2,...) of the formal Taylor expansion (2.2)) satisfy the
estimate: for any compact subset K of V' there are p > 0, C' > 0 and h > 0 such that
(2.5) lurll,, < CR*KI*™Y Vk € N

for any s > max{sg, s1, s2} with

(2.6) 58:1+max|:0, max ( j+olal—m ):|
(G:0)€A|a|>0\Kj o =y +m — ]
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From now, we use the following notation: for a(t,z) = > o0, us(x)th € E7H(V)[[1]]
we write @(t,z) € E199}({t}, V) if it satisfies the estimate (2:5). In this case we say that
4(t, ) is in a formal Gevrey class of order s in t.

Similarly, for U(t,z,2) = 351 1150 up., (2)tF 27 € EHK)([t, 2] we write U(t,z,2) €
Elsoh({t, 2}, K) if there are p > 0, C > 0 and h > 0 such that |Juy, [, < ChFFIV! x
(k + |v])!*~? for all (k,v) € N x N9,

Sketch of the proof of Theorem. Let 4(t, z) be as in , and set s = max{sg, s1, S2}-
Take any compact subset K of V. Our purpose is to show the estimate on K. We
will give a sketch of the proof only in the case s > 1.

Step 1. Reduction. We take q € N sufficiently large and we divide our formal solution

4(t, x) into the form

(2.7) a(t,z) = p(t,z) +th(t,x) with p(t,z) =Y ug(x)th.

Then we have w(t,z) € E17H(K)[[t]], w(0,2) = 0, and we see that w(t,z) satisfies the
formal equation of the form

C(toy,z)d = f(t,x)+ Y ajalt,z)(td) 051

(j,a)EA
(2.8) X Vja
+ 3 bt I [(tat)ﬂagw}
v|>2 (4,a)EA

where C(\, ) = A™ 4c1 ()N L+ ..+ epm(z) € EVHE) N, v = {Vjat(j,men € N* and
V| =3 (j,a)en Via- Moreover, we have the following conditions:

1) C(z,k) #0on K forall k=1,2,.
2) f(t, z),Gj,q(t, @), by (t,z) € £ ’”}({t} K) for s* = max{s1, s2},
3) valy(f) > > 1, valy(aj,a) 2 1 and valy(by) > (g —m+ D)|v| — (g +~v —m),
4) Z|V|>2 Lt )z € 679 ({t, 2}, K), and
5) if we set g; o = val;(d;.) we have
(2.9) sp = 1+ max {O, max (]—i—g|a—m)] .
(J,2)€A, |a|>0 4j,c
We set p, = valy(b,), and for |v| > 2 we set L, = max{j + oo : Vj o > 0}. Since we are
considering the case s > 1 and ¢ is sufficiently large, we may suppose the condition

L,—m
2.10 s—1>————— forany |v|>2.
(2.10) =1 y |v] >
Thus, to prove Theorem [2.2] it is sufficient to show that
(2.11) Zwk 1tk e g0 ({1}, K).

Step 2. Basic lemmas. We present two lemmas which are needed in the proof of (2.11)).
In the discussion below we regard | f| k., in as a formal power series in p. We write
Y k>0 appt < Y k>0 bep” if ax| < by holds for all & > 0. We take ¢y > 0 so that
|C(k,z)| > cok™ holds on K for any k =1,2,..., and also we take Cop > 0 and Ry > 0
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so that
Cok™

(1—=p/Ro)™’
LEMMA 2.3. Let w(z), g(x) € EHK) satisfy the equation C(k, z)w(x) = g(z) on K. If
lgllx,, < A/(1— p/R)* for some A>0,0< R < Ry and a > 1, and if R satisfies

ICE)x., < =1,2,....

Co 1
2.12 —— 1 < 1/2
( ) Co [(1—R/Ro)" =1/2,
then we have (2/co)A
Co
Iollsco < = e

LEMMA 2.4 (Nagumo’s type lemma, [T2 Proposition 4.5]). If || fllx, < C/(1 — p/R)*
for some C >0, a>1 and R > 0, we have
Ce’(a+0)°/R
O, -
1.1 (= p/R)+e
Step 3. Proof of (2.11). Let f(t,z), a;a(t,z) and b, (t,z) be as
f(t,z) = ka(x)tk, aja(t,x) = Z @ ok ()7, by (t, ) = Z by i (2)tF.
k=1 k>qj,a k>py
Since w(t, x) is a formal solution of the equation (2.8]), the coefficients wi(x) (k =1,2,...)
satisfy the recurrent formulas
(2.13) C(1,z)wy = f1(x)
and for k > 2

(2.14) C(k,z)wp = fu(z)+ > > tan(@)(k—h)YOSwpp

(J,a)EA gj,a<h<k—1

|x,p < fori=1,...,n.

Vi«
LD INED DR ICED DI | N | | RO
[v|>2 pp<h<k-2 |k*|+h=k (j,a) €A i=1

where [k =37 ; »yen(Kja(1)+. .. +kja(v)q)). Since only the terms wi(z), ..., wp—1(z)
and their derivatives appear in the right-hand side of (2.14)), in the estimation of wg(x)
(k=1,2,...) we can use the induction argument on k.

Let us take Fj, > 0, Aj o x> 0 and B, > 0 so that

Fk A‘a k BV’C
Il < m— 5 lajanlli, < =270~ lbvilr, < 77—
77 (1 p/Ro)" ! 77 (1—p/Ro)" 7 (1 p/Ro)"
and that the series
Fk k Aj a,k Lk Bu k k
t thad) t l t v
kls—1 ’ kls—1 ’ Z (k + |V|)!S_1 <
k>1 k>qj,a [v|>2,k>p,

are convergent in a neighborhood of t = 0 or (¢,z) = (0, 0).
Since wy (z) € £17}(K) is known, we can choose A > 0 so that

(2.15) 195 willxe,p < () € A

S

(1 =p/Ro)™’
We choose p € N so that p > max{j + ola| : (j,a) € A}, p > m and p > n hold. Take
N € N* sufficiently large so that s—1 > (u—m)/(N—1), and set F} = k*~™F), /(k—1)1571
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and
Aj’oé’]67 ifk+1<N,
;,a,k = Aj ok .
m s lf k -+ 1 > ]V’7
By i, ifk+v| <N,
:,k = Bu,k

o= N if k+|v| > N.

ZF,:tk, Z A;)a’kt’“ and Z B:’ktkz”

k>1 k>qj o [v|>2,k>p,

Then the series

are convergent in a neighborhood of t = 0 or (¢,z) = (0, 0).
Now, let us consider the following functional equation with respect to (Y,¢):

B At 2/co Fy k
(216) ¥ = = LZ:Q 1= /R ¢

(k+ 1)~
Jak k
+H(J§€A kg 1 — p/R)r(2k=1) t"(BY)
(k+[v)*
+H Bk gy )|,
uz|>:2 g; — p/R)#(2k+v[-2) (8Y)

where R > 0 is the constant in (2.12)), p is regarded as a parameter with 0 < p < R,
H = NG~ and 8 = (2ue/R)*. Since this is an analytic functional equation, the implicit
function theorem tells us that for any 0 < p < R equation ([2.16)) has a unique holomorphic

solution Y of the form
Y =Y Vi)t
k>1

and the coefficients Y, = Yi(p) (k =1,2,...) are determined by the recurrent formulas:

A
(2.17) Y= 0T R
and for k > 2
2/ Iy
(2.18) Y, = (1= p/R)" {(1 — p/R)/L(zk—z)

7,0 (h+1)
+H Z Z (l—p};R) (2h—1) (BY5-n)

(d,0)€N ¢j,a <h<k—1

B}, p(h+ v )* 1 }

+H Z Z (1 — p/R)rCh+1v]=2) H H BYk; o)

[v|>2 p,<h<k—-2 (j,o)eA i=1

Moreover, by induction on k& we see that the coeflicients Y (p) have the form

C,
Yilp) = p/R’; T

where C; = A and Cy > 0 (k > 2) are constants independent of the parameter p.

k=1,2,...
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The following lemma says that Y (¢) is a majorant series of the formal solution (¢, x):

LEMMA 2.5. For any k=1,2,... we have

(k — 1)1 ,
n—i—olal BYi(p) for any (j,a) € A.

Proof. The case k = 1 follows from and . The general case is proved by
induction on k. To do so, we apply the induction hypothesis to , we note that
(k—0!/(k —1)! < ef/k*"! holds for any k > ¢ > 1, and we use formula and

Lemma [2.3] Then we have

(2.19) K 105 willxc,p <

(k — 1)1 (k — 1)1 o

o (L= p/R)*Yi(p) = — (1 p/R)n—=2) °

Thus, by using Lemma we have the estimate (2.19)). Since the argument is similar to
the argument in [GT, Chapter 6], we may omit the details. m

lwrllx,, <

Since if we fix p > 0 the series Y =37, -, ¥}, (p)t* is convergent in a neighborhood of
t =0, we have Y;(p) < Ch* (k=1,2,...) for some C > 0 and h > 0. By applying these

estimates to ([2.19) we have the result (2.11)). m

3. Gevrey regularity in time. Now, let us return to Problem In order to treat
time regularity problem, we will use the norm

10 fllpo, 1y 56
(3.1) W llo, 715 i, = Z 7|04[|'U Ix plel
la|>0 )
(where f(t,x) € C*([0,T],EW7H(V)), K €V, |10 flljo,r)x 1 denotes the maximum norm
on [0,T] x K, and p is a parameter). It is clear that u(t,z) € £157}([0,T] x V), if and
only if for any compact subset K of V there are p > 0, C' > 0 and h > 0 such that
l0Fu/k! o, rxrc,p < CRFEI™T Yk € N.

If we use Faa di Bruno’s formula (see Johnson [J]) instead of the recurrent formulas
which appear in the calculation of formal power series solution, we can apply the same
argument to Problem as in Maillet type theorem in Section

Therefore, by Theorem it will be expected that the solution wu(t,z) satisfies
u(t,z) € EH[0,T] x V) for any s > max{s},s1, 2}, that is, the Gevrey order of
the regularity in time for actual solution will be the same as the Gevrey order for formal
solution in Maillet type theorem. But, in fact, it seems not true in the general case as is
seen in the theorem given below.

Instead of the valuation, we define

DEFINITION 3.1. For f(t,z) € C*([0,T] x V') we define the order of the zero of f(t,x)
on V att =0 (which we denote by ord:(f,V)) by

ordy(f, V) = min{k € N: (0¥ f)(0,2) Z0 on V}
(if (0Ff)(0,2) =0 on V for all k € N, we set ord,(f,V) = o0).

Under the conditions a;)—ay) we set

oF
kjo = Ofdt(87(t»$7Du(t»$>)aV)7 (j,a) € A,
e
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and we suppose
(3.2) kjo>~v—m+j, if (j,a) € A and |a] =0,
' kio>v—m+j+1, if (j,a) € A and |a| > 0.
By Tahara [T2], Theorem 2.2| we have

THEOREM 3.2 (Gevrey regularity in time). Suppose the conditions aj)-as) and (3.2)).
Then we have u(t,x) € E1574([0,T] x V) for any s > max{sg, 51,52} with

j+olal—m )}
min{kj o —v+m—jm—j}/]

(3.3) so = 1 + max {0, max (
(j,2)EA,|a]|>0

We note that s; < sg holds; in general, the time regularity in the case of formal
solutions is better than the case of actual solutions.

REMARK 3.3.
(1) In the case v = 0, the index sg is expressed as
(3.4) 50 = 1+ max {0, max (j—l—o|a|—m)]
(4,a)EA, || >0 m—7

(2) In the case v = m, the index s¢ is expressed as

( j+olal—m )}
(,a)eA Jal>0 \min{k; o — j, m — j}

(3.5) s9 = 1+ max {07

EXAMPLE 3.4.
(1) Let us consider the periodic KAV equation:

(3.6) Opu + 02u + 6udyu =0, u(0,7) =@(x) onT

where p(z) is an analytic function on the torus T. The following results are known: i) The
problem is well-posed in H*(T) for s > 1; ii) Gorsky-Himonas |[GH] showed that
u(t, ) € C®((—6,6), EM(T)); and iii) Hannah-Himonas-Petronilho [HHP] showed that
u(t,z) € EB1((=6,8) x T). Since our index sq is given by so = 30, the result iii) just
coincides with our result.

(2) Let a > 0, k € N* and let us consider

(3.7 (t0; + a)?u — tF0%u = f(t,z).
The following results are known in [T]: i) is uniquely solvable in C>°([0, T], {7} (R))
for any o > 1; ii) if f(t,z) € £17}([0, T] x R) we have the time regularity
u(t,z) € EL94([0,T] x R), if k> 2,
{u(m) € g20-1ok([0,T] x R), if k=1.
Since our index sg is given by sp = 1+ (20 — 2)/ min{k, 2}, the result just coincides

with our result.

Sketch of the proof of Theorem . Let u(t,z) € C>®([0,T],E17}(V)) be a solution of
given in ay4), and set s = max{so, s1, s2}. Take any compact subset K of V. Our
purpose is to show that u(t,z) € £E{7}([0,T] x K). We will give a sketch of the proof
only in the case s > 1. The complete proof is given in [T2].

(3.8)
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Step 1. Reduction. We take ¢ € N sufficiently large and we divide our solution u(¢, x)

into the form
-1

(3.9) u(t,x) = @(t,x) + tw(t,x) with p(t,x) = Z
k

(0Fu)(0,2)
k! '

o

Then we have w(t,z) € C®([0,T],£{7}H(K)), and we see that w(t, x) satisfies an equation
of the form

(3.10) C’(t@t, x)w = G(t,a:, @w) with Quw = {(t@t)jﬁgw}(j,a)@\,

where C(\, z) = N 4c1 (2) N . . Aem(z) € EVHE) [N and G(t, z, 2) € 1577521 (Qy)
for s* = max{sy, s2} and some open subset ; of R, x R? x RY satisfying the property:
(t,x) €[0,T] x K = (t,x, Qw(t,x)) € 3. Moreover, we have the following conditions:

1) ordt(ﬁ(t,x,Gw(t,x)),K) >1,

aZj’a
oG
2) ordt( 57 (t,x,@w(t,x)),K) >(g—m+Dy|—(g+~vy—m) for |[v| > 2,
3) if we set g; o = ordy (;—G(t,x, @w(t,x)),K) we have
g,
(3.11) 50 = 1+max{0 max ( j+olal=m )}
" (j,a)EAJal>0 \min{q; o, m — j}
We set vl
. ortivlig
g, = ordt<W(t,x,®w(t,x)),K)7 plv>1, v >1

(if p=0and v = ¢jo we have 5., = = ¢ja) and set A, = {(j,a) € A : vj,o > 0}. Since
q is taken sufficiently large we may suppose the condition

j+olal—m
p+|v[+min{g; ,,m —j} -1

so— 1> max (
(J o) €Ny

) pHIz2 =1

In the case |v| > 2 this is verified in [T2, Proposition 6.2|. In the case p > 1 and v = ¢, o
we have ¢; . > max{gj. —p,0}, and so this is verified by the following: if gj,, —p <0
we have p+|v|+min{g; ,,m—j}—1 = p+min{g; ,,m—j} > p > g¢j.o > min{gj,a,m—j},
if 0 < gj,o —p < m—j we have p+|v|+min{g; ,,m —j} —1 > p+min{g; o —p,m—j} =
P+ (¢ja — P) = ¢j,o > min{gja,m — j}, and if ¢ —p > m — j we have p + |v| +
min{gy; ,,m—j}—12>p+min{go—p,m—j} =p+(m—j) >m—j > min{gja, m—j}.

Thus, to prove Theorem [3.2] it is sufficient to show that
(3.12) w(t,z) € 1930, T] x K).

Step 2. Basic lemma. We take C > 0 and Ry > 0 so that ||¢i|x,, < C/(1 — p/Ro)"
(i =1,...,m). Then, instead of Lemma we have

LEMMA 3.5 ([T2, Lemma 5.2.2]). There are kg > 0 and My > 0 such that if w(t,x),
g(t,x) € C*([0,T] x K) satisfy the equation C(t0; + k,x)w(t,x) = g(t,x) on [0,T] x K
for some k > ko, if |lgllo,rx k., < A/(1 —p/R)* holds for some A >0,0< R < Ry and
a > 1, and if R satisfies

(3.13) MoC ! - 1} <1/2,

(1= R/Ro)"
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then we have
2MoA
km=i(1—p/R)e’

Step 3. Proof of (3.12)). We know that w(t,x) is a solution of equation (3.10)). By
applying 9F to both sides of (3.10) and by using Faa di Bruno’s formula (or Lemma 4.2
in [T2]) we have

(0 + k) wiio 1y x.p < i=0,1,...,m

1
(3.14) C(td + k)5 oFw

= fult,z) + > apu(t.) D ] [ o (t,) 5w
1<p+|v|<k,|v[>1 k* |=k—p (j,o) €A Ko
1 k. Vi
X PR i) g, i
8 8 kJQa (Vj,a)! ¢ ( ) v

where ‘k*| = Z(j,a)eA(kj»a(l) + ...+ kj7a(ljj7a)),

1 oG
fe(t,x) = E W(t x,Quw(t,x)) (k>1),
1 ortivlg
ap(t,x) = i W(t,x,@w(t,x)) (p+1v|>1, |v| > 1).

By the definition, we have g, , = ords(a,.(t,z),K) (p +|v| > 1 and |v| > 1). Since
gj.a(= qaej‘a) > 1, we can express the right-hand side of by a polynomial of the
terms (t9; + h)!0%(Orw/h!) (i =0,1,...,m, |o| < Land h =1,...,k — 1). Therefore, in
the estimation of Ofw/k! we can use the induction argument on k. We note that formula
corresponds to the formula in Section Moreover, we have constants Fj, > 0
and A, , > 0 such that

Fk AP:”
|||fk|||[0,T]><K,p < (1 p/Ro)"’ |||ap,u|“[0,T]><K,p < (1= p/Ro)"

and that the series
Fy

A
t* and g P LA
1s—1 1s—1
= ks ST i1 (p+ v

are convergent in a neighborhood of t = 0 or (¢,z) = (0, 0).

We choose p € N so that g > max{j + o|a| : (j,«) € A}, u > m and p > n. Take
N € N* sufficiently large so that s — 1 > (u —m)/(N — 1), (m +1)N > kg and N > 2,
we take A%, >0 (2 <p+|v| <N, |v| > 1) sufficiently large, and we set

* k‘u_ka
Fy = [ (k=1),
* APV
A = : (p+v| > N, |v]| >1).

P - N
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We take A* >0and Cf >0 (k=1,2,...,(m+1)N) so that
A
(1= p/Ro)™’

s—1 *
Jjaarak | (k — 1)' Ck
(3.16)  (t0e + k) 07 (05 w/ kD)o, m1x k. < =m0 A= /R

for j=0,1,...,m,|a| < Land k=1,2,...,(m+1)N.

(3.15) |\|(t3t)j3§‘w|\|[o7T]xK7p < j=0,1,...,m and |o| <L,

Now, let us consider the following functional equation with respect to (Y, ¢):

A* 2 Ci .

(3.17) Y = t+ Sty + Y it
(L—p/R)* (1—p/R)* renlominyy (L= P/ B

2M, [ Fy . Aje,  (m+ 1)K
4+ Z gy b+ H Z —f t x 28Y
(1—p/R)" (TN (1—p/R)M (eh /R)"

) Ap,y(p+(m+1)|VD

H
- (1= R/Ro)"(1 — p/ Ry 1=2)

tr(BY)!
pFlv|Z2,lv[>1
where R > 0 is the constant in 7 p is regarded as a parameter with 0 < p < R,
H = e Dm+DON (g o+ 1)# and 8 = (2ue/R)*. Since this is an analytic functional
equation, the implicit function theorem tells us that for any 0 < p < R equation (3.17))
has a unique holomorphic solution Y of the form
Y =Y Yi(p)t*
E>1
Moreover, we see that the coefficients Yy (p) have the form
Ck
Yi(p) = (1= p/R)“@ D’
where Cy > 0 (k > 1) are constants independent of the parameter p. We can show

k=1,2,...

LEMMA 3.6. For any k=1,2,... we have
(/45 1)[5 1
~ BYx(p)

(3.18) Il(to, + k)jaﬁ(ﬁfw/k!)l\l [0,T]xK,p < “ep—i—olal
forj=0,1,...,m and |a| < L.

The cases k = 1,2,...,(m + 1)N follow from (3.16)), and the general case is proved
by induction on k. The complete proof is given in [T2l, Section 7].

Since if we fix p > 0 the series Y = Y, ., Y3 (p)t" is convergent in a neighborhood of

t =0, we have Yi(p) < Ch* (k=1,2,...) for some C' > 0 and h > 0. By applying these
estimates to (3.18) we have the result (3.12). m

4. On the necessity of the condition. In this last section, we will derive a necessary
condition for a solution u(t,z) (or 4(t,x)) to belong to the class £{7+([0,T] x V) (or
g ({t}, V).

4.1. Fuchsian case. We set C(\,z) = X\ + c1 ()N + ... + co(z) € EHV)[N]. If
the equation is written in the form

(4.1) C(tdy, x)u = F(t,z,0u) with Ou = {(t9;)702u}(j a)en
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our indices (2.6)) and (3.3) are written as

(4.2) sy = 1+ max {0, max (w) } ,
(J,0)€A,|a|>0 4,0
Jjtolal—m
(4.3) so =1+ max|0, max ( - - )
(j,0)€A,|a|>0 \min{gj o, m — j}
with
oF
(4.4) G = ordt(%(t,m, Oul(t,z)), v), (j,a) € A.

In this case, let us estimate the index s of the Gevrey class £{5} from below such
that u(t,z) € E574([0,T] x V) or a(t,z) € £ ({t}; V) holds.

Let T > 0, V be an open neighborhood of x = 0 € R™, and 2 be an open neighborhood
of (t,z,2) = (0,0,0) € R x R* x R%. For a function f(¢t,z) € C*([0,T] x V), we write
ft,x) > 0 (at (t,x) = (0,0)) if (9¥02£)(0,0) > 0 holds for all (k,3) € N x N*. We

assume:
by) C(k,0) >0 for any k =1,2,...;
be) C(k,0) — C(k,z) >0 (at z =0) for any k = 1,2,...;
bs) F(t,z,z) >0 (at (t,z,2) = (0,0,0)), and

.. ./ (0:08F)(0,0,0)\ /18l
4.5 liminf (| —2—"— "~ > 0;
bs) u(0,2) =0on V, and
G—F(tm(au)’ =0 on V for any (j,a) € A
82;]7& ) ) t:0 - y j? *

We note that by by) we have (©u)(0,z) = 0 and so by setting ¢t = 0 in we have
F(0,2,0) = 0 on V. If we set a(x) = (0:F)(0, z,0) the condition implies that there
is an h > 0 such that (8%a)(0) > rlP!|3]!17 holds for any sufficiently large |(].

As before, we set ¢; o = ord;((0F/0z;,q)(t, x,0u(t,x)),V) ((4,) € A). Then we have
the expression

(1,2, 0u(t,2)) = 4z (@)1 +O(@H) (as ¢ — +0)
Zj,a

for some a; o (x) € E7H(V) with a; o (x) > 0 (at 2 = 0). We set

(4.6) AH+) ={(j,a) € A:a;q(0)>0,|a| >0}

Then we have the following result.

THEOREM 4.1. Let u(t,x) € C=([0,T],E17H(V)) be a solution of the equation ([@E1)). If
u(t,z) € E7H0,T) x V) or a(t,x) € E59({t}; V) for some s > 1, we have
(4.7 s > 1+ max [0, max (j—i—a|04|—mﬂ .

(4,0)EA(+) e
REMARK 4.2. Compare (4.7) with (4.2) or (4.3). In the case of formal solutions, our
sufficient condition (4.2)) is very close to the necessary condition (4.7); but in the case of
actual solutions, there is a gap.
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Sketch of the proof of Theorem[{.1l Let

(4.8) it x) =y ur()th € £ (V)[[H]
k=1

be the formal Taylor expansion at ¢ = 0 of the solution u(t,z). By a formal calculation

we can see that ug(z) > 0 (at x =0) for any k =1,2,....

Take any (j,a) € A(+), then we have ¢, > 1 and a;(0) > 0. Our aim is to show

the condition
(4.9) s_1>dtalal=m
4dj,a
For simplicity we write ¢ = ¢;.o and A = a; ,(0) > 0. Since
oF -
C(t0 + 1, 2)0ru = (0. F)(t, x, Ou) + W(t’% Ou) x O(tdy)? dgu + ...
7,
> a(z) + At? x 9;(t0;)70%u = a(x) + At11(t9,) T 0%u

(where we used: a(x) = (0:F)(0, z,0)) and since C(k,0)—C(k,z) > Oforany k = 1,2,...

we have C(1,0)u; > a(z) and
ApI+1

C 4,0 > —— 0%uy, £>1.
(q+ )uq-i-é (q+€) x Wl

Therefore

AF(g+1)7H - ((k = Dg + 1)/
C(1,0)C(q+1,0)-- C(kq + 1,0)

1 o _
X (q—i—l)---(kq—l—l)a;c (a(z)) fork=1,2,....

(4.10) Wigy1(z) >

)

Here we recall: by the assumption (¢, z) € E47F({t}, V') we have |u,(0)| < BHPp!*~!

(p =0,1,2,...) for some B > 0 and H > 0, and by the condition (4.5) we have an

h > 0 such that (92a)(0) > hl8l|1° for any sufficiently large |3]. We note also that
C(k,0) < ck™ (for k = 1,2,...) holds for some ¢ > 0. By applying these conditions

to (4.10)), for any sufficiently large k we have

BH* (kg + 1)1 > Jukg11(0)] = ukg41(0)

AR+ 1P (= Dg+ 1)

o k11j+olal—-m
FHI(g+ 1)mHL . (kg + 1)m+1 (kla)!” > ByHF Il

for some By > 0 and H; > 0. This proves that j + o|a] —m < g(s — 1). Thus, we have

proved (4.9). The details are written in [T2) Section §|. m

4.2. Non-singular case. Let us consider the initial value problem

(4.11) {8{”11 = F(t,z,Du) on [0,T] x V, where Du = {856§u}(j’a)€/\,

afu’tzoznpi(x) onV, i=0,1,...,m—1,
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where ;(z) € E17H(V) (0 <i < m — 1) are supposed. In this case, our indices (2.6) and
(3.3) are written as

Jj+ U|a‘ —m ]
4.12 s5 =14 max|0, ma (7> ,
( ) ’ X|: (j7a)€/\)\(a|>0 kj,a +m—j
(413) So = 1 + max |:0’ max (‘H—O'|Cl—7’n):|
(J,0)EA,|a|>0 m—j
with
oF .
(4.14) k‘j,a = ord; (37@’ T, Du(t, 1‘)), V)7 (j, a) c A
jyo

Let T > 0, V be an open neighborhood of x = 0 € R™, and 2 be an open neighborhood
of (t,,2) = (0,0,p) € R x B" x BY with p = {(92¢,)(0)} G.apen- We set pr(w) =
F(0,2,{(92¢;)(%)}(j,a)en) and

a(@) = 20,2, {020 (@)} gren)

23

(7, a)EA Zivex

(0,2, {(82¢5) (@)} j.aren) (05 @j+1) (@)

‘We assume:
c1) F(t,z,z) >0 (at (¢t,z,2) = (0,0,p));
c2) wi(x) >0 (at z=0),i=0,1,...,m —1;
AT o 1/18]
c3) ll%rfllnf((ama)(O)/|ﬂ|. ) > 0.

As before, we set kj o = ord;((0F/0z;,)(t,x, Du(t,z)), V) ((j,a) € A). Then we have
the expression

aai(t,x, Duf(t, z)) = aja(x)t* = + O(t**1)  (as t — +0)
Zj,a

for some a; o (x) € EL7H(V) with a; o (x) > 0 (at x = 0). We set

(4.15) AH+) ={(j,a) € A:a;q(0) >0,|a| > 0}.

Then we have the following result.

THEOREM 4.3. Let u(t,z) € C®([0,T] x EL7H(V)) be a solution of @S). If u(t,z) €
740, T) x V) or a(t,x) € E7H({t}; V) for some s > 1, we have
j+olel
. >1 -
(4.16) s> +max[0,(]7£1€ai< (k]a+m—g>}

REMARK 4.4. Compare ([£.16) with (£.12) or (4.13). In the case of formal solutions, our
sufficient condition (4.12)) is very close to the necessary condition (4.16)); but in the case
of actual solutions, there is a gap.

Proof of Theorem[{.5. By ¢1) and 02) we have gom( ) > 0. We set

Zcpz +t w(t, x).

Then we can reduce our equation ) to an equation of type (4.1)) with respect to
w(t, z), and we can apply Theorem The condition is verified by c3). =
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4.3. A generalized KdV type equation. Let k,¢ € {1,2,3,4,5,...} and m € {3,4,
5,6,...}, and let us consider

(4.17) dpu = 0™ u + u*dbu, u(0,z) = p(x),
where t € R, z € R or € T, and ¢(z) is an appropriate function in the Gevrey class

&1} for some o > 1. This equation is discussed in Hannah-Himonas—Petronilho [FIHP].
By Theorems [3.2] and [1.3] we have

THEOREM 4.5.

(1) Let I = (—06,8) and let V be an open subset of R. If u(t,x) € C=(I,E17H(V)) is
a solution of [E17), we have u(t,z) € E7HI x V) (and so (t,z) € EL57({t},V)) for
any s > max{mo,lo}.

(2) Conversely, if u(t,z) € EL7H(I x V) is a solution of and if () satisfies
©(0) >0, p(x) >0 (at  =0) and

o aza 0)\ 1/

(4.18) 12&{2“%) >0,

we have s > max{mo, lo}.

In the case o > 1 there are many functions p(z) € £{7}(R) with compact support
satisfying (4.18). In the case o = 1, the necessity of the condition s > max{m, ¢} can be
verified under the initial data

,L'(mff)/k:eix
M — ei®
90(73) = ¢ 1

(7; _ l‘) (4p+m—2)/k

(M >1) in the case V=T

(p e N* k< 2m—2(+8p) in the case V =R

by a small modification of the argument in [HHP].

4.4. Heat equation. Let k € {1,2,...} and let us consider

(4.19) Ou = t*%u, w(0,z) = (),

where (t,z) € (0,00) x R. We know:

PROPOSITION 4.6. If p(x) is a bounded continuous function on R, the equation

has a unique solution u(t,z) € C°([0,00) x R) N C°((0,00) x R) which is bounded on
[0,00) x R; moreover, the unique solution is given by

e 1 2
u(t,r) = E(t* ) (k+1), 2 — dy, where E(t,z) = —— e /4,
(ta) = [ B 1. =)ol dy (13) = <=
As to a solution in the Gevrey class, under the condition that ¢(z) € B°(R) and
|07 (x)] < AH™m!° onR, m=0,1,2,...

for some A > 0 and H > 0, we have
THEOREM 4.7.

(1) The solution u(t,z) of ([E19) satisfies u(t,z) € £12771(]0,00) xR).

(2) Conwversely, if u(t,z) € £1574([0,00) x R) is a solution of [@.19) and if (x)
satisfies p(x) > 0 (at x = 0) and

lim inf (9% ¢)(0) /1) > 0,

a— 00

we have s > (20 + k)/(k +1).
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We note that if &k = 0 we have (20 + k)/(k + 1) = 20; but that if £ > 1 we have
20 —1 20 -1 20+k
1 = .
SR S
In the case of formal solutions, we have a(t, z) € £17}({t},R) for any s > (20+k)/(k-+1)
which coincides with the necessity in (2).
[GL1) and [GL2] have discussed a similar problem for semilinear heat equations,

20=1+
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