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Abstract. This article studies the summability of first integrals of a C*”-non-integrable resonant
Hamiltonian system motivated by [BT] and [GZ]. The first integrals are expressed in terms of
formal exponential transseries and their Borel sums (cf. [B] and [C]). Smooth Liouville integra-
bility and a relation to the Birkhoff transformation are discussed from the point of view of the
summability.

1. Introduction. In this article we shall study the summability of first integrals of
a resonant C“-non-integrable Hamiltonian system. Let ¢ = (¢1,...,¢,) € R, p =
(p1,.--,0n) € R™ (or C™, n > 2). For a Hamiltonian function H = H(q,p) we consider a
Hamiltonian system

¢=V,H, p=-V,H, (1)

or a Hamiltonian vector field

" /0H 0 OH 0
= {H,} = —_— = 2
xu = {H,} ;(apjaqj 50 7.’ (2)

where {-,-} denotes the Poisson bracket.

The function ¢ is called a first integral of x g if xg¢ = 0. Eq. is said to be
C“-Liouville integrable if there exist n first integrals, ¢, € C* (j = 1,...,n) which are
functionally independent on an open dense set and Poisson commuting, i.e., {¢;, ¢x} =0,
{H,¢p} =0forall j,k=1,2,....,n.If ¢, € C® (j =1,...,n), then we say that is

C>°-Liouwille integrable.
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We assume, for the sake of simplicity, that the Taylor expansion of H at the origin
starts from terms of order 2, H = Hy + H3 + ..., where H; is of homogeneous degree j.
Let A\; (j =1,2,...,n) be the eigenvalues of the bilinear form corresponding to Hy. We
assume that has a resonance dimension 1, namely A\ = 0.

In the paper [BT] Bolsinov and Taimanov showed that there exists a Hamiltonian
related to geodesic flow on a Riemannian manifold which is C°°-Liouville integrable and
not C“-Liouville integrable. They showed that the C*-non-integrability is closely related
to the monodromy structure of a Poincaré map, while they proved the C*°-integrability
by constructing functionally independent first integrals concretely. The study of such an
operator is continued by Gorni and Zampieri in [GZ]. They showed that the Hamiltonian

H = —qop20y, 7 + (r* + @204,7)p1, 7T=0q1 +¢3,

is C*°-integrable and not C“-integrable in some neighborhood of the origin of
(q1,q2,p1,p2) € RY We note that Hy = 0, namely the Hamiltonian has a resonance
dimension 2. The proof of C'*°-integrability was made by construction of first integrals.

Heuristically speaking, the construction of n-functionally independent first integrals is
equivalent to that of n-parameter family of solutions of , which can be expanded in a so-
called exponential-log series. In view of this we express first integrals in exponential power
series and apply the summability method, to show the integrability of in a sector. We
then construct smooth first integrals of in terms of Borel-summed exponential power
series. We also study the generating function of a Birkhoff normalizing transformation
of from the viewpoint of our Borel-summed integrals.

This paper is organized as follows. In Section 2 we construct functionally independent
formal first integrals and in Section 3 we show the Borel summability of first integrals. In
Section 4 we study the relation between the Borel-summed first integrals and the gener-
ating function of the symplectic transformation which transforms our Hamiltonian vector
field to a resonant normal form. In the last section we briefly state C*’-non-integrability
and C'*°-integrability of our operator. The proofs of the theorems in the last section will
be published in a future paper.

2. Construction of formal first integrals. In the sequel we change a little bit the
notation in order to indicate the resonance variables ¢; and p;. We write the variables
in the form (¢1,92,43,---,qn) = (q1,9), (P1,D2,D3, - -, Pn) = (p1,p). Let the Hamiltonian
H := Hy + H; be given by

n

Ho=q"p1+ > _ Aig;p), (3)
=2
n
Hy=> ¢;Bj(q1,01°p1,0); ¢ =(a2,--,n), (4)
j=2

where Bj(qi1,t,q) are holomorphic at the origin with respect to (¢1,t,¢) € C x C x C*~ 1.
We assume

Bj = Bj(q1,4:°p1,q) = Bjolq1,9) + ¢i°p1Bji(q1,9), (5)
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where Bj o and B;; are analytic at ¢; =0, ¢ = 0, 2 < j < n. Moreover, we suppose
Aj (1 =2,3,...,n) are linearly independent over Z. (6)

We will construct a formal first integral in exponential power series (cf. [B], [C]).
Define

q —20+1
E. = Bo(q) = exp( 22— 7
(q1) == exp 2% — 1 (7)
and construct the formal first integral v in the form
U= ZU(Q)((]hph(Lp)Eaa (8)

a>0

where £ = E{Z .- E{", and v (q1,p1,q,p) is a formal power series of q1, ¢, p1 and p.
We say that v is a formal integral of x g if xgv = 0 as a formal power series.
By definition we have, for £ := {Hy, -} and R := {Hy,},

0 0 i 0 0
_ 20 20—1 . . —m.
L=q P 201" ;m B + § Aj (‘IJ dg Dj 3pj>’ 9)
=

_ ) ‘8 2 , 0 2 ) 0 2 )
R = j_2<_2QJBJ 3717; +qj (aplB]) 87(11 —4; (61113]) 37]?1 - qjquJ : 67)) (10)

By using the formula

Op, Bj = Bj’quav q%a(a/aql)Ea = _(Z )‘jaJ')Ea =—(\ a)E7,

=2
we have
0 0 2 0 0
(a)Ea — E© 207_2 20—1 s by .. (o) 11
Ll ) (ql o h Plop +j§::2 J<q] dg; 7 op; aj) v, ()
and
R(v©E*) = B (—<A,a> >4 Bia+ R)“(a)' -
=2

It follows that if v is a formal first integral of x g, then every v(®) satisfies

0 0
20 — 9% 20—1 = L . ()
<Q1 aql oq; pl JF § (QJ 8(] —Pj apj aj) v

+ ( > (N a)g B+ R> v =0. (13)

j=2
Expand v(® into the formal power series
@ =308 (@)t (14)
v,k,l

then insert the expansion into and compare the coefficients of p¥p¥q’. One can easily
see that the first term of the left-hand side of yields

<q%0i—20q20 ly—l—/\-(ﬂ—k—a))v(ak)e(ql). (15)
oq1 e
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Hence we obtain the recurrence relation like
0 o
(7 g — 200t v 4 A (= k=)o) () = F, (16)
1

where F' denotes terms which appear from the second term of the left-hand side of .

In order to get the detailed expression of F' we first note that

8 [0 v
—2q; B o vl = —2B; )" Ul(/,k)ﬂj,zfej (q)pip" ¢  (k; +1). (17)
J

Expand B; into the power series of ¢ and compare the coeflicients of pYpFqt of the

right-hand side. One can see that the terms containing v,(jak) . u(‘h)’ w < {—e;, appear

from . Similar terms appear from qJQ»VqBj . 8%1)(0‘) and qu (0q, Bj) a%lv(‘"). In the latter
case there appear terms v,(ﬁr)l’k,u(ql) with ¢ < ¢ — 2e;. In the same way one can see that
there appear terms containing the quantities

- 0
v (@), @B 87(]11)1(/(;@),“(‘11)7 p< L= 2ej,

from —)\jozjquBj,lv(a) and q?q%"Bj,l 8%11)(0‘)

Let a € Z" ! be given. We shall solve (16) inductively with respect to ¢,
€| = 0,1,2,.... For this purpose we consider two cases: (A) {—a ¢ Z'", (B) {—a € Z1™ .
Let (, () satisfy (A). We have £ — k — a # 0 for every k € Z".~'. We want to determine

vgx,gj(ql). By the non-resonance condition () we have A - (¢ —k — a) # 0 if and only if

{ —k —a # 0. In the right-hand side of there appear ,Ul(ltlx,)k:,e*ﬂ’s for which g > 0,
B # 0. It follows that o and ¢ — 3 satisfy (A). Expand Ux(fk)x into the formal power series
of g1 and insert it into . One easily sees that every coeflicient is uniquely determined
if the right-hand side F' is known, i.e., v,(/f'i)u_ 5B # 0 are given. Next we substitute

vic,")k -5 in F' with the recurrence relations for vi?‘)k o ﬂ’s which can be constructed simi-

larly as vl(,ak) ,(q1). By repeating the same argument, we finally arrive at the relation that
the right—l;em’nd side of vanishes, i.e., F' = 0 because we have ¢ — 3 & Z’_ﬁ_l after a
finite times of substitutions. Hence, by we obtain v,(jak) ;= 0.

Next we consider the case (B). We set k(a, ) = —a € Z'"'. Let £ = 0. Because F
in vanishes, we have Uz(/(,lk),é =0if k # k(a,0) = —a. If k = k(a,0) = —a € Z77",

then we have (q; 8%1 - 201/)1}5013 o = 0. We take

Ul(,(ﬁa’o = Ca,l/q%ayv (18)

where c,,, is an arbitrary constant.

Let ¢ be such that |¢| = 1. Because U;(/?[k),z vanish unless £ — o > 0 by (A), we may

(@)

assume {—o > 0. By the definition of F' the non-vanishing term in F' is given by v, Ko 0

pu < £ —e; for some j. Hence we have |p| = 0. It follows that, if Uz(fk)Jrepu # 0, then we

have p=0and k+e; = —a > 0. If |k| > |{ — «f, then we have k + e; # —c«, which yields
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Ul(jak) teju = 0 and F' = 0. Hence, by we have the following expression
vy =0 (v=01,...)if L—a—k#0, [k > |- al, 1)
vl(,ka)’e =cCareqi’’ (v=0,1,...)if {—a—k=0.
In the case |k| < |¢ — |, we have £ —a— k # 0, and we can recursively determine vl(,,ak)l as

the formal power series of g;. We note that the Gevrey order of vl(,ak) ¢, increases at most

by 20 — 1 if one solves the recurrence relation once.

Suppose that for some integer s > 0 we have determined the solutions of , vl(f‘k)l
forv=0,1,...; k€ Z " ¢, |¢| =0,1,2...,s, such that holds with some constant
Ca,v0- We will solve for |¢| = s+1 so that holds. Let k and ¢ satisfy |k| > [{—a].
We want to show F' =0 in . In view of the definition of F', we first consider vl(,o‘k) tegu
where p < £ — ¢; for some j. In order to show that this term vanishes by , we will
show that |k + e;| > |1 — a|. This relation follows from |k +e;| > | —e; —a| > | — af
because the last inequality follows from the inductive assumption. Next we consider the
term vl(,ak) i
which holds by assumption. One can similarly verify that the other terms vanish, from
which we obtain F' = 0. Therefore, by we have the first relation of . As for the
second one we can argue as in the case |[¢| = 1. Clearly, if |k| < |£ — «, then we can
determine Ul(/(,l),z by solving (|16]) recursively. This proves that we can determine vl(,ka),@ in
the case |¢| = s+ 1 so that holds. This proves the assertion.

We remark that if we take arbitrary constants c,,..¢, { — @ = k, to be zero except for

where p1 < ¢ —2e; for some j. Then it is sufficient to verify |k| > [¢ —2e; —af,

a finite number of k’s or v’s, then we see that the formal solution is a polynomial of p;
and p. We note that the sum with respect to £ is an infinite sum, in general. Moreover,
in view of the arbitrariness of & and ¢4, ¢ in we obtain at least 2(n — 1) functionally
independent formal first integrals. Therefore we have

THEOREM 2.1. Assume and @ Then the Hamiltonian system with the Hamiltonian

H = Hy+ H; given by 7 has 2(n—1) functionally independent formal first integrals
of the form which are polynomials of p1 and p.

3. Summability of formal integrals. We first show the (20 — 1)-summability of v(*)
for every a in (14). We define the set of singular directions

So := {ZE(CZHZ/ZO, dk >0, 3¢ > 0, Ja > 0 such that
(20— 122 L4 X (b—a—k) =0, 0%, #0, L—a—k>0}\0. (20)
For a neighborhood €2y of the origin and the convex cone 2y with vertex at the origin,

we define g := Qo U Q. Then we assume that there exists ¥ such that the closure Sy
satisfies

SoNXo = 0. (21)

THEOREM 3.1. Assume , @ and . Let v be a formal first integral given in Theo-
rem which is a polynomial in p and p1. Then, for each a >0 in ([§)) v(*) is (20 —1)-
summable in every direction of Q1 with respect to qi1. More precisely, for every £ €
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there exists a neighborhood Vi of the origin g = 0 such that v\ is analytic in ¢ € Vy and
(20 — 1)-summable with respect to q1 in the direction &.

Before proving the theorem we give a corollary, in which we have the summability
of vg.
COROLLARY 3.2. Suppose @ Assume

Bj = Bjo(q1,9), 2<j<nm, (22)

for some Bj o analytic at 1 = 0 and polynomial in q = (g2, ..., qn). Letv=">"_ <, v(®) pe
be the formal first integral as in Theorem[2.1] which is a polynomial in p and py. Then the
set of singular directions Sy is finite, and for each a v(®) is a polynomial in q and (20—1)-
summable with respect to q1. More precisely, for every & & So v(® is (20 — 1)-summable
with respect to q1 in the direction .

In order to prove Theorem we prepare a lemma. Let £ > 0, 7 > 0 and 6 € R, and
0 < & < 7 be given. Let v, denote the path from the origin along arg z = 6+ (¢ +m)/(2k)
to some z; of modulus r, then along the circle |z| = r to the ray arg z = 0 — (e +7)/(2k),
and back to the origin along this ray. Let B, denote the Borel transform

1 K Kyi—K —K
Bef)(€) = 5 | v IO ()i (23)
Then, by simple computations we have
Be (11 2 1)(€) = KCBa(1)(C) — B (1 )(Q). (24

Let ¢ > 0 and © be a domain in C. Define H.(Q2) as the Banach space of all f which
is holomorphic and of exponential growth of order ¢ in © with the norm

1£lle = :‘gg\f(Z)e’“W < o0, (25)
Then we have
LEMMA 3.3. Let A > 0. Then there exists Ky > 0 such that
1Bt N)lle < Kol Bu(f)ller  Bilf) € He(9). (26)
Moreover, Ky can be taken arbitrarily small if we take ¢ > 0 sufficiently large.
For the proof we refer the reader to [BY].

Proof of Theorem . We define Q2 = ¥g. In view of the inductive definition of Ul(/?tk),f’s

with respect to ¢, the first non-vanishing term U,(/(,Xk),z is a polynomial of ¢;. Hence it is

(20 — 1)-summable in ¢;. Therefore it is sufficient to show, by induction, that if F' in

is (20 — 1)-summable, then vl(fjc),e is (20 — 1)-summable as well.

Set k = 20—1. In the following we omit the suffix («) in viak) ; for the sake of simplicity.
Suppose that there exists an integer N such that B (v, k) € He(Q) for all v, k and p,
|p| < N. We want to show By (vyre) € He(2), €] = N + 1. Let ¢ be the dual variable
of ¢; with respect to the Borel transform. Let x (D) be defined by

XA<D>BH(f>(C) = Bn(Q?f)(C% Bn(f) € HC(Q)

By Lemma Xx(D) is a linear continuous operator on H.(2). Moreover, by taking
¢ > 0 sufficiently large, we may assume that the norm can be made arbitrarily small.
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We apply the (20 — 1)-Borel transform to both sides of with respect to ¢;. Then
we have

(20 = 1) = 20(v+1) = Dxao—1(D) + A+ (L= k = @)) Bao—1(v}7,) = 9(0), (27
where ¢(¢) is the partial Borel transform of F' with respect to ¢;.

First we note that the formal Borel transform 320_1(1)1(,?2’5) satisfies a relation

similar to (27). In view of the construction of formal series vl(,ak) 0 l’;’%_l(vf’a]g 0)(C) is

an entire function of ¢. In order to determine ng,l(vl(,ak) ej) for e; = (0,...,1,...,0)
(j = 1,2,...,n) we note that the right-hand side ¢g(¢) is an entire function of ¢ be-

cause it contains only the formal Borel transform of viak) o- By inverting the operator

(20 = 1)¢* 1 = (20(v+1) = 1)x20-1(D) + A+ (€ — k — a)) we see that ng_l(vl(flg’ej)
is holomorphic in some neighborhood of the origin ( = 0 because the right-hand side is
analytic at the origin. By the inductive argument we see that Bay_1 (’Ul(jak) ;) is holomorphic
at the origin ¢ = 0.

We shall show that g(¢) € H.(2). Indeed, in view of the definition of R in Fis
the sum of products of some v,/ 3/, and holomorphic functions of ¢;. This implies that
their Borel transforms are in H.(€2). Hence we have the assertion.

We also note that the Borel transform of the differentiation ¢?7(9/dq;) in R is equal
to (20 — 1)¢%° 7! — (20 — 1)x25—1(D). In order to show that By (v, x¢) € H.(Q) we may
assume that ¢ — k — a # 0. Indeed, the number of terms satisfying { — k — a = 0 is finite
in view of the finiteness of k, and, by definition, the corresponding v, 1 ¢ is a polynomial
of q1.

Assume that there exists K > 0 such that

1271 ((20 = 1)¢* ! = 20(v+1) = Dx2o 1 (D) + A-(E—k—a)) || <K (28)
for ¢ € Ziﬁl and ¢ € Q. Then we obtain By (v, k) € H:(Q) by the recurrence relation
whose norm of the right-hand side is bounded by constant times of that of v, , for
|p| < |¢|. Hence we have proved the (20 — 1)-summability of every coefficient of our
formal integral with respect to ¢; as desired.

As for the convergence with respect to ¢, we obtain the inductive estimate of v, j ¢
with respect to |¢]. Indeed, B, (v, ¢) is calculated from the recurrence relation from the
previous ones by operating the bounded operator as the one in to the right-hand
side.

Hence it remains to show . Because the number of pairs of v, k and « is finite we
take arbitrary v, k and o and we fix them. Let (; satisfy (20 — 1) '+ X-({—k—a) =0
and let w; (j =1,2,...,20 — 1) be the (20 — 1)-th root of unity. Then we have

(20 = 1)¢* ' — (20(v +1) = 1)x201(D) + X- (£ —k — )
= (20 = 1) =77 = (20(v +1) = Dxao—1(D).
We have ¢20—1 — 42‘7_1 = Hji;l(c — (ewj). By there exists ¢; > 0 such that
I¢ — Cuw;| > ci|¢] for all ¢ € Q@ and j = 1,2,...,20 — 1. It follows that there ex-
ists co > 0 such that (2771 — (777" > ¢2(]¢[** ! + 1). Recalling that the norm of
(20(v + 1) — 1)x25-1(D) can be made arbitrarily small by the preceding lemma we
obtain (28). m



176 M. YOSHINO

4. Normalizing transformation. In the next theorem we study the relation between
our formal solution in the preceding theorem and the generating function of a normalizing
symplectic transformation. Assume A C Z"'. Let Vi (m = 2,...,n) be the first
integrals of y g constructed as in Theorem Namely, the coefficients of ¢¢ for £ # e,, +a
vanish, while for ¢ = e, + a they are equal to p;,¢,nq¢®. We inductively construct the
coefficients for ¢ > e,, + « as in Theorem [3.1] We say that Ao, ..., A, satisfy the Poincaré
condition if the convex hull of Ag, ..., A\, in C does not contain the origin. Then we have
THEOREM 4.1. Assume @ Suppose that

Bj(Ql7t>Q):Bj(t7Q)a j=2,...,m, (29)
where Bj 1s a polynomial of t with coefficients analytic at ¢ = 0. Suppose that the Poincaré
condition is satisfied. Let 2 < m < n be an integer. Then V,,({l) (a € A) are analytic at
the origin and are functionally independent.

Ezxpand Zj qJZBj = Z# cuq”, and let W be the analytic function whose coefficient
of ¢ is given by cg/X\- £ if |£| > 2, and O if otherwise. Then W satisfies

0
qm WW = dmPm — V7£LO) (30)

m
If we define W by W := Z?:z q;y; — W(q), then the (partial) symplectic transformation
(¢,p) = (y, —x) given by

q1 =21, Pp1 =Y1, Tj = Wyj =45, pj = ij =Yj— ij (j=2,...,n) (31)
transforms xg to X, where Hy = 3%y + 2;22 AT

REMARK. By Theorem xu is C¥-Liouville integrable and the transformation is
the (resonant) Birkhoff transformation. Indeed, W gives the generating function of the
partial symplectic transformation (cf. [I]).

Proof of Theorem , Let m (2 < m < n) be an integer and let V,,, be the first integral
as in Theorem u Then the functional independentness of V,,, (m = 2,...,n) is clear in
view of the above constructions.

In order to have the representation of V,, set V,,, = E* %", véa)(ql, @?p1,p)gt. We

will show that véa) is analytic at ¢; = 0 for all £. For |[¢| <1 the assertion is trivial from

the choice of arbitrary functions. We also note that véf) = ppm. In order to determine
Uéa) for |¢| > 2, we substitute the expansion into xgv = 0 and compare the coefficients

of (p1¢??)"p*q’. Then we have the recurrence relation similar to

(47700 = A~ (L= ))of™ = Fy(ol),y < 0), (32)
where £ —a # 0 and we regard t := ¢3%p; as an independent variable. Indeed, by the

term —QUqf"flu in (16]) vanishes because p; appears in V,, in the form ¢#p;. In view

of we see that the term aplBja%l — &tha%l vanishes because, by induction, the
inhomogeneous term depends on ¢?°p;. Hence decreases the power of p. It follows
that véa) (]¢] > 2) is a function of ¢, t = ¢?°p; and ¢;.

In view of and Fg(v,(f‘),*y < /) is equal to the coefficient of ¢* in

S VB T (D ) - e Y B (Se). @)
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Recalling that 9, B; = B;1¢i°, B = B; we obtain ¥ ¢ Bj1 =0 Y q¢;B B;(t,q).
Let |¢| = 2. Because vaﬂ, does not vanish only for v = e,, and v( ) = = Py, it
follows that the first term of (33) is equal to Zj qm 8qm( ; J). If we expand Zj quBj =

>, cu(t)g”, then we have
Fo(o$)) =lmeg — (N o) > (Brep)vl®. (34)

Y+u=¢4,|p|>2
By the inductive assumption on véa), Fy in is independent of ¢;. Hence the unique
formal solution is given by véa) = —Fy/\- (£ — «), which is independent of ¢;. Therefore,
by induction on |£|, we can determine véa) from being independent of ¢;. Hence
we obtain a formal integral. As for the convergence of the formal series, the Poincaré
condition implies the convergence of the formal solution.
Let o = 0. Then we have Fy(vy © )) = l,ncp, which implies v( ) = = —lmce/ A L. Therefore
we have

lmc
(0) _ i mCl p
Vm Pmdm Z N7 q (35)
[¢|>2

and W satisfies . Moreover, the Hamiltonian Hy is transformed to

71+ Y Aipity + D AW, = Ho + Z Ara(Grmpn = V)

_H0—|-Z)\ ( ng Z):HO—FZ(]]Z-B]‘:H.

Hence we see that transforms yg to x - ThlS ends the proof. m

5. C“-non-integrability and C°°-integrability. As we stated in the introduction,
our Hamiltonian system is not C*-integrable in general. Although this fact is not used
in the proofs of the preceding theorems, we will briefly state the C*’-non-integrability for
the readers’ convenience.

THEOREM 5.1. Assume that @ and the following condition (M) are satisfied.

(M) Fork=2,3,...,n the equation
dv
37 dq "= Bi(q1,0,0) (36)

has no analytic solution v at the origin.

Then the Hamiltonian system with the Hamiltonian H = Hy+ Hy given by and
is mot C*-Liouville integrable.

Condition (M) corresponds to the non-Abelian property of the fundamental group
introduced in [BT]. We can also prove that (M) holds if and only if the monodromy of
an analytic continuation of every solution of along a path encircling the origin does
not vanish (cf. Lemma 6 of [Y]).

Letv=7>_5¢ v(® B be the first integral given by . By Theoremﬂevery v(®) is
(20 — 1)-summable in every direction of Q; = Q; (v(®). Hence we write the summed one



178 M. YOSHINO

with the same letter for the sake of simplicity. We define

Ev:{ze(C:|argz—argf|< , 5691}. (37)

T
2(20 — 1)
Then we have

THEOREM 5.2. Assume , @ and , Then

(i) Let o > 0 and suppose Qi (v(®) # 0. Then there exists an g > 0 and a sector
S1 C %, such that the summed v = v(®) in Theorem 18 holomorphic and is the
first integral of xg in the domain

qQ E Xy, |q1| < €p, P1 € (C7 p; € (C, |Qj| <e€g, J=2,...,n. (38)
Moreover, it is C*° at g1 = 0 when ¢1 € S1, ¢1 — 0.

(ii) Assume either the Poincaré condition is satisfied or v\¢) and v2¢3) exist for which
So is a finite set. Set v = v(E) or v = v(2¢) and let X, and S, C 3, be given
by (i) and choose 6 € Sy. Then we have Q1 (v) # 0, and v is extended as a C™
first integral with respect to q; on Ry U —Rg U {0} being analytic in ¢ € R~ at
q = 0. Moreover, there exists a neighborhood of the origin U in R such that xg is
C*>-integrable when ¢ € (Rg U{0}) NU, p1,p;,q¢; € R, |g;] <eo (§ > 2).

The proofs of these theorems will be published elsewhere.
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