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Abstract. In this paper we study the Borel summability of a certain divergent formal power
series solution for an initial value problem. We show the Borel summability under the condition
that an initial value function ¢(z) is an entire function of exponential order at most 2.

1. Introduction and statement of the main result. Let ¢, x,£ € C. Let us introduce
Dp:={z€C: |z| < R}and S;, :={{ € C\ {0} : larg{ — d| < 0}. Let O(Dg) (resp.
O(S4,6 x DR)) be the set of all holomorphic functions on Dg (resp. Sq.0 X Dr), O(Dr)][t]]
the set of all formal power series Y .- u;(z)t’, where the coefficients u;(x) are in O(Dg).
We denote by [a] the integer part of a € R.

We consider the initial value problem

9] 0 \2 0\3
au(t, x) = a(%) u(t, z) + bt(t a) u(t, x) 1)
u(O,x) = ¢($),

where the numbers a and b are any complex numbers.

Let us recall some known results. If b = 0, then equation is the heat equation.
Then we have the following two results.

i) Assume that the initial value function ¢(x) is an entire function and satisfies with
some positive constants C' and K,

lp(z)| < cefle’ for xecC.

Then the formal power series solution 9 (¢, ) of (1)) is holomorphic in a neighborhood
of t = 0. This is a classical result, (see [Kow]).
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ii) The following result is that of Lutz—Miyake—Schéfke in [L-M-S]. The following two
statements a) and b) are equivalent:
a) The initial value function ¢(z) is analytic on Q = S99 U Sq/24x6 U D, and
satisfies with some positive constants C' and K,

6(z)] < CeXl** on Q.
b) The formal power series solution 9(t, z) of (1)) is Borel summable in a direction d.

The case a = 0 is covered by Ouchi [Oul] and [Ou2], where he obtained some results
on the multi-summability of some linear /nonlinear partial differential equations.

The purpose of this paper is to show the Borel summability for a formal solution
of in the case ab # 0.

At first we study the Borel summability for a formal power series solution (¢, z). We
refer the reader for details to Lutz—Miyake—Schéftke [L-M-S].

Let 0(t,z) = Yo, vi(z)t" € O(Dg)[[t] be a formal power series with coefficients
holomorphic in Dg. By O(Dg)[[t]]1 we denote the subset of O(Dg)[[t]] whose coeflicients
satisfy with some positive constants A, B and 0 < r < R,

sup |vi(z)| < ABT(i+1) for i=0,1,...
lz]<r

9

The elements of O(Dg)[[t]]:1 are called formal series of Gevrey class one.
We define O[[t]]; by

ol = |J o@r)lith-

R>0
Set Sl 5 :={t € C\ {0} : larg& —d| < 0} and S}; 4(T) = Sy, U {t: |t| < T}.
Let v(t, ) be analytic on S ,(T) for some T' > 0. Then 9(t,z) € O[[t]] is called a
Gevrey asymptotic expansion of v(t,z) ast — 0 in wa, written as
o(t,z) = 0(t,x) in Shy,

if for any proper subset S” € Sf o(T') there exist positive constants A, B and 0 <r < R
such that (¢, xz) € O(Dg)|[[t]]1 and

N-1
sup |v(t,x) — Z vi(z)t'| < ABNT(N + )[t|V for t€ S and N=1,2,....
[z <r i=0

DEFINITION 1.1. We say that v(t,x) € O[[t]]; is Borel summable in a direction d € R if
there exist a sector S} 5 with § > 7/2 and a function v(t, z) analytic on S} , x D, such
that v(t, ) = U(t, x) in Sj 4.

REMARK 1.2. Let us remark that the function v(¢,z) is unique if it exists, in that case
v(t,x) is called the Borel sum of 0(t,x).

DEFINITION 1.3. Let 0(t,z) = Y o vi(z)t* € O(DR)|[t]]. Then the formal Borel trans-
form (Bv)(&, x) is defined by

X

(BE)(6.2) = wnla)d(©) + 3 Hd
i=1

where 0(£) means the delta function with support at & = 0.
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The Borel summability of ¥(t,x) € O[[t]]; can be characterized by

PROPOSITION 1.4 ([L-M-S]). The formal power series v(t,z) € O(Dg)[[t]]1 is Borel
summable in a direction d if one can find some r < R so that the following two properties
hold:

1. The power series V (£, x) = (Bo)(&, z) — vo(z)8(€) converges for |€| < R and x € D,..

2. There exists a 6 > 0 such that for any x € D, the function V(£,x) can be continued
with respect to § into the sector Sq 9. Moreover, for any 61 < 0 there exist constants
C, K > 0 such that

sup |V (&, )| < CeKIEl for &€ Sq,.

x| <r

Then vo(z) + (L4V)(t, x) is called the Borel summation in a direction d of U(t,x), where
Lg is the Laplace transform that is defined by

d

(Lad)(t,) = / T (- (9)) (e ) de.

Note that by changing variables s = b1/t and y = a~/2bY/*z in we can assume
a =1 and b = 1, which we shall do from now on.
For the equation set
Ap(§) =1-¢€% (2)
DEFINITION 1.5. Set Z = {{ : Ao(§) = 0}. A singular direction is an argument of an

element of Z. We denote by E the totality of singular directions, i.e. 2 = {d € R :
d =0mod (7)}.

Now we are ready to state the main result.

MAIN THEOREM 1.6. Assume that the initial value function ¢(x) is an entire function
and satisfies with some positive constants C' and K,

\¢(x)|§CeK|‘”‘2 on C.

Then the equation has a formal power series solution U(t, x) which is Borel summable
in a direction d with Sq9 NZ =0 for a sufficiently small 6 > 0.

REMARK 1.7. In the case ¢(x) = €®", the formal solution O(t, z) of (1) satisfies for z € R,

) 7 — 13 4
ui(z) > 2073 ((@/23)/'2) (%) o(x) for i > 2, i even,

-0y eae o
ui(z) > 9i—4 1! ((Z - 3)/2)!3 <87x

It is not trivial to prove using this estimate that v (¢, ) is Borel summable however the
initial value function ¢(z) is an entire function of exponential order 2.

(3)

2
) ¢(x) for i >3, i odd.

2. Formal solution. In this section we construct a formal power series solution of
and give an estimation of its coefficients.
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First of all note that a formal power series solution v(t,z) = Yoo, u;(z)t" of (1) is
unique and satisfies the recurrence relations

wo(e) = 0(x), () = () o),

> (4)
ui(x) = (—x) wi—1(w) + (i — 2)3u;_o(x) for i>2.

We have

LEMMA 2.1. Assume that the initial value function ¢(z) € O(Dg). Then the coefficients

u;(x) of O(t,x) are holomorphic in Dy and there exist positive constants A, B such that

lui(z)| < ABT(i+1) on D, for i€Ny and 0<r<R. (5)

Proof. For serii f(z) = 3772, f;x? and g(z) = Y izo gjz’ with g; > 0 write f(z) < g(x)

i |, < g; for j € No.

For A > 0 and R > 0 set Og(x) = ﬁ and Qg)(x) = (%)”GR(LU) = W

for n > 0. For the function 0r(z) we get
n R n+1
9%)(35) < mﬁ; )(x) for n>0. (6)
We will show that the coefficients u;(z) in satisfy with some some A > 0 and R > 0,

ui(z) < % 03 (x) for i>0, (7)

where Cr =1+ R*.
Since the function ¢(z) is holomorphic in a neighborhood of the origin, for some A > 0
and R > 0 we have

up() = ¢(x) < 0 (@).
By the relation we get

Cr Cr C?

For i > 3 let us show the estimate by induction. By the inductive assumption, we
have

J .
uj(z) < %ng)(m) for 0<j<i. (8)

Next by the estimates @ and we get
a 2 Ci71 i
(%) w1 () < G fl)! 02 ()
(i — 1)(i — 2)°Cy °R* (20)
(¢ —1)1(2¢ — 3)(2¢ — 2)(2i — 1)(2¢) R

i—lpd
A o ) < P 0 @)

(z) (9)

(’L — 2)3’11,1'_2(%) <

Hence the relation and the estimate @ imply that the estimate @ holds for i > 0. m
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3. Preparatory lemmas. In this section we recall two lemmas that we need to prove
Theorem These lemmas are in [Oull, so we omit their proofs.
DEFINITION 3.1. Let ¢;(&,2) € O(Sap x Dg), i = 1,2, satisfy |¢;(§, )] < C[¢|<7! for
€ > 0. Then the convolution of ¢1(&,z) and ¢2(&, z) is defined by

(61 % 62) (€, 2) /<mf 0, 2)éa(n, ) dn

Then we have the following lemma.

LEMMA 3.2 ([Oull Lemma 1.4, p. 516]). Assume that the functions ¢;(&,z), i = 1,2,
belonging to O(Sq9 x Dr) satisfy

Sifl
l$: (&) < C; |§(Sz> on Sggx Dgr
fori=1,2. Then the convolution (1 * ¢2)(&, x) satisfies
81+52—1
|(p1 % $2)(§, )| < C1Cy I‘g(|51+32) on  Sq¢ X Dpg.

LeEmMMA 3.3 ([Oull Lemma 3.2, p. 526]). For a series 0(t,x) = Y., v,(2)t" set
(BY)(&,x) =V (&,x). Then for 1 <k < we have

~ O\F 55 (s+1)
sy 9\~ s
B(#'(t5;) ?)ca }jcks — * V(& 2)),
where the constants C}, s satisfy
Cin=1 Cis=—-5Ck_1,s+ Cr15-1. (10)

4. Proof of the Main Theorem. In this section we will prove the Main Theorem by
analyzing a convolution equation that is constructed from the equation . Firstly, let us
construct the convolution equation. To this end set u(z,t) = ¢(x) + v(t, z). Substituting
u(t, x) into (1)) we get
2 3

%v(t z) = (a%) o(x) + (%) o(t,@) + 1t %) u(t, z). (11)
Now we multiply each term of by t? and apply the formal Borel transformation.
Then by Lemma we get the convolution equation

ié)(@i) WH?()( ) (&= +ZC3S

For the formal solution 9(t, z) in Lemma [2.1] set Ty (¢, ) := 0(t, z) — gb(ac) and
V(&.2) = (Boo)(, ). (13)

Then by Lemma V(&,x) is a holomorphic function on |£| < 7 for some 7 > 0 and
satisfies . We will show that V' (, ) is analytic on Sq¢ for some directions d in &.
By

53 (s+1)

V(& x) = (£V@,D~()

C3,30(8) * (E7V(€,2)) = £V (€, x)
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we rewrite as
_ 52—1 o \2
€W = 15 (5,) oW

53 (s+1) (14)

52—1 o
+ ﬁ * (%) + Z 03 s —
Note that £ — &3 = €Ay (¢ ) where Ag(€) is given by (2] . Let us construct a formal solution
V(& x) = 3072 Vi(§, @) of (14) with
62 1 2
EA0(OV(&:2) = 5 (2 o(a) (15)

EANEV(E0) = £+ (37) Via(eom +chs

for i > 1, where V_1(&,z) = 0.
Let 0 <7 < 1. Set Q= SgoU{{ €C: ¢ <7} with SgpNE = 0. Now we estimate
functions V;(&, z) on Q. For Ay(&) we have

KA} ' < Co(lEP+1)™" on Q. (17)

To estimate functions V;(€, z) we need the following lemma, which can be found in [Kow]
and [Pid].

LEMMA 4.1. The following two statements are equivalent:

« (EV(&,2)).

53 (s+1)

#(EVia)  (16)

(i) A function ¢(z) is an entire function and satisfies with some positive constants C, K,
lp(z)| < ceXl= on C.
(ii) For any R > 0 there exist positive constants A and B depending on R such that

ON\i o
= < ABT(%
|Gz) el =486+
for alli=0,1,..., where ||¢||r = sup,ep, [¢(x)|
Then for functions V; (¢, z) we have

PROPOSITION 4.2. Set (z) = (2)2¢(x). Assume that for some positive constants A, B,

1(5) el < ABT(S +1). (18)
Then for a sufficiently small R > 0

€1

m fOT 7:, k S NO and 6 S Q, (19)

2y Z- i
I(5;) Velle < AB# KT (5 + k+1)

where K = Co(1+ 32_,|Cs.4|/B?).

We will give a proof of Proposition [£.2]in the next section.
By Proposition [£:2] we have

k
IVillr < A(B*K)* (k|i| i for ¢eQ. (20)

Next by Lemma and the estimate we obtain the following proposition.
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PROPOSITION 4.3. Assume that the initial value function ¢(x) is an entire function and
satisfies with some positive constants C' and K,

6(z)| < CeX11* on .
Then for (&,z) € Q x D, with Sz NE =0,
V(€ 2)| < Crefe
for0 < p<R.
Proof. By we get
Vin < S4B G
Hence Proposition [£.3] follows by Lemma .

Finally to end the proof of the Main Theorem note that by Proposition [4.3]the solution
V (&, x) satisfies the conditions of Proposition "

for &€

5. Proof of Proposition Firstly, let us estimate the function V5(£,x). By the
relation we have

(52) V(e = (Au(e) s () ot

Then by the estimates and we get

[(2) ], < lsl = amr(s+)

and follows for k = 0.
To show that the functions Vi (&, x) satisfy for £ > 1 we use the induction. So
assume that
1>
kl(k —1)!
Let us give an estimate for the right hand side of the relation . For the first term, by
the inductive assumption we have

H (%) V’HHR < ABHOTURMID (S 4 k- 1+1) for £€Q. (21

0 i+ €+
— _1|| < ABTRERIT(L 4 k41 f Q.
|(52)" vl Gkl for €€
By Lemma [3.2it follows that
&t 2 i+2k pok—17( i [
= V_H < ABHRRRD(L 4 k1)
H (m) =1 S G+ k1)
i+2k pok—1 [ 22
For the second term, by the inductive assumption for s = 1,2 we have
. _ B . §|k+sfl
&V H < ABHRED I (E 4 1)
H( ) (Vi1 = G+ k=14 1) 3)

D(k+3) ¢/t
Kk — 1) T(k + 5)

= AR DRMIT(L 4~ 14 1)
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for £ € Q. So by Lemma [3.2] we derive
3—s—1
|(2) (S iy - tevinl],

2
Z |C,s| ABTF2E=D KRIT (L 4 |k — 14 1) L(k+s

)
Kk — 1)1 T(k +3)

k(k+1)(k+s—1)! [¢k+3-1
(k +2)! (k + 1)!k!

|§~|k+371

< ZSZl ‘C315|
ST
for £ € Q). Moreover, we have

F(3+k—14+1)k<T(:+k+1)

ABHREMID (L +k—1+1)

and (k+1)(k+s— 1)
TE

for s = 1,2. Hence we have

I2) (S e},

Z§:1|C3,5‘ i+2k 7-k—1 i
< S s ABTTK L(5+k+1)

for ¢ € Q. Finally, by (16), (17), and (25, we obtain

H(%)inHRSCO(l—FmZ) {ABH-%Kk 11—‘( +/€+1)

|£‘k+3—1
(k + 1)k! (25)
et

(k + 1)k!

Es 1|03 a| i+2k 7ok—1 ‘£|k+271

+ S AR (5 +k+1)m (26)

<ABl+2kKkF(i+k+1) ‘§|k+171
= 2 (k+ 1)Kl

with K = Co(1+ Y22_, |Cs.4|/B?). =
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