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Abstract. This article studies the summability of first integrals of a Cω-non-integrable resonant

Hamiltonian system motivated by [BT] and [GZ]. The first integrals are expressed in terms of

formal exponential transseries and their Borel sums (cf. [B] and [C]). Smooth Liouville integra-

bility and a relation to the Birkhoff transformation are discussed from the point of view of the

summability.

1. Introduction. In this article we shall study the summability of first integrals of
a resonant Cω-non-integrable Hamiltonian system. Let q = (q1, . . . , qn) ∈ Rn, p =
(p1, . . . , pn) ∈ Rn (or Cn, n ≥ 2). For a Hamiltonian function H = H(q, p) we consider a
Hamiltonian system

q̇ = ∇pH, ṗ = −∇qH, (1)

or a Hamiltonian vector field

χH := {H, ·} =
n∑
j=1

(∂H
∂pj

∂

∂qj
− ∂H

∂qj

∂

∂pj

)
, (2)

where {·, ·} denotes the Poisson bracket.
The function φ is called a first integral of χH if χHφ = 0. Eq. (1) is said to be

Cω-Liouville integrable if there exist n first integrals, φj ∈ Cω (j = 1, . . . , n) which are
functionally independent on an open dense set and Poisson commuting, i.e., {φj , φk} = 0,
{H,φk} = 0 for all j, k = 1, 2, . . . , n. If φj ∈ C∞ (j = 1, . . . , n), then we say that (1) is
C∞-Liouville integrable.
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We assume, for the sake of simplicity, that the Taylor expansion of H at the origin
starts from terms of order 2, H = H2 +H3 + . . ., where Hj is of homogeneous degree j.
Let λj (j = 1, 2, . . . , n) be the eigenvalues of the bilinear form corresponding to H2. We
assume that (1) has a resonance dimension 1, namely λ1 = 0.

In the paper [BT] Bolsinov and Taimanov showed that there exists a Hamiltonian
related to geodesic flow on a Riemannian manifold which is C∞-Liouville integrable and
not Cω-Liouville integrable. They showed that the Cω-non-integrability is closely related
to the monodromy structure of a Poincaré map, while they proved the C∞-integrability
by constructing functionally independent first integrals concretely. The study of such an
operator is continued by Gorni and Zampieri in [GZ]. They showed that the Hamiltonian

H = −q2p2∂q1r + (r2 + q2∂q2r)p1, r = q2
1 + q2

2 ,

is C∞-integrable and not Cω-integrable in some neighborhood of the origin of
(q1, q2, p1, p2) ∈ R4. We note that H2 = 0, namely the Hamiltonian has a resonance
dimension 2. The proof of C∞-integrability was made by construction of first integrals.

Heuristically speaking, the construction of n-functionally independent first integrals is
equivalent to that of n-parameter family of solutions of (1), which can be expanded in a so-
called exponential-log series. In view of this we express first integrals in exponential power
series and apply the summability method, to show the integrability of (1) in a sector. We
then construct smooth first integrals of (1) in terms of Borel-summed exponential power
series. We also study the generating function of a Birkhoff normalizing transformation
of (1) from the viewpoint of our Borel-summed integrals.

This paper is organized as follows. In Section 2 we construct functionally independent
formal first integrals and in Section 3 we show the Borel summability of first integrals. In
Section 4 we study the relation between the Borel-summed first integrals and the gener-
ating function of the symplectic transformation which transforms our Hamiltonian vector
field to a resonant normal form. In the last section we briefly state Cω-non-integrability
and C∞-integrability of our operator. The proofs of the theorems in the last section will
be published in a future paper.

2. Construction of formal first integrals. In the sequel we change a little bit the
notation in order to indicate the resonance variables q1 and p1. We write the variables
in the form (q1, q2, q3, . . . , qn) = (q1, q), (p1, p2, p3, . . . , pn) = (p1, p). Let the Hamiltonian
H := H0 +H1 be given by

H0 = q2σ
1 p1 +

n∑
j=2

λjqjpj , (3)

H1 =
n∑
j=2

q2
jBj(q1, q

2σ
1 p1, q), q = (q2, . . . , qn), (4)

where Bj(q1, t, q) are holomorphic at the origin with respect to (q1, t, q) ∈ C×C×Cn−1.
We assume

Bj = Bj(q1, q
2σ
1 p1, q) = Bj,0(q1, q) + q2σ

1 p1Bj,1(q1, q), (5)
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where Bj,0 and Bj,1 are analytic at q1 = 0, q = 0, 2 ≤ j ≤ n. Moreover, we suppose

λj (j = 2, 3, . . . , n) are linearly independent over Z. (6)

We will construct a formal first integral in exponential power series (cf. [B], [C]).
Define

Ec ≡ Ec(q1) := exp
(cq−2σ+1

1

2σ − 1

)
(7)

and construct the formal first integral v in the form

v =
∑
α≥0

v(α)(q1, p1, q, p)Eα, (8)

where Eα = Eα2
λ2
· · ·Eαnλn , and v(α)(q1, p1, q, p) is a formal power series of q1, q, p1 and p.

We say that v is a formal integral of χH if χHv = 0 as a formal power series.
By definition we have, for L := {H0, ·} and R := {H1, ·},

L = q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj

∂

∂qj
− pj

∂

∂pj

)
, (9)

R =
n∑
j=2

(
−2qjBj

∂

∂pj
+ q2

j (∂p1Bj)
∂

∂q1
− q2

j (∂q1Bj)
∂

∂p1
− q2

j∇qBj ·
∂

∂p

)
. (10)

By using the formula

∂p1Bj = Bj,1q
2σ
1 , q2σ

1 (∂/∂q1)Eα = −
( n∑
j=2

λjαj

)
Eα = −〈λ, α〉Eα,

we have

L(v(α)Eα) = Eα
(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj

∂

∂qj
− pj

∂

∂pj
− αj

))
v(α), (11)

and

R(v(α)Eα) = Eα
(
−〈λ, α〉

n∑
j=2

q2
jBj,1 +R

)
v(α). (12)

It follows that if v is a formal first integral of χH , then every v(α) satisfies(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 p1
∂

∂p1
+

n∑
j=2

λj

(
qj

∂

∂qj
− pj

∂

∂pj
− αj

))
v(α)

+
(
−

n∑
j=2

〈λ, α〉q2
jBj,1 +R

)
v(α) = 0. (13)

Expand v(α) into the formal power series

v(α) =
∑
ν,k,`

v
(α)
ν,k,`(q1)pν1p

kq`, (14)

then insert the expansion into (13) and compare the coefficients of pν1p
kq`. One can easily

see that the first term of the left-hand side of (13) yields(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (`− k − α)
)
v

(α)
ν,k,`(q1). (15)
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Hence we obtain the recurrence relation like(
q2σ
1

∂

∂q1
− 2σq2σ−1

1 ν + λ · (`− k − α)
)
v

(α)
ν,k,`(q1) = F, (16)

where F denotes terms which appear from the second term of the left-hand side of (13).

In order to get the detailed expression of F we first note that

−2qjBj
∂

∂pj
v(α) = −2Bj

∑
v

(α)
ν,k+ej ,`−ej (q1)pν1p

kq`(kj + 1). (17)

Expand Bj into the power series of q and compare the coefficients of pν1p
kq` of the

right-hand side. One can see that the terms containing v(α)
ν,k+ej ,µ

(q1), µ ≤ `− ej , appear
from (17). Similar terms appear from q2

j∇qBj · ∂∂pv
(α) and q2

j (∂q1Bj)
∂
∂p1

v(α). In the latter

case there appear terms v(α)
ν+1,k,µ(q1) with µ ≤ `− 2ej . In the same way one can see that

there appear terms containing the quantities

v
(α)
ν,k,µ(q1), q2σ

1 Bj,1
∂

∂q1
v

(α)
ν,k,µ(q1), µ ≤ `− 2ej ,

from −λjαjq2
jBj,1v

(α) and q2
j q

2σ
1 Bj,1

∂
∂q1

v(α).

Let α ∈ Zn−1 be given. We shall solve (16) inductively with respect to `,
|`| = 0, 1, 2, . . .. For this purpose we consider two cases: (A) `−α 6∈ Zn−1

+ , (B) `−α ∈ Zn−1
+ .

Let (α, `) satisfy (A). We have `− k − α 6= 0 for every k ∈ Zn−1
+ . We want to determine

v
(α)
ν,k,`(q1). By the non-resonance condition (6) we have λ · (` − k − α) 6= 0 if and only if

` − k − α 6= 0. In the right-hand side of (17) there appear v(α)
ν′,k,`−β ’s for which β ≥ 0,

β 6= 0. It follows that α and `− β satisfy (A). Expand v(α)
ν,k,` into the formal power series

of q1 and insert it into (16). One easily sees that every coefficient is uniquely determined
if the right-hand side F is known, i.e., v(α)

ν′,k,`−β ’s β 6= 0 are given. Next we substitute

v
(α)
ν′,k,`−β in F with the recurrence relations for v(α)

ν′,k,`−β ’s which can be constructed simi-

larly as v(α)
ν,k,`(q1). By repeating the same argument, we finally arrive at the relation that

the right-hand side of (17) vanishes, i.e., F = 0 because we have ` − β 6∈ Zn−1
+ after a

finite times of substitutions. Hence, by (16) we obtain v
(α)
ν,k,` = 0.

Next we consider the case (B). We set k(α, `) = `− α ∈ Zn−1
+ . Let ` = 0. Because F

in (16) vanishes, we have v(α)
ν,k,` = 0 if k 6= k(α, 0) = −α. If k = k(α, 0) = −α ∈ Zn−1

+ ,

then we have (q1
∂
∂q1
− 2σν)v(α)

ν,k,0 = 0. We take

v
(α)
ν,−α,0 = cα,νq

2σν
1 , (18)

where cα,ν is an arbitrary constant.

Let ` be such that |`| = 1. Because v(α)
ν,k,` vanish unless ` − α ≥ 0 by (A), we may

assume `−α ≥ 0. By the definition of F the non-vanishing term in F is given by v(α)
ν,k+ej ,µ

,

µ ≤ ` − ej for some j. Hence we have |µ| = 0. It follows that, if v(α)
ν,k+ej ,µ

6= 0, then we
have µ = 0 and k+ ej = −α ≥ 0. If |k| ≥ |`−α|, then we have k+ ej 6= −α, which yields
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v
(α)
ν,k+ej ,µ

= 0 and F = 0. Hence, by (16) we have the following expression

v
(α)
ν,k,` = 0 (ν = 0, 1, . . . ) if `− α− k 6= 0, |k| ≥ |`− α|,

v
(α)
ν,k,` = cα,ν,`q

2σν
1 (ν = 0, 1, . . . ) if `− α− k = 0.

(19)

In the case |k| < |`−α|, we have `−α−k 6= 0, and we can recursively determine v(α)
ν,k,` as

the formal power series of q1. We note that the Gevrey order of v(α)
ν,k,` increases at most

by 2σ − 1 if one solves the recurrence relation once.
Suppose that for some integer s ≥ 0 we have determined the solutions of (16), v(α)

ν,k,`

for ν = 0, 1, . . . ; k ∈ Zn−1
+ ; `, |`| = 0, 1, 2 . . . , s, such that (19) holds with some constant

cα,ν,`. We will solve (16) for |`| = s+1 so that (19) holds. Let k and ` satisfy |k| ≥ |`−α|.
We want to show F = 0 in (16). In view of the definition of F , we first consider v(α)

ν,k+ej ,µ

where µ ≤ ` − ej for some j. In order to show that this term vanishes by (19), we will
show that |k + ej | > |µ− α|. This relation follows from |k + ej | > |`− ej − α| ≥ |µ− α|
because the last inequality follows from the inductive assumption. Next we consider the
term v

(α)
ν,k,µ where µ ≤ `− 2ej for some j. Then it is sufficient to verify |k| > |`− 2ej −α|,

which holds by assumption. One can similarly verify that the other terms vanish, from
which we obtain F = 0. Therefore, by (16) we have the first relation of (19). As for the
second one we can argue as in the case |`| = 1. Clearly, if |k| < |` − α|, then we can
determine v(α)

ν,k,` by solving (16) recursively. This proves that we can determine v(α)
ν,k,` in

the case |`| = s+ 1 so that (19) holds. This proves the assertion.
We remark that if we take arbitrary constants cα,ν,`, `− α = k, to be zero except for

a finite number of k’s or ν’s, then we see that the formal solution is a polynomial of p1

and p. We note that the sum with respect to ` is an infinite sum, in general. Moreover,
in view of the arbitrariness of α and cα,ν,` in (19) we obtain at least 2(n−1) functionally
independent formal first integrals. Therefore we have

Theorem 2.1. Assume (5) and (6). Then the Hamiltonian system with the Hamiltonian
H = H0 +H1 given by (3)–(4) has 2(n−1) functionally independent formal first integrals
of the form (8) which are polynomials of p1 and p.

3. Summability of formal integrals. We first show the (2σ− 1)-summability of v(α)

for every α in (14). We define the set of singular directions

S0 :=
{
z ∈ C : ∃ν ≥ 0, ∃k ≥ 0, ∃` ≥ 0, ∃α ≥ 0 such that

(2σ − 1)z2σ−1 + λ · (`− α− k) = 0, v(α)
ν,k,` 6= 0, `− α− k ≥ 0

}
\ 0. (20)

For a neighborhood Ω0 of the origin and the convex cone Ω1 with vertex at the origin,
we define Σ0 := Ω0 ∪ Ω1. Then we assume that there exists Σ0 such that the closure S0

satisfies
S0 ∩ Σ0 = ∅. (21)

Theorem 3.1. Assume (5), (6) and (21). Let v be a formal first integral given in Theo-
rem 2.1 which is a polynomial in p and p1. Then, for each α ≥ 0 in (8)) v(α) is (2σ− 1)-
summable in every direction of Ω1 with respect to q1. More precisely, for every ξ ∈ Ω1
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there exists a neighborhood V0 of the origin q = 0 such that v(α) is analytic in q ∈ V0 and
(2σ − 1)-summable with respect to q1 in the direction ξ.

Before proving the theorem we give a corollary, in which we have the summability
of vα.

Corollary 3.2. Suppose (6). Assume

Bj = Bj,0(q1, q), 2 ≤ j ≤ n, (22)

for some Bj,0 analytic at q1 = 0 and polynomial in q = (q2, . . . , qn). Let v =
∑
α≥0 v

(α)Eα

be the formal first integral as in Theorem 2.1 which is a polynomial in p and p1. Then the
set of singular directions S0 is finite, and for each α v(α) is a polynomial in q and (2σ−1)-
summable with respect to q1. More precisely, for every ξ 6∈ S0 v

(α) is (2σ − 1)-summable
with respect to q1 in the direction ξ.

In order to prove Theorem 3.1 we prepare a lemma. Let κ > 0, r > 0 and θ ∈ R, and
0 < ε < π be given. Let γκ denote the path from the origin along arg z = θ+(ε+π)/(2κ)
to some z1 of modulus r, then along the circle |z| = r to the ray arg z = θ− (ε+π)/(2κ),
and back to the origin along this ray. Let Bκ denote the Borel transform

(Bκf)(ζ) =
1

2πi

∫
γκ

tκf(t) exp(ζκt−κ) dt−κ. (23)

Then, by simple computations we have

Bκ
(
tκ+1 d

dt
f
)

(ζ) = κζκBκ(f)(ζ)− κBκ(tκf)(ζ). (24)

Let c > 0 and Ω be a domain in C. Define Hc(Ω) as the Banach space of all f which
is holomorphic and of exponential growth of order c in Ω with the norm

‖f‖c := sup
z∈Ω

∣∣f(z)e−cz
κ ∣∣ <∞. (25)

Then we have

Lemma 3.3. Let λ > 0. Then there exists K0 > 0 such that

‖Bκ(tλf)‖c ≤ K0‖Bκ(f)‖c, Bκ(f) ∈ Hc(Ω). (26)

Moreover, K0 can be taken arbitrarily small if we take c > 0 sufficiently large.

For the proof we refer the reader to [BY].

Proof of Theorem 3.1. We define Ω = Σ0. In view of the inductive definition of v(α)
ν,k,`’s

with respect to `, the first non-vanishing term v
(α)
ν,k,` is a polynomial of q1. Hence it is

(2σ−1)-summable in q1. Therefore it is sufficient to show, by induction, that if F in (16)
is (2σ − 1)-summable, then v

(α)
ν,k,` is (2σ − 1)-summable as well.

Set κ = 2σ−1. In the following we omit the suffix (α) in v(α)
ν,k,` for the sake of simplicity.

Suppose that there exists an integer N such that Bκ(vν,k,µ) ∈ Hc(Ω) for all ν, k and µ,
|µ| ≤ N . We want to show Bκ(vν,k,`) ∈ Hc(Ω), |`| = N + 1. Let ζ be the dual variable
of q1 with respect to the Borel transform. Let χλ(D) be defined by

χλ(D)Bκ(f)(ζ) := Bκ(qλ1 f)(ζ), Bκ(f) ∈ Hc(Ω).

By Lemma 3.3 χλ(D) is a linear continuous operator on Hc(Ω). Moreover, by taking
c > 0 sufficiently large, we may assume that the norm can be made arbitrarily small.
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We apply the (2σ− 1)-Borel transform to both sides of (16) with respect to q1. Then
we have(
(2σ − 1)ζ2σ−1 − (2σ(ν + 1)− 1)χ2σ−1(D) + λ · (`− k − α)

)
B2σ−1(v(α)

ν,k,`) = g(ζ), (27)

where g(ζ) is the partial Borel transform of F with respect to q1.
First we note that the formal Borel transform B̃2σ−1(v(α)

ν,k,`) satisfies a relation

similar to (27). In view of the construction of formal series v(α)
ν,k,`, B̃2σ−1(v(α)

ν,k,0)(ζ) is

an entire function of ζ. In order to determine B̃2σ−1(v(α)
ν,k,ej

) for ej = (0, . . . , 1, . . . , 0)
(j = 1, 2, . . . , n) we note that the right-hand side g(ζ) is an entire function of ζ be-
cause it contains only the formal Borel transform of v(α)

ν,k,0. By inverting the operator(
(2σ − 1)ζ2σ−1 − (2σ(ν + 1)− 1)χ2σ−1(D) + λ · (`− k − α)

)
we see that B̃2σ−1(v(α)

ν,k,ej
)

is holomorphic in some neighborhood of the origin ζ = 0 because the right-hand side is
analytic at the origin. By the inductive argument we see that B̃2σ−1(v(α)

ν,k,`) is holomorphic
at the origin ζ = 0.

We shall show that g(ζ) ∈ Hc(Ω). Indeed, in view of the definition of R in (10) F is
the sum of products of some vν′,k′,µ and holomorphic functions of q1. This implies that
their Borel transforms are in Hc(Ω). Hence we have the assertion.

We also note that the Borel transform of the differentiation q2σ
1 (∂/∂q1) in R is equal

to (2σ − 1)ζ2σ−1 − (2σ − 1)χ2σ−1(D). In order to show that Bκ(vν,k,`) ∈ Hc(Ω) we may
assume that `− k− α 6= 0. Indeed, the number of terms satisfying `− k− α = 0 is finite
in view of the finiteness of k, and, by definition, the corresponding vν,k,` is a polynomial
of q1.

Assume that there exists K > 0 such that∥∥ζ2σ−1
(
(2σ − 1)ζ2σ−1 − (2σ(ν + 1)− 1)χ2σ−1(D) + λ · (`− k − α)

)−1∥∥ ≤ K (28)

for ` ∈ Zn−1
+ and ζ ∈ Ω. Then we obtain Bκ(vν,k,`) ∈ Hc(Ω) by the recurrence relation

whose norm of the right-hand side is bounded by constant times of that of vν,k,µ for
|µ| < |`|. Hence we have proved the (2σ − 1)-summability of every coefficient of our
formal integral with respect to q1 as desired.

As for the convergence with respect to `, we obtain the inductive estimate of vν,k,`
with respect to |`|. Indeed, Bκ(vν,k,`) is calculated from the recurrence relation from the
previous ones by operating the bounded operator as the one in (28) to the right-hand
side.

Hence it remains to show (28). Because the number of pairs of ν, k and α is finite we
take arbitrary ν, k and α and we fix them. Let ζ` satisfy (2σ−1)ζ2σ−1

` +λ ·(`−k−α) = 0
and let ωj (j = 1, 2, . . . , 2σ − 1) be the (2σ − 1)-th root of unity. Then we have

(2σ − 1)ζ2σ−1 − (2σ(ν + 1)− 1)χ2σ−1(D) + λ · (`− k − α)

= (2σ − 1)(ζ2σ−1 − ζ2σ−1
` )− (2σ(ν + 1)− 1)χ2σ−1(D).

We have ζ2σ−1 − ζ2σ−1
` =

∏2σ−1
j=1 (ζ − ζ`ωj). By (21) there exists c1 > 0 such that

|ζ − ζ`ωj | ≥ c1|ζ| for all ζ ∈ Ω and j = 1, 2, . . . , 2σ − 1. It follows that there ex-
ists c2 > 0 such that ζ2σ−1 − ζ2σ−1

` ≥ c2(|ζ|2σ−1 + 1). Recalling that the norm of
(2σ(ν + 1) − 1)χ2σ−1(D) can be made arbitrarily small by the preceding lemma we
obtain (28).
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4. Normalizing transformation. In the next theorem we study the relation between
our formal solution in the preceding theorem and the generating function of a normalizing
symplectic transformation. Assume A ⊂ Zn−1

+ . Let V (α)
m (m = 2, . . . , n) be the first

integrals of χH constructed as in Theorem 3.1. Namely, the coefficients of q` for ` 6≥ em+α
vanish, while for ` = em + α they are equal to pmqmq

α. We inductively construct the
coefficients for ` ≥ em+α as in Theorem 3.1. We say that λ2, . . . , λn satisfy the Poincaré
condition if the convex hull of λ2, . . . , λn in C does not contain the origin. Then we have

Theorem 4.1. Assume (6). Suppose that

Bj(q1, t, q) = B̃j(t, q), j = 2, . . . , n, (29)

where B̃j is a polynomial of t with coefficients analytic at q = 0. Suppose that the Poincaré
condition is satisfied. Let 2 ≤ m ≤ n be an integer. Then V

(α)
m (α ∈ A) are analytic at

the origin and are functionally independent.
Expand

∑
j q

2
j B̃j =

∑
µ cµq

µ, and let W be the analytic function whose coefficient
of q` is given by c`/λ · ` if |`| ≥ 2, and 0 if otherwise. Then W satisfies

qm
∂

∂qm
W = qmpm − V (0)

m . (30)

If we define W̃ by W̃ :=
∑n
j=2 qjyj −W (q), then the (partial) symplectic transformation

(q, p) 7→ (y,−x) given by

q1 = x1, p1 = y1, xj = W̃yj = qj , pj = W̃qj = yj −Wqj (j = 2, . . . , n) (31)

transforms χH to χH̃0
, where H̃0 := x2σ

1 y1 +
∑n
j=2 λjxjyj.

Remark. By Theorem 4.1 χH is Cω-Liouville integrable and the transformation (31) is
the (resonant) Birkhoff transformation. Indeed, W gives the generating function of the
partial symplectic transformation (cf. [I]).

Proof of Theorem 4.1. Let m (2 ≤ m ≤ n) be an integer and let Vm be the first integral
as in Theorem 4.1. Then the functional independentness of Vm (m = 2, . . . , n) is clear in
view of the above constructions.

In order to have the representation of Vm, set Vm = Eα
∑
` v

(α)
` (q1, q

2σ
1 p1, p)q`. We

will show that v(α)
` is analytic at q1 = 0 for all `. For |`| ≤ 1 the assertion is trivial from

the choice of arbitrary functions. We also note that v(α)
em = pm. In order to determine

v
(α)
` for |`| ≥ 2, we substitute the expansion into χHv = 0 and compare the coefficients

of (p1q
2σ
1 )νpkq`. Then we have the recurrence relation similar to (16)(

q2σ
1 ∂q1 − λ · (`− α)

)
v

(α)
` = F`(v(α)

γ , γ < `), (32)

where `−α 6= 0 and we regard t := q2σ
1 p1 as an independent variable. Indeed, by (29) the

term −2σq2σ−1
1 ν in (16) vanishes because p1 appears in Vm in the form q2σ

1 p1. In view
of (10) we see that the term ∂p1Bj

∂
∂q1
− ∂q1Bj ∂

∂p1
vanishes because, by induction, the

inhomogeneous term depends on q2σ
1 p1. Hence (10) decreases the power of p. It follows

that v(α)
` (|`| ≥ 2) is a function of q, t = q2σ

1 p1 and q1.
In view of (10) and (12) F`(v

(α)
γ , γ < `) is equal to the coefficient of q` in∑

j

∇q(q2
j B̃j) · ∇p

(∑
γ

v(α)
γ qγ

)
− 〈λ, α〉

n∑
j=2

q2
jBj,1

(∑
γ

v(α)
γ qγ

)
. (33)
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Recalling that ∂p1Bj = Bj,1q
2σ
1 , Bj = B̃j we obtain

∑
q2
jBj,1 = ∂t

∑
q2
j B̃j(t, q).

Let |`| = 2. Because ∇pv(α)
γ does not vanish only for γ = em and v

(α)
em = pm it

follows that the first term of (33) is equal to
∑
j qm

∂
∂qm

(q2
j B̃j). If we expand

∑
j q

2
j B̃j =∑

µ cµ(t)qµ, then we have

F`(v(α)
γ ) = `mc` − 〈λ, α〉

∑
γ+µ=`,|µ|≥2

(∂tcµ)v(α)
γ . (34)

By the inductive assumption on v
(α)
` , F` in (32) is independent of q1. Hence the unique

formal solution is given by v(α)
` = −F`/λ · (`−α), which is independent of q1. Therefore,

by induction on |`|, we can determine v
(α)
` from (32) being independent of q1. Hence

we obtain a formal integral. As for the convergence of the formal series, the Poincaré
condition implies the convergence of the formal solution.

Let α = 0. Then we have F`(v
(0)
γ ) = `mc`, which implies v(0)

` = −`mc`/λ · `. Therefore
we have

V (0)
m = pmqm −

∑
|`|≥2

`mc`
λ · `

q` (35)

and W satisfies (30). Moreover, the Hamiltonian H̃0 is transformed to

q2σ
1 p1 +

∑
λjpjqj +

∑
λmqmWqm = H0 +

∑
m

λm(qmpm − V (0)
m )

= H0 +
∑
m

λm

(∑
|`|≥2

`mc`
λ · `

q`
)

= H0 +
∑

q2
j B̃j = H.

Hence we see that (31) transforms χH to χH̃0
. This ends the proof.

5. Cω-non-integrability and C∞-integrability. As we stated in the introduction,
our Hamiltonian system is not Cω-integrable in general. Although this fact is not used
in the proofs of the preceding theorems, we will briefly state the Cω-non-integrability for
the readers’ convenience.

Theorem 5.1. Assume that (6) and the following condition (M) are satisfied.

(M) For k = 2, 3, . . . , n the equation

q2σ
1

dv

dq1
+ 2λkv = Bk(q1, 0, 0) (36)

has no analytic solution v at the origin.

Then the Hamiltonian system (1) with the Hamiltonian H = H0+H1 given by (3) and (4)
is not Cω-Liouville integrable.

Condition (M) corresponds to the non-Abelian property of the fundamental group
introduced in [BT]. We can also prove that (M) holds if and only if the monodromy of
an analytic continuation of every solution of (36) along a path encircling the origin does
not vanish (cf. Lemma 6 of [Y]).

Let v =
∑
α≥0 v

(α)Eα be the first integral given by (8). By Theorem 3.1 every v(α) is
(2σ− 1)-summable in every direction of Ω1 ≡ Ω1(v(α)). Hence we write the summed one
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with the same letter for the sake of simplicity. We define

Σv =
{
z ∈ C : |arg z − arg ξ| < π

2(2σ − 1)
, ξ ∈ Ω1

}
. (37)

Then we have

Theorem 5.2. Assume (5), (6) and (21). Then

(i) Let α ≥ 0 and suppose Ω1(v(α)) 6= ∅. Then there exists an ε0 > 0 and a sector
S1 ⊂ Σv such that the summed v = v(α) in Theorem 3.1 is holomorphic and is the
first integral of χH in the domain

q1 ∈ Σv, |q1| < ε0, p1 ∈ C, pj ∈ C, |qj | < ε0, j = 2, . . . , n. (38)

Moreover, it is C∞ at q1 = 0 when q1 ∈ S1, q1 → 0.
(ii) Assume either the Poincaré condition is satisfied or v(ej) and v(2ej) exist for which

S0 is a finite set. Set v = v(ej) or v = v(2ej) and let Σv and S1 ⊂ Σv be given
by (i) and choose θ ∈ S1. Then we have Ω1(v) 6= ∅, and v is extended as a C∞

first integral with respect to q1 on Rθ ∪ −Rθ ∪ {0} being analytic in q ∈ Rn−1 at
q = 0. Moreover, there exists a neighborhood of the origin U in R such that χH is
C∞-integrable when q1 ∈ (Rθ ∪ {0}) ∩ U , p1, pj , qj ∈ R, |qj | < ε0 (j ≥ 2).

The proofs of these theorems will be published elsewhere.
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