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Abstract. Dettweiler and Reiter formulated Euler’s integral transformation for Fuchsian sys-
tems of differential equations and applied it to a definition of the middle convolution. In this
paper, we formulate Euler’s integral transformation for systems of linear differential equations
with irregular singularities. We show by an example that the confluence of singularities is com-
patible with Euler’s integral transformation.

1. Introduction. Euler’s integral transformation is given by

f(@) /c )t -2y at, (1)

where v is a complex number and C'is an appropriate cycle of the integral. It is also called
the Riemann—Liouville integral for specialized cycles. Euler’s integral transformation has
been studied classically, and several applications for ordinary differential equations were
explained in Ince’s textbook [6]. A typical example is given by the integral representation
for solutions of Gauss hypergeometric equation.

Euler’s integral transformation is still actively studied, especially in connection with
the middle convolution. The middle convolution was originally introduced by Katz in his
book Rigid Local Systems [T], and Dettweiler and Reiter [1}[2] defined a middle convolution
for systems of Fuchsian differential equations written as

% _ ( A . A ) ’ @)

22—t O z—t,
where AM ..., A are matrices of size n x n. Note that Eq. has singularities at
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{t1,...,t,,00}, all of which are regular. For a tuple of matrices (A1) ... A")) and
1 € C, we define a tuple of nr x nr matrices (A1), ... A"} by

AL, A® A0 0 o ... 0
AU A@ L. A0
B R N O |
0 0 0 0 0 0
(3)
0 0 0
0 0 0
...... i o . ,
AL A® AL

where I, is the identity matrix of size n, and the correspondence of the tuples of matrices
is called convolution. The following proposition shows that convolution is compatible with
Euler’s integral transformation of solutions of differential equations.

yi(z)
ProrosiTiON 1.1 ([2]). Assume thatY = is a solution of Eq. [2)). Let p € C
and 7y be an appropriate cycle of integrals. Then the function U defined by
U(l) z _
vol) f = )7 g ) = e o
U= . , U9() = : (4)
U(r.)(z) f’y(w - ti)_lyn(w)(z —w)" dw
satisfies the system of differential equations
dU AM A
— = e U 5
dz (z—t1+ +z—t7.) (5)

In general, irreducibility of the tuple is not inherited by convolution. Middle convo-
lution is defined by taking a suitable quotient of the convolution matrices, whose divisor
is given explicitly (see [1I 2]).

In this paper, we study Euler’s differential transformation for systems of linear differ-
ential equations with irregular singularities, which are written as

T My
PRl QIR B I ) ©)
=1 j= 0
Convolution and middle convolution for Eq. @ was introduced in [I1], which was moti-
vated by Kawakami’s work [§]. A main purpose of the present paper is to give a proof of
the compatibility of convolution and Euler’s differential transformation for Eq. @
Note that Euler’s differential transformation for single differential equations of higher
order has been studied by Oshima [9] and Hiroe [5], and that their formulation differs
from ours.
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This paper is organized as follows. In Section [2, we review a definition of convolution
for linear systems of differential equations, and present a theorem which is an analogue
of Proposition [I.I} In Section [3] we prove the main theorem. In Section[d, we show an ex-
ample where the convolution matrices are compatible with the confluence of singularities,
which is the basis for our definition of convolution.

2. Convolution. Let A = (Afg(),, . ,Ago), A Aél), AW A(T)> be a tuple
of matrices acting on the finite-dimensional vector space V (dimV = n) attached to the
system of differential equations @ We denote Eq.@ by Da. Set

V=VQe. . .av)e@Puile. eVl v =vvij). (7)
i=1

We fix 4 € C and define the convolution matrices fl;l) (t=0,...,7, 7 = 0i0,...Mmy)
acting on V' by

ulf) vin)
@ < @
=AY , 8
ugrllz j U%z ( )
u(()r) ,Uér)

where () 4 V(Z ) v (¢ =0,...,7, 5 =dy0,...my) and u§§l) are given by

Jj oy
(i") gy .
P~ =17 >,
mu
§ S Al i=0, =i, j'=j
S11 1 — Yy - 7.7 _]7
(i/) — =0 ]”—6 "0
uj/ - m// (9)

w43 S A o =i, =)

i''=0 ]”_5///10

0 otherwise.

Namely,
pln
. mo—j
~(0) pln
A7 =1 A9 . AQ A0 AL A A2 4| (10)
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mo+(m1+1)+...+(m;—1+1)

pln
i _ i
A5 = ! (11)
(i>1) i1y,
AR Al AR A AP vur, AGEY Al

We denote the tuple of convolution matrices by ¢, (A) = <A$22), ce A§0)7 A%Z Yo ,A(()r)>.
We can then show that the convolution corresponds to Euler’s integral transformation
on linear differential equations, which is analogous to Proposition

yi(z)
THEOREM 2.1. Assume that Y = : s a solution of Da, i.e.
(9)
dYy (0)_j—1 Ay
- ( ZA L1 4 Z tl)m (12)

1=1 j= 0
(i) Let p € C and v be a path such that [r(w)y(w)(z — w)"]weay = 0 for r(w) =
/(w—=t) (j=0,....ms, i =1,....7), r(w) = w (j =0,...,mg — 1) and
l=1,...,n, where Jv is the boundary of . Then the function U defined by

U9 ()
: J w0ty (w) (2 — w)* dw
A EACES z ,
Uni(2) [, w9 g () (2 — w)* duw
U=1 v |0 [ (w6 () e — w)pd | (13)
U (2) Ui (z) = :
: J, (= )7 Yy (w) (2 — ) du
: (i 0)
Us" ()

satisfies the system of differential equations D, (a), i.e.

roomy A(i)
( ZAO)ZJ 1+ZZ Tt g+1> (14)

11]0
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(ii) Let n € Z>g. The function U defined by

U (2)
: 0, d" -
e | BTEs e, i
uiz) | () dr Y : (15)
U3 (2)

satisfies the system of differential equations D._ _ (a)-

We prove this theorem in Section

We now discuss the path + appearing in the theorem. If we take v; to be a closed
path that encloses the point w = t counter-clockwisely, then the Pochhammer contour
[Vzy e, = 'yZ%ivz_lv,;l for i = 0,...,7 (tg = 00) satisfies the condition of Theorem
because the branching of the function r(w)y;(w)(z — w)* in the variable w is canceled
after analytic continuation along the contour. We may have other paths which reflect
the irregularity of the singularity when the function Y (w) has a direction of exponential
decay about an irregular singularity w = t;. Then the contour which starts from the
point w = t; goes in the opposite direction of the exponential decay about w = t;,
moves around the point w = z and returns to w = t; from the direction of exponential
decay (see Fig. , also satisfies the condition of Theorem [2.1] For example, if Y (w) =

pedd
Direction of
exponential decay
w=z
w = ti
Fig. A.

exp(1/(w — t)?), then the angle 6 of the direction of exponential decay about w = t is
chosen as —3n/4 < 0 < —w/4 or w/4 < 6 < 37w /4.

We remark that if mo = 0 then the system of differential equations D., (a) may
also be expressed in a generalized Okubo normal form (21, (4. 4m,+r) — T)% = BU
(T, B—constant matrices) by using Eq. . Kawakami [§] studied Euler’s integral trans-
formation for differential equations in generalized Okubo normal form.

The middle convolution mc,(A) is defined by taking a suitable quotient of convo-
lution matrices, whose divisor is given explicitly (see [I1]). Yamakawa [I3] introduced
another definition of middle convolution in the case my < 1 by using Harnad duality [4]
and the geometric invariant theory. I believe that Yamakawa’s middle convolution es-
sentially coincides with ours, although the correspondence should be made explicit. In
our definition, the relationship between middle convolution and Harnad’s dual system is
not clear. Theories of dual isomonodromic deformations were developed in [10, 12], and
it is also important to study middle convolution from the viewpoint of isomonodromic
deformations (see [3] for the case of Fuchsian differential equations).
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3. Proof of the theorem. The system D, a) may be written as

(0) -
Unmo (2) U (z) mi i1
: —z 7 12 POV RORYD DERRUSIC
(0') =0 j'=68; ¢ §'=1
v=| U T
Um, (Z) ) Z Z Aj/ UJ" ( j (
: dU;7(z) =0 =5, ] ( ) . 20
7'.) dz - (Z—ti)j+1 Z _ _]+1 ) Z7A )
Uy "(2)
(16)
and is equivalent to
a9 aul(z)
7dZ — szl = _MU;Q)l(z)’ Jj=2, , Mo,
v (2) ~ NS 4@
dz Z Z Aj Uy (=),
=0 j/:5i110
(9 () (17)
dU;7"(z) dU;Zi(2) ) o
(Zitl) dz - dz _HU] (Z)7 1#07 j_lv"'amiv
du? (2) i A i) (i .
(z — ti)?iiz = ,uUé )(z) + Z Z AE., )U;, )(z), i # 0.
i'=035'=68; ¢
The following lemma is a generalization of [2, Lemma 4.3(i), Lemma 4.2].
LEMMA 3.1.
(i) If Y is a solution of D, then the function U defined by
U (2) 0) 1 ,
mo Ui (z) = =277, j=1,...,mo,
U= : ; Y (18)
. ? (7,) o . . )
Uér)(z) U] (Z)* (Z_tl)]+1 ’ 7’7&07 jfoa'-'am’u
is a solution of D._ (a)-
(ii) If U is a solution of D.,(a), then dU/dz is a solution of D, (a)-
U(O)(Z)
mo
(i) Let U = : be a solution of De, (a) and let v be a cycle such that
Us” (2)

(@)U (w)(z = w)* ) yeay = 0 for

w—t;,, t=1,...,7, 7=0,...,my,
r(w) =< w, 1=0,7=1,...,mg—1
1

, i:O,l,...,r,j:507i,...,mi—1+507i.
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Then the function defined by

Uson (2)
- | e = / U9 (w)(z - w) duw (19)
0" (2) !

18 a solution of De, i, a)-
Proof. (i) We show Eq. in the case y = —1. The relations
0 0
v}’ (z) Zdejl(z)
dz dz

= (-)UY(2), j=2,...,mo,

, A (20)
') AU
(z—t;) o e =-U;"(2), i#0,j=1,...,my,
follow immediately from the definition. In the case i # 0, we have
dUO(l)(Z) Y dYy (4) o 0) _j'—1
(Z—ti) dz :—Z—ti+E:_UO (Z)—j;Aj/ 2! Y

v

DD Ag‘f/)(z_yw = U+ Y Y AU e, e

i'=1j'=0 i'=0 /=8, 4

d (0) r i . .
The relation UlT(Z) =— Z Z Agﬁ )U](,’ )(2) is shown similarly.
i'=0 §'=6,1 4
(ii) The statement is proved by differentiating Eq. .
(iif) Let U(2) be a solution of D, (a). If i # 0 and j > 1, then
0

_ NTD () — U@ —w)reT
f[{(w—tz)Uj (’U)) Uj—l(w)}(z w) 1]106(9"%

= /7 4 ({(w - ti)U;i)(w) — Uj(i)l(w)}(z — w)’”*l) dw

dw

aU(w) AU (w 4
:/{(wfti) de( ) _ gw( )+U;z)(w)}(sz)“2*1dw

(22)

— (2 —1) /{(—(z —w) +z— ti)UJ@(w) - Uj(i)l(w)}(z — w)H2 "2 dw.

It follows from Eq. that the last term of Eq. is equivalent to
11 / Uj(i) (w)(z —w)2 ™ dw + po / Uj(i)(w)(z —w)* 1 dw
¥

(2= 1) [ {e = U ) - U @) He - w) . (23)
Hence we have

dU (2 dU(i)l z . ,
sz( ) _ j(;z( ) — (o - I)A{(z — ) U (w) = U, () } (2 — w)*~2dw

= ) [ U @)z 0y = (4 )00 (29

(2 —t;)
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Similarly we have

0= [{(w - ti)Uéi) (w)}(z — w)url}weaw

- delten o)

25
/{MIUO +Z Z A(z)U(z }( )H2 L g ( )
=0 j'= 6/0
e / Uéi) (w)(z —w)*> ™ dw = (2 — 1) /(2’ - ti)Uéi)(w)(z —w)" 2 du.
Hence
7@, 4
(Z_ti) dU(Zl ( ) ( L2 — 1)/(2—ti)Uél)(w)(z—w)“2*2 dw

1+ w2 u2 L dw + A(z i ( w)#zfl dw

) [ 0t /3 ZZ

= (1 + p2)U, +Z Z A- V(). (26)

=03'=6,/ ¢
Therefore, we have the differential equations for U ]@ (2) (i # 0). The differential equations
for U;O)(z), that is,
(0 (0
AU (z)  dUV(z)

N _ 7O

(0
U Z Z AT

OJ'*‘;H 0

are obtained similarly from the following equalities:

0= [{—wU](OJ (w) + U(O)( )}z = w)uz—l} wedy

= [ Uk w0y e [ U0 )G e (o

+ (p2 — 1) /{zU(O U(O( )}z —w)> % dw,

0= [t —wp] == 35 a0wbe-wea

=0 j'=6;1 ¢
(1) / U (w)(z — w) 2 dw. w (29)

We now prove Theorem [2.1] If Y is a solution of Da, then it follows from Lemma
i) that the function U defined by Eq. is a solution of D._,(a). Hence, we obtain
Theorem [2.1fi) from Lemma iii) by setting p1 = —1 and p2 = p + 1. Note that we
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can also confirm that the condition of the cycle v in Lemma iii) follows from the
condition in Theorem i).

Theorem ii) is obtained by applying Lemma [3.1[ii) repeatedly to D. | (a)-

4. Confluence of singularities. We show that the definition of the convolution ma-
trices is compatible with the confluence of singularities using an example.
Let <B§O), Béo),Béo), B%l), Bél), B§1)> be a tuple of n x n matrices. Write

3

© 3 B0
o (Z SIS )Y, (30)

dz z—1/¢; z— €
=1 /Z i=1 i

and consider a confluence of singularities. We define the matrices Ago),A(QO),AEO) and

AW, AW A by

z3: Bi(O) - A(O) 2 +A(O)Z—|—A 0)
— z—1/e (I —€e2)(1 —e2)(l —e32)’
" (31)

B Ay AV, Al
2oid - R)—d)

Let P and P’ be the 3n x 3n matrices defined by

eresesl, —e1(ea+e3)l, e, eheb I, —(eh+e5)l, I,
P= 616263171 _62(61 + 63)171 62171 y Pl = 6/163[n _(6/1 + /)In In (32)
eresesl, —es(er +e2)l, esl, eebl, —(éy+e)l, I,
Then the matrices A:(,)O), e A(()l) may be written as

(AD A© 4©) _ (O O gOVp (4D 4D 4D) (0 B BOYp (33)
Conversely we have
Ay + A + 245"
(€5 —€1)(€5 — €3)

Taking the limit €1, €3, €3, €], €5, €5 — 0 in Eq. while keeping Aéo), A Aél) fixed, we
obtain

AY + AP + 340

e1(er —e2)(e1 — €3)

B = . By = (34)

(1)
dy © i1 o= A
dzz< ZA 2= +ZZJ+1 Y. (35)

Jj=1

According to Dettweiler and Reiter, the 6n x 6n convolution matrices B§O), e ,Bgl)
in the tuple (B;O), ce B§1)> are defined as

B +x1, BY” BY” B" B{" B

N o 0 0 0 0 0
e I
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0 0 0 0 0 0
B B 41, B BY B{" B
B = 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Bél): : : : : :
0 0 0 0 0 0

B B B BN BY BY 42,
Let Ago), Aéo), Ago), Aél), Agl), Aél) be the 6n x 6n matrices defined by
S5 Q922 4 AP 4 A

— 2z — 1/ (I —€e2)(1 —e2)(1 —e32)’

So B A A A
Y

e (z-e)(z-e)(z—€)’

P 0
0 P

AV = 1A%Q (j=1,2,3), AP =0 1AV (j=0,1,2).
By straightforward calculation, we have

AP e, AP AP A Al Ay

Set @ = < ) and define the matrices Ago)) ]150), Ago), Agl), /ﬁl), /1(()1) by

0 Mesl, 0 0 0 0
A0 _ 0 0 Aesl, 0 0 0
3 - )
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 & 1, M, 0 0 0
AP ¥ aen, AD el AYal A Al
A(O) _ 0 Aésl, —Xéol, 0 0 0
2 0 0 0 0 0 0 ’
0 0 0 0 0 0
0 0 0 0 0 0
0 M, 0 0 0 0
0 0 M, 0 0 0
a0 _ | AV +&n AP —xern, AP +aar, A Al Al
! 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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where €1 = €1 + €9 + €3, €2 = €163 + €163 + €263, €3 = €1€2€3, and

0 0 0 0 0 0
0o 0 0 0 0 0
qo_| 0o 0 o0 0 0 0
271 AP A A0 A p e, AW —aer, AV +ar, |
0 0 0 A&, 0 0
0o 0 0 0 A&y, 0
0 0 0 0 0 0
0 0 0 0 0 0
qo_| 0o 0 o0 0 0 0
N R (R Y9 AL, 0 ’
AL 4D 4O AM AW —aen, AN 4 AL,
0 0 0 AGL, MG, 0
0o 0 0 0 0 0
o 0 0 0 0 0
qo_| 0 0 0 0o 0 0
Tl 0 0 0 A, 0 0 ’
0 0 0 0 A\, 0
AL AQ A AD AW AN 4,

where € = €| + €} + €}, €, = €\ e, + €\ e + ehely, €5 = €] ehel. Thus, we can reconstruct
a special case of the definition of convolution matrices with irregular singularities (see
Egs. (10), (11)) by taking the limit €1, €2, €3, €], €5, €5 — 0 (é1,...,€5 — 0).

We now investigate the transition of solutions given by Euler’s integral transformation
in the process of confluence of singularities. If Y is a solution of the system of differential
equations , the function U given by

(36)

where 7y is an appropriate cycle, satisfies

W _ (s BY B, (37)
dz -1/ Zz—e)

(see Proposition |1.1{and [2]). Recall that the matrices fléo), . ,flél) are defined by tran-
sition with respect to the matrix @. Thus the function U should transfer to Q~1U in the
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process of confluence of singularities. Since

[, —d(w)w?Y (w)(z — w)* dw J,(w—1/e) 7Y (w)(z — w)* dw
[, —d(w)wY (w)(z — w)* dw J,(w = 1/e2) 7Y (w)(z — w)* dw
0 fv jd(w)Y(w)(z —w)* dw _ f,y(w —1/e3)7Y (w)(z — w)* dw (38)
I, (%(w)w_:gY(w)(z —w)H dw S (w = €)Y (w)(z — w)* dw ’
I, q(w)w_QY(w)(z —w)H dw S (w =€)y (w)(z — w)* dw
J, d(w)w=Y (w)(z — w)* dw J,(w = €)Y (w)(z — w)* dw
where d(w) =1/ H?Zl(l —gw) and d'(w) =1/ ?:1(1 — €;w), we have
J, w?Y (w)(z — w)* dw
J, wY (w)(z — w)* dw
0~'U — f’y Y (w)(z — w)" dw (39)

f7 w3Y (w)(z — w)* dw
f,y w2Y (w)(z — w)* dw
J,w™ Y (w)(z — w)* dw
as €1, €2, €3, €], €5, €5 — 0. Thus we obtain a prototype of Euler’s integral transformation
in Theorem 211
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