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Abstract. In this paper we study the Borel summability of a certain divergent formal power

series solution for an initial value problem. We show the Borel summability under the condition

that an initial value function φ(x) is an entire function of exponential order at most 2.

1. Introduction and statement of the main result. Let t, x, ξ ∈ C. Let us introduce
DR := {x ∈ C : |x| < R} and Sd,θ := {ξ ∈ C \ {0} : |arg ξ − d| < θ}. Let O(DR) (resp.
O(Sd,θ×DR)) be the set of all holomorphic functions on DR (resp. Sd,θ×DR), O(DR)[[t]]
the set of all formal power series

∑∞
i=0 ui(x)ti, where the coefficients ui(x) are in O(DR).

We denote by [a] the integer part of a ∈ R.
We consider the initial value problem

∂

∂t
u(t, x) = a

( ∂
∂x

)2

u(t, x) + bt
(
t
∂

∂t

)3

u(t, x)

u(0, x) = φ(x),
(1)

where the numbers a and b are any complex numbers.
Let us recall some known results. If b = 0, then equation (1) is the heat equation.

Then we have the following two results.

i) Assume that the initial value function φ(x) is an entire function and satisfies with
some positive constants C and K,

|φ(x)| ≤ CeK|x|
2

for x ∈ C.

Then the formal power series solution v̂(t, x) of (1) is holomorphic in a neighborhood
of t = 0. This is a classical result, (see [Kow]).
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ii) The following result is that of Lutz–Miyake–Schäfke in [L-M-S]. The following two
statements a) and b) are equivalent:
a) The initial value function φ(x) is analytic on Ω = Sd/2,θ ∪ Sd/2+π,θ ∪ Dr and
satisfies with some positive constants C and K,

|φ(x)| ≤ CeK|x|
2

on Ω.

b) The formal power series solution v̂(t, x) of (1) is Borel summable in a direction d.

The case a = 0 is covered by Ōuchi [Ou1] and [Ou2], where he obtained some results
on the multi-summability of some linear/nonlinear partial differential equations.

The purpose of this paper is to show the Borel summability for a formal solution
of (1) in the case ab 6= 0.

At first we study the Borel summability for a formal power series solution v̂(t, x). We
refer the reader for details to Lutz–Miyake–Schäfke [L-M-S].

Let v̂(t, x) =
∑∞
i=0 vi(x)ti ∈ O(DR)[[t]] be a formal power series with coefficients

holomorphic in DR. By O(DR)[[t]]1 we denote the subset of O(DR)[[t]] whose coefficients
satisfy with some positive constants A, B and 0 < r < R,

sup
|x|≤r

|vi(x)| ≤ ABiΓ(i+ 1) for i = 0, 1, . . . ,

The elements of O(DR)[[t]]1 are called formal series of Gevrey class one.
We define O[[t]]1 by

O[[t]]1 :=
⋃
R>0

O(DR)[[t]]1.

Set Std,θ := {t ∈ C \ {0} : |arg ξ − d| < θ} and Std,θ(T ) = Std,θ ∪ {t : |t| < T}.
Let v(t, x) be analytic on Std,θ(T ) for some T > 0. Then v̂(t, x) ∈ O[[t]]1 is called a

Gevrey asymptotic expansion of v(t, x) as t→ 0 in Std,θ, written as

v(t, x) ∼=1 v̂(t, x) in Std,θ,

if for any proper subset S′ b Std,θ(T ) there exist positive constants A, B and 0 < r < R

such that v̂(t, x) ∈ O(DR)[[t]]1 and

sup
|x|≤r

∣∣∣v(t, x)−
N−1∑
i=0

vi(x)ti
∣∣∣ ≤ ABNΓ(N + 1)|t|N for t ∈ S′ and N = 1, 2, . . . .

Definition 1.1. We say that v̂(t, x) ∈ O[[t]]1 is Borel summable in a direction d ∈ R if
there exist a sector Std,θ with θ > π/2 and a function v(t, x) analytic on Std,θ ×Dr such
that v(t, x) ∼=1 v̂(t, x) in Std,θ.

Remark 1.2. Let us remark that the function v(t, x) is unique if it exists, in that case
v(t, x) is called the Borel sum of v̂(t, x).

Definition 1.3. Let v̂(t, x) =
∑∞
i=0 vi(x)ti ∈ O(DR)[[t]]. Then the formal Borel trans-

form (B̂v̂)(ξ, x) is defined by

(B̂v̂)(ξ, x) = v0(x)δ(ξ) +
∞∑
i=1

vi(x)
Γ(i)

ξi−1,

where δ(ξ) means the delta function with support at ξ = 0.
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The Borel summability of v̂(t, x) ∈ O[[t]]1 can be characterized by

Proposition 1.4 ([L-M-S]). The formal power series v̂(t, x) ∈ O(DR)[[t]]1 is Borel
summable in a direction d if one can find some r < R so that the following two properties
hold :

1. The power series V (ξ, x) = (B̂v̂)(ξ, x)− v0(x)δ(ξ) converges for |ξ| < R and x ∈ Dr.
2. There exists a θ > 0 such that for any x ∈ Dr the function V (ξ, x) can be continued

with respect to ξ into the sector Sd,θ. Moreover, for any θ1 < θ there exist constants
C, K > 0 such that

sup
|x|≤r

|V (ξ, x)| ≤ CeK|ξ| for ξ ∈ Sd,θ1 .

Then v0(x) + (LdV )(t, x) is called the Borel summation in a direction d of v̂(t, x), where
Ld is the Laplace transform that is defined by

(Ldφ)(t, x) :=
∫ ∞eid

0

exp
{
−( ξt )

}
φ(ξ, x) dξ.

Note that by changing variables s = b1/2t and y = a−1/2b1/4x in (1) we can assume
a = 1 and b = 1, which we shall do from now on.

For the equation (1) set
A0(ξ) = 1− ξ2. (2)

Definition 1.5. Set Z = {ξ : A0(ξ) = 0}. A singular direction is an argument of an
element of Z. We denote by Ξ the totality of singular directions, i.e. Ξ = {d ∈ R :
d = 0 mod (π)}.

Now we are ready to state the main result.

Main Theorem 1.6. Assume that the initial value function φ(x) is an entire function
and satisfies with some positive constants C and K,

|φ(x)| ≤ CeK|x|
2

on C.

Then the equation (1) has a formal power series solution v̂(t, x) which is Borel summable
in a direction d with Sd,θ ∩ Ξ = ∅ for a sufficiently small θ > 0.

Remark 1.7. In the case φ(x) = ex
2
, the formal solution v̂(t, x) of (1) satisfies for x ∈ R,

ui(x) ≥ 2i−3

(
(i− 2)/2

)
!3

(i/2)!

( ∂
∂x

)4

φ(x) for i ≥ 2, i even,

ui(x) ≥ 1
2i−4

(
(i− 1)/2

)
!

i!
(i− 2)!3(

(i− 3)/2
)
!3

( ∂
∂x

)2

φ(x) for i ≥ 3, i odd.
(3)

It is not trivial to prove using this estimate that v̂(t, x) is Borel summable however the
initial value function φ(x) is an entire function of exponential order 2.

2. Formal solution. In this section we construct a formal power series solution of (1)
and give an estimation of its coefficients.
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First of all note that a formal power series solution v̂(t, x) =
∑∞
i=0 ui(x)ti of (1) is

unique and satisfies the recurrence relations
u0(x) = φ(x), u1(x) =

( ∂
∂x

)2

φ(x),

iui(x) =
( ∂
∂x

)2

ui−1(x) + (i− 2)3ui−2(x) for i ≥ 2.
(4)

We have

Lemma 2.1. Assume that the initial value function φ(x) ∈ O(DR). Then the coefficients
ui(x) of v̂(t, x) are holomorphic in DR and there exist positive constants A,B such that

|ui(x)| ≤ ABiΓ(i+ 1) on Dr for i ∈ N0 and 0 < r < R. (5)

Proof. For serii f(x) =
∑∞
j=0 fjx

j and g(x) =
∑∞
j=0 gjx

j with gj ≥ 0 write f(x)� g(x)
if |fj | ≤ gj for j ∈ N0.

For A > 0 and R > 0 set θR(x) = A
1−x/R and θ

(n)
R (x) = ( ∂

∂x )nθR(x) = An!
Rn(1−x/R)n+1

for n ≥ 0. For the function θR(x) we get

θ
(n)
R (x)� R

n+ 1
θ
(n+1)
R (x) for n ≥ 0. (6)

We will show that the coefficients ui(x) in (4) satisfy with some some A > 0 and R > 0,

ui(x)� CiR
i!
θ
(2i)
R (x) for i ≥ 0, (7)

where CR = 1 +R4.
Since the function φ(x) is holomorphic in a neighborhood of the origin, for some A > 0

and R > 0 we have
u0(x) = φ(x)� θ

(0)
R (x).

By the relation (4) we get

u1(x)� θ
(2)
R (x)� CR

1!
θ
(2)
R (x), u2(x)� CR

2!
θ
(4)
R (x)� C2

R

2!
θ
(4)
R (x).

For i ≥ 3 let us show the estimate (7) by induction. By the inductive assumption, we
have

uj(x)�
CjR
j!

θ
(2j)
R (x) for 0 ≤ j < i. (8)

Next by the estimates (6) and (8) we get( ∂
∂x

)2

ui−1(x)�
Ci−1
R

(i− 1)!
θ
(2i)
R (x)

(i− 2)3ui−2(x)�
(i− 1)(i− 2)3Ci−2

R R4

(i− 1)!(2i− 3)(2i− 2)(2i− 1)(2i)
θ
(2i)
R (x)

�
Ci−2
R R4

(i− 1)!
θ
(2i)
R (x)�

Ci−1
R R4

(i− 1)!
θ
(2i)
R (x).

(9)

Hence the relation (4) and the estimate (9) imply that the estimate (7) holds for i ≥ 0.
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3. Preparatory lemmas. In this section we recall two lemmas that we need to prove
Theorem 1.6. These lemmas are in [Ou1], so we omit their proofs.

Definition 3.1. Let φi(ξ, x) ∈ O(Sd,θ × DR), i = 1, 2, satisfy |φi(ξ, x)| ≤ C|ξ|ε−1 for
ε > 0. Then the convolution of φ1(ξ, x) and φ2(ξ, x) is defined by

(φ1 ∗ φ2)(ξ, x) =
∫ ξ

0

φ1(ξ − η, x)φ2(η, x) dη.

Then we have the following lemma.

Lemma 3.2 ([Ou1, Lemma 1.4, p. 516]). Assume that the functions φi(ξ, x), i = 1, 2,
belonging to O(Sd,θ ×DR) satisfy

|φi(ξ)| ≤ Ci
|ξ|si−1

Γ(si)
on Sd,θ ×DR

for i = 1, 2. Then the convolution (φ1 ∗ φ2)(ξ, x) satisfies

|(φ1 ∗ φ2)(ξ, x)| ≤ C1C2
|ξ|s1+s2−1

Γ(s1 + s2)
on Sd,θ ×DR.

Lemma 3.3 ([Ou1, Lemma 3.2, p. 526]). For a series v̂(t, x) =
∑∞
n=1 vn(x)tn set

(B̂v̂)(ξ, x) = V (ξ, x). Then for 1 ≤ k ≤ δ we have

B̂
(
tδ
(
t
∂

∂t

)k
v̂
)

(ξ, x) =
k∑
s=1

Ck,s
ξδ−(s+1)

Γ(δ − s)
∗ (ξsV (ξ, x)),

where the constants Ck,s satisfy

C1,1 = 1, Ck,s = −sCk−1,s + Ck−1,s−1. (10)

4. Proof of the Main Theorem. In this section we will prove the Main Theorem by
analyzing a convolution equation that is constructed from the equation (1). Firstly, let us
construct the convolution equation. To this end set u(x, t) = φ(x) + v(t, x). Substituting
u(t, x) into (1) we get

∂

∂t
v(t, x) =

( ∂
∂x

)2

φ(x) +
( ∂
∂x

)2

v(t, x) + t
(
t
∂

∂t

)3

v(t, x). (11)

Now we multiply each term of (11) by t2 and apply the formal Borel transformation.
Then by Lemma 3.3 we get the convolution equation

ξV (ξ, x) =
ξ2−1

Γ(2)

( ∂
∂x

)2

φ(x)+
ξ2−1

Γ(2)
∗
( ∂
∂x

)2

V (ξ, x)+
3∑
s=1

C3,s
ξ3−(s+1)

Γ(3− s)
∗
(
ξsV (ξ, x)

)
. (12)

For the formal solution v̂(t, x) in Lemma 2.1 set v̂0(t, x) := v̂(t, x)− φ(x) and

V (ξ, x) = (B̂v̂0)(ξ, x). (13)

Then by Lemma 2.1, V (ξ, x) is a holomorphic function on |ξ| < τ for some τ > 0 and
satisfies (12). We will show that V (ξ, x) is analytic on Sd,θ for some directions d in ξ.

By
C3,3δ(ξ) ∗ (ξ3V (ξ, x)) = ξ3V (ξ, x)
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we rewrite (12) as

(ξ − ξ3)V (ξ, x) =
ξ2−1

Γ(2)

( ∂
∂x

)2

φ(x)

+
ξ2−1

Γ(2)
∗
( ∂
∂x

)2

V (ξ, x) +
2∑
s=1

C3,s
ξ3−(s+1)

Γ(3− s)
∗
(
ξsV (ξ, x)

)
.

(14)

Note that ξ−ξ3 = ξA0(ξ), where A0(ξ) is given by (2). Let us construct a formal solution
V (ξ, x) =

∑∞
i=0 Vi(ξ, x) of (14) with

ξA0(ξ)V0(ξ, x) =
ξ2−1

Γ(2)

( ∂
∂x

)2

φ(x) (15)

ξA0(ξ)Vi(ξ, x) =
ξ2−1

Γ(2)
∗
( ∂
∂x

)2

Vi−1(ξ, x) +
2∑
s=1

C3,s
ξ3−(s+1)

Γ(3− s)
∗
(
ξsVi−1

)
(16)

for i ≥ 1, where V−1(ξ, x) ≡ 0.
Let 0 < τ < 1. Set Ω = Sd,θ ∪ {ξ ∈ C : |ξ| < τ} with Sd,θ ∩ Ξ = ∅. Now we estimate

functions Vi(ξ, x) on Ω. For A0(ξ) we have

|{A0(ξ)}−1| ≤ C0(|ξ|2 + 1)−1 on Ω. (17)

To estimate functions Vi(ξ, x) we need the following lemma, which can be found in [Kow]
and [Pic].

Lemma 4.1. The following two statements are equivalent :

(i) A function φ(x) is an entire function and satisfies with some positive constants C,K,

|φ(x)| ≤ CeK|x|
2

on C.

(ii) For any R > 0 there exist positive constants A and B depending on R such that∥∥∥( ∂
∂x

)i
φ
∥∥∥
R
≤ ABiΓ

(
i
2 + 1

)
for all i = 0, 1, . . ., where ‖φ‖R = supx∈DR

|φ(x)|.
Then for functions Vi(ξ, x) we have

Proposition 4.2. Set ϕ(x) = ( ∂
∂x )2φ(x). Assume that for some positive constants A,B,

‖
( ∂
∂x

)i
ϕ‖R ≤ ABiΓ

(
i
2 + 1

)
. (18)

Then for a sufficiently small R > 0

‖
( ∂
∂x

)i
Vk‖R ≤ ABi+2kKkΓ

(
i
2 + k + 1

) |ξ|k

(k + 1)!k!
for i, k ∈ N0 and ξ ∈ Ω, (19)

where K = C0

(
1 +

∑2
s=1 |C3,s|/B2

)
.

We will give a proof of Proposition 4.2 in the next section.
By Proposition 4.2 we have

‖Vk‖R ≤ A(B2K)k
|ξ|k

(k + 1)!
for ξ ∈ Ω. (20)

Next by Lemma 4.1 and the estimate (20) we obtain the following proposition.
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Proposition 4.3. Assume that the initial value function φ(x) is an entire function and
satisfies with some positive constants C and K,

|φ(x)| ≤ CeK|x|
2

on C.

Then for (ξ, x) ∈ Ω×Dρ with Sd,θ ∩ Ξ = ∅,
|V (ξ, x)| ≤ C1e

K1|ξ|

for 0 < ρ < R.

Proof. By (20) we get

‖V ‖R ≤
∞∑
i=0

A(B2K)i
|ξ|i

(i+ 1)!
for ξ ∈ Ω.

Hence Proposition 4.3 follows by Lemma 4.1.

Finally to end the proof of the Main Theorem note that by Proposition 4.3 the solution
V (ξ, x) satisfies the conditions of Proposition 1.4.

5. Proof of Proposition 4.2. Firstly, let us estimate the function V0(ξ, x). By the
relation (15) we have ( ∂

∂x

)i
V0(ξ, x) = {A0(ξ)}−1 ξ

1−1

Γ(2)

( ∂
∂x

)i
ϕ(x).

Then by the estimates (17) and (18) we get∥∥∥( ∂
∂x

)i
V0

∥∥∥
R
≤ C0

|ξ|1−1

Γ(2)
ABiΓ

(
i
2 + 1

)
and (19) follows for k = 0.

To show that the functions Vk(ξ, x) satisfy (19) for k ≥ 1 we use the induction. So
assume that∥∥∥( ∂

∂x

)i
Vk−1

∥∥∥
R
≤ ABi+2(k−1)Kk−1Γ

(
i
2 + k − 1 + 1

) |ξ|k−1

k!(k − 1)!
for ξ ∈ Ω. (21)

Let us give an estimate for the right hand side of the relation (16). For the first term, by
the inductive assumption (21) we have∥∥∥( ∂

∂x

)i+2

Vk−1

∥∥∥
R
≤ ABi+2kKk−1Γ

(
i
2 + k + 1

) |ξ|k−1

k!(k − 1)!
for ξ ∈ Ω.

By Lemma 3.2 it follows that∥∥∥ξ2−1

Γ(2)
∗
( ∂
∂x

)i+2

Vk−1

∥∥∥
R
≤ ABi+2kKk−1Γ

(
i
2 + k + 1

) |ξ|k+2−1

k!(k + 1)!

= ABi+2kKk−1Γ
(
i
2 + k + 1

) |ξ|k+2−1

(k + 1)!k!
for ξ ∈ Ω.

(22)

For the second term, by the inductive assumption (21) for s = 1, 2 we have∥∥∥( ∂
∂x

)i
(ξsVk−1)

∥∥∥
R
≤ ABi+2(k−1)Kk−1Γ

(
i
2 + k − 1 + 1

) |ξ|k+s−1

k!(k − 1)!

= ABi+2(k−1)Kk−1Γ
(
i
2 + k − 1 + 1

) Γ(k + s)
k!(k − 1)!

|ξ|k+s−1

Γ(k + s)

(23)
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for ξ ∈ Ω. So by Lemma 3.2 we derive∥∥∥( ∂
∂x

)i{ 2∑
s=1

C3,s
ξ3−s−1

Γ(3− s)
∗ (ξsVk−1)

}∥∥∥
R

≤
2∑
s=1

|C3,s|ABi+2(k−1)Kk−1Γ
(
i
2 + k − 1 + 1

) Γ(k + s)
k!(k − 1)!

|ξ|k+3−1

Γ(k + 3)

≤
∑2
s=1 |C3,s|
B2

ABi+2kKk−1Γ
(
i
2 + k − 1 + 1

)k(k + 1)(k + s− 1)!
(k + 2)!

|ξ|k+3−1

(k + 1)!k!

(24)

for ξ ∈ Ω. Moreover, we have

Γ
(
i
2 + k − 1 + 1

)
k ≤ Γ

(
i
2 + k + 1

)
and

(k + 1)(k + s− 1)!
(k + 2)!

≤ 1

for s = 1, 2. Hence we have∥∥∥( ∂
∂x

)i{ 2∑
s=1

C3,s
ξ3−s−1

Γ(3− s)
∗ (ξsVk−1)

}∥∥∥
R

≤
∑2
s=1 |C3,s|
B2

ABi+2kKk−1Γ
(
i
2 + k + 1

) |ξ|k+3−1

(k + 1)!k!
(25)

for ξ ∈ Ω. Finally, by (16), (17), (22) and (25), we obtain∥∥∥( ∂
∂x

)i
Vk

∥∥∥
R
≤ C0(1 + |ξ|2)−1

{
ABi+2kKk−1Γ

(
i
2 + k + 1

) |ξ|k+1−1

(k + 1)!k!

+
∑2
s=1 |C3,s|
B2

ABi+2kKk−1Γ
(
i
2 + k + 1

) |ξ|k+2−1

(k + 1)!k!

}
≤ ABi+2kKkΓ

(
i
2 + k + 1

) |ξ|k+1−1

(k + 1)!k!

(26)

with K = C0(1 +
∑2
s=1 |C3,s|/B2).
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