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Abstract. Dirac’s generalized Hamiltonian dynamics is given an accurate geometric for-
mulation as an implicit differential equation and is compared with Tulczyjew’s formulation of
dynamics. From the comparison it follows that Dirac’s equation—unlike Tulczyjew’s—fails to
give a complete picture of the real laws of classical and relativistic dynamics.

1. Introduction. (i) Generalized Hamiltonian dynamics is the name given by
P. A. M. Dirac [8, 9] to his own attempt to provide a Hamiltonian formulation for the
dynamics of physical systems with singular Lagrangians.

Dirac’s approach starts from traditional Lagrangian dynamics (based on Hamilton’s
variational principle and Euler-Lagrange equations in coordinate formulation) and aims
to extend the classical method of Legendre transformation from hyperregular to singu-
lar Lagrangians. The main result (Hamiltonian equations with Lagrange multipliers for
constrained systems) has been geometrically interpreted by W. M. Tulczyjew [14, 18] as
an implicit differential equation on T ∗Q (cotangent bundle of the configuration space Q
of the system).

Dirac’s geometrized equation, however, contrasts—in a number of examples—with the
implicit differential equation on T ∗Q proposed, on the base of a more general conception of
Legendre transformation, by the same author (see, e.g., Tulczyjew [16, 17] and Tulczyjew
et al. [12, 13, 19]).
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Moreover, in the presentation of the above geometric equations, any explicit link with
(a geometric formulation of) traditional Lagrangian dynamics seems to have been lost.

In such a situation, what we need—in our opinion—is to give the whole process of
transition from Lagrangian to Hamiltonian dynamics a systematic geometric reconstruc-
tion, so as to be able to deduce (rather than only state) Dirac and Tulczyjew’s equations
from a coherent geometric framework and, by doing so, to get a deeper insight into the
theoretical reasons for their differences.

That is the aim of the present paper.

(ii) Our line of thought is the following. We start from Lagrangian dynamics, where—
for a system described by a (regular or singular) Lagrangian L defined on an open sub-
manifold M of TQ (the tangent bundle of Q)—the possible motions are assumed to be
the solution curves in Q of Hamilton’s variational principle. In this connection, we fo-
cus on the problem of characterizing (in terms of differential equations) the motions of
the system or, equivalently, the corresponding trajectories in TQ, obtained from (and
bijectively related to) the motions in Q via tangent lifting.

In Sec. 3, we recall [1] that the trajectories of the system in TQ are the integral curves
of a second-order implicit Euler-Lagrange equation E = D ∩ T 2Q , which will be shown
to arise from the intersection of the Hamilton-Dirac equation D generated by the energy
of L on M ⊂ TQ (carrying a structure of Dirac manifold [6,20]) with the well known
second-order tangent bundle T 2Q ⊂ TTQ.

Now remark that a Lagrangian L determines not only the evolution law of the system
in TQ through its Euler-Lagrange equation E , but also a transition law from TQ to
T ∗Q—linking velocities to momenta—through its Legendre mapping (or fibre derivative)
L. So one is led to face the higher-rank problem of characterizing the trajectories of the
system in T ∗Q—obtained from (and bijectively related to) the trajectories in TQ via
Legendre mapping.

In Sec.4, we shall assume hypotheses of almost-regularity for L, which guarantee the
existence—on a ‘constraint’ submanifold M1 of T ∗Q—of a Hamiltonian function corre-
sponding to L in the sense of the ordinary Legendre transformation. Then, through the
operation of transforming E by TL (the tangent of L) we shall prove that the trajectories
of the system in T ∗Q are the integral curves of a ‘second-order’ implicit differential equa-
tion H = D1 ∩ T2 on T ∗Q, which still arises from the intersection of the Hamilton-Dirac
equation D1 generated by the Hamiltonian of L on M1 ⊂ T ∗Q (carrying a structure of
Dirac manifold) with a new kind of ‘second-order’ tangent bundle T2 ⊂ TT ∗Q (obtained
from T 2Q through TL). We explicitly stress the fact that the above result rests on the
second-order character of H, i.e. H ⊂ T2, which is not generally shared by D1 (the above
mentioned Dirac’s geometrized equation).

The problem of characterizing the trajectories in T ∗Q can successfully be dealt with
also when the almost-regularity hypotheses are dropped.

In Sec. 5, the Tulczyjew equation T (generated by a generalized Hamiltonian) is taken
into consideration. Then, through the operation of transforming E by TL, we shall prove
that—owing to the second-order property T ⊂ T2—the trajectories of the system in T ∗Q
are exactly the integral curves of T . As a consequence, in the almost-regular case, T
turns out to be equivalent to H (rather than D1).
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In Sec. 6, the almost-regular example of a relativistic particle in a gravitational and
electromagnetic field will confirm the role of T or, equivalently, H (but not D1) as the
true law of Hamiltonian dynamics.

In Sec. 7, we conclude with some brief remarks, where the focal points of the work
are underlined and looked at in perspective for further research.

2. Preliminaries. Here is a list of notations and geometric tools used in this paper.

(i) For any smooth manifold M , we shall adopt the following notations.
TM and T ∗M are the tangent and cotangent bundles of M , whose bundle projections

are denoted τM : TM →M and πM : T ∗M →M .
TM ⊕ T ∗M := {(x, ξ) ∈ TM × T ∗M | τM (x) = πM (ξ)} is the Whitney sum of TM

and T ∗M .
χ(M) is the Lie algebra of vector fields on M .
Λ(M) is the exterior graded algebra of M (in particular, Λ0(M) ⊂ Λ(M) is the ring

of real-valued smooth functions on M).

Let f : N →M be a smooth mapping between manifolds N and M .
Tf : TN → TM is the tangent mapping of f (whose restriction to the fibre TyN :=

τ−1
N (y) over a point y ∈ N is denoted Tyf : TyN → Tf(y)M).
f∗ : Λ(M)→ Λ(N) is the pull-back of the exterior algebra of M into that of N .

If c : I → M is a smooth curve in M (defined on an open interval I of the real line
R), then Tc defines a section ċ of τM along c, called the tangent lifting of c, given by

ċ := Tc ◦ d

dt

∣∣∣∣
I

: I → TM

( ddt ∈ χ(R) being the vector field associated with the natural chart t := idR), and T ċ

similarly defines the second tangent lifting c̈ : I → TTM .

If ψ : N →M is a submersion, then V ψ is the vertical vector bundle of ψ, whose fibre
over any y ∈ N is

Vyψ := kerTyψ

and V oψ is its annihilator, with typical fibre

(Vyψ)o := {η ∈ T ∗yN | 〈η | u〉 = 0, ∀u ∈ Vyψ}
(where 〈 | 〉 denotes the natural pairing between forms and vectors).

As is known, there exists a unique vector bundle morphism (over ψ)

$ψ : V oψ → T ∗M

satisfying, for all y ∈ N and η ∈ V oy ψ,

η = $ψ(η) ◦ Tyψ
Let ω ∈ Λ2(M) be a 2-form on M . The vector bundle morphism

[ : TM → T ∗M : x 7→ [x := ixω := 〈ω(τM (x)) | x, ·〉
is called the musical morphism associated with ω.

ω is said to be nondegenerate if [ is an isomorphism.
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If dω = 0, d being the exterior derivative of forms, ω will be called a presymplectic
2-form (prefix ‘pre’ is dropped when ω is nondegenerate).

Recall the canonical example of a symplectic 2-form (on a cotangent bundle T ∗M)

ωM := −dϑM
obtained from Liouville 1-form

ϑM : T ∗M → T ∗T ∗M : ξ 7→ ϑM (ξ) := ξ ◦ TξπM .
Let us now recall two basic tangent derivations [18].
iT : Λ(M) → Λ(TM) is the tangent derivation (of degree −1) which vanishes on

Λ0(M) and acts on Λ1(M) by θ ∈ Λ1(M) 7→ iT θ ∈ Λ0(TM) with

iT θ : TM → R : x 7→ iT θ(x) := ixθ := 〈θ(τM(x)) | x〉.
Then iT will act on Λ2(M) by ω ∈ Λ2(M) 7→ iTω ∈ Λ1(TM) with

iTω : TM → T ∗TM : x 7→ iTω(x) := ixω ◦ TxτM .
The commutator dT : Λ(M)→ Λ(TM) of iT and d is the tangent derivation (of zero

degree)
dT := iT d+ diT

satisfying, for any ψ : N →M ,

dTψ
∗ = (Tψ)∗dT .

(ii) In the geometry of the iterated bundles associated with a smooth manifold Q, a
key role is played by the following canonical morphisms.

First, we recall the diffeomorphism [18]

α : TT ∗Q→ T ∗TQ

uniquely determined by conditions

πTQ ◦ α = TπQ, dTϑQ = α∗ϑTQ

Remark that, for any v ∈ TqQ and θv ∈ T ∗v TQ, one has

(τT∗Q ◦ α−1)(θv) = θv ◦ νv
(where νv : TqQ → VvτQ is the canonical isomorphism of TqQ = τ−1

Q (q) onto its own
tangent space Tv(TqQ) = VvτQ).

Then, for any function L ∈ Λ0(M) defined on an open submanifold M of TQ, the
bundle morphism

FL := τT∗Q ◦ α−1 ◦ dL : M → T ∗Q : v 7→ FL(v) = dL(v) ◦ νv
is the fibre derivative of L.

Next, we recall the musical isomorphism

β : TT ∗Q→ T ∗T ∗Q : z 7→ βz := izωQ

associated with the canonical symplectic 2-form ωQ of T ∗Q.
Remark that, for any p ∈ T ∗qQ and hp ∈ T ∗p T ∗Q, one has

(TπQ ◦ β−1)(hp) = hp ◦ νp
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(where νp : T ∗qQ → VpπQ is the canonical isomorphism of T ∗qQ = π−1
Q (q) onto its own

tangent space Tp(T ∗qQ) = VpπQ).
Then, for any function H ∈ Λ0(W ) defined on an open submanifold W of T ∗Q, the

bundle morphism

FH := TπQ ◦ β−1 ◦ dH : W → TQ : p 7→ FH(p) = dH(p) ◦ νp
is the fibre derivative of H.

Finally, we recall the vertical vector bundle endomorphism [11]

S : TTQ→ TTQ

defined by putting, for any v ∈ TQ,

Sv := S|TvTQ := νv ◦ TvτQ.
Associated with S there are two derivations [11, 10].
iS : Λ(TQ) → Λ(TQ) is the derivation (of zero degree) which vanishes on Λ0(TQ)

and acts on Λ1(TQ) by θ ∈ Λ1(TQ) 7→ iSθ ∈ Λ1(TQ) with

iSθ : TQ→ T ∗TQ : v 7→ iSθ(v) := θ(v) ◦ Sv.
The commutator dS : Λ(TQ)→ Λ(TQ) of iS and d is the derivation (of degree 1)

dS := iSd− diS
Clearly, iS and dS act as derivations on the exterior algebra of any open submanifold

M of TQ.
In particular, if L ∈ Λ0(M), one has

dSL = (FL)∗ϑQ

whence
ddSL = −(FL)∗ωQ.

Owing to the above result, the presymplectic 2-form ddSL ∈ Λ2(M) turns out to be
symplectic iff FL is a local diffeomorphism.

3. Lagrangian dynamics. Lagrangian dynamics—for a mechanical system de-
scribed in terms of a (generally) singular Lagrangian—will be framed into a simple and
compact geometric scheme.

(i) Let (Q,L) be (the mathematical model of) a mechanical system, consisting of
a smooth manifold Q (the configuration space of the system) and a smooth function
L ∈ Λo(M) defined on an open submanifold M of TQ (the Lagrangian function of the
system).

According to classical dynamics, the motions of (Q,L) are the smooth curves in Q

satisfying Hamilton’s variational principle.
From a geometric formulation of variational calculus [1], it follows that a smooth curve

γ in Q is a motion of (Q,L) iff

Im γ̇ ⊂M
and
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[γ̈ = dE ◦ γ̇
(where [ denotes the musical morphism associated with the Poincaré-Cartan presym-
plectic 2-form ω := −ddSL ∈ Λ2(M) , and E := ∆L−L ∈ Λ0(M) is the energy function
defined by putting ∆L := i∆dL with ∆ : M → TM : v 7→ ∆(v) := νv(v)).

(ii) The dynamics of (Q,L) can naturally be moved onto TQ (the velocity phase space
of the system) as follows.

For any motion γ of (Q,L), its tangent lifting γ̇, a smooth curve lying on M , will be
called a velocity phase space trajectory (or VPS trajectory) of (Q,L).

The correspondence γ 7→ c := γ̇ between motions and VPS trajectories of (Q,L) is
obviously invertible, the inverse being the projection c 7→ γ := τQ ◦ c.

The problem of determining the motions can then be solved by determining the VPS
trajectories, i.e. the smooth curves c’s in TQ satisfying

Im c ⊂M,(3.1)
[ċ = dE ◦ c,(3.2)

c = (τQ ◦ c)·.(3.3)

The above trajectories will prove to be the integral curves of an implicit differential
equation E on TQ, i.e.

(3.4) Im ċ ⊂ E
with

(3.5) E ⊂ TTQ
Such an equation will soon be worked out and its mathematical structure analysed.

(iii) Conditions (3.1) and (3.2) also read

(3.6) Im ċ ⊂ D
with

D := {x ∈ TM | [x = dE(τM(x))}.
D is an implicit differential equation on M (and then on TQ), whose underlying

geometric structure will now be examined.
First recall that a Dirac manifold [6, 20] is a couple (M,Ω), consisting of a smooth

manifold M and a Dirac structure Ω ⊂ TM ⊕ T ∗M .
Then recall that, on a Dirac manifold (M,Ω), to any Hamiltonian function E ∈ Λ0(M)

there corresponds an implicit differential equation [20]

DE := {x ∈ TM | (x, dE(τM(x))) ∈ Ω}
which will be called the Hamilton-Dirac equation generated by E on (M,Ω).

Now turn back to the presymplectic manifold (M,ω) and the energy function E

introduced in (i).
Remark that (M,ω) can as well be regarded as a Dirac manifold by putting

Ω := Im Graph [ = {(x, ξ) ∈ TM ⊕ T ∗M | [x = ξ}
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and then
DE = D.

So D is the Hamilton-Dirac equation generated by E on (M,ω).
If L is a regular Lagrangian (i.e., ω is symplectic), and only in that case, the equation

D takes the explicit form (on M)
D = Im ΓE

where ΓE := [−1 ◦ dE ∈ χ(M) is an ordinary Hamiltonian vector field, characterized by
iΓEω = dE, on the symplectic manifold (M,ω).

(iv) Condition (3.3), i.e. τTQ ◦ ċ = TτQ ◦ ċ, also reads

(3.7) Im ċ ⊂ T 2Q

with
T 2Q := {x ∈ TTQ | τTQ(x) = TτQ(x)}.

T 2Q is an implicit differential equation on TQ, which—as well as any equation con-
tained in it—exhibits the typical second-order character, consisting in the fact that the
projection c 7→ γ := τQ ◦ c of its integral curves onto the corresponding base integral
curves is inverted by the tangent lifting γ 7→ c := γ̇.

(v) Conditions (3.6) and (3.7), characterizing the VPS trajectories of (Q,L), can
equivalently be expressed in the form (3.4) and (3.5) by putting

E := D ∩ T 2Q.

So the VPS trajectories of (Q,L) are the integral curves of the equation E (called the
Euler-Lagrange equation).

Observe the structure of E , extracted from the Hamilton-Dirac equation D via inter-
section with the second-order equation T 2Q.

Owing to such a structure, E is not generally equivalent to D, for the latter may admit
more integral curves than the former does (not all of the integral curves of D will then
correspond to possible motions of the system).

The problem of integrating E will in principle be solved by determining the integral
curves of D, characterized by condition (3.6), and then sorting out those which satisfy
the second-order condition (3.7).

Note that, if L is a regular Lagrangian, the second-order condition (3.7) is hidden by
the well known circumstance [11, 7] D = Im ΓE ⊂ T 2Q, i.e. E = D = Im ΓE . Owing to
the above result, indeed, the VPS trajectories of (Q,L) turn out to be characterized by
the only condition (3.6), which takes the normal form ċ = ΓE ◦ c (with Im c ⊂M).

4. Hamiltonian dynamics after Dirac. Dirac’s approach to Hamiltonian dyna-
mics, starting from Lagrangian dynamics, will be examined (and revised) through a
systematic geometric reconstruction.

(i) The dynamics of (Q,L) can as well be moved onto T ∗Q (the momentum phase
space of the system) by means of the Legendre morphism

L := FL : M → T ∗Q.
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For any motion γ of (Q,L), its Legendre lifting k := L ◦ γ̇, a smooth curve lying on
M1 := ImL, will be called a momentum phase space trajectory (or MPS trajectory) of
(Q,L).

The correspondence γ 7→ k := L ◦ γ̇ between motions and MPS trajectories of (Q,L)
is obviously invertible, the inverse being the projection k 7→ γ := πQ ◦ k.

Determining the motions is now only a part of the higher-rank problem of determin-
ing the MPS trajectories, i.e. the smooth curves in T ∗Q which correspond to the VPS
trajectories through L.

As the VPS trajectories are the integral curves of the implicit differential equation
E on TQ, the MPS trajectories are expected to be the integral curves of an implicit
differential equation on T ∗Q obtained from E via TL.

Such an equation will now be worked out in the case of an almost-regular Lagrangian,
i.e. one satisfying the following hypotheses:

(a) M1 := ImL is an embedded submanifold of T ∗Q.
(b) L1 : M →M1, defined by ι1 ◦ L1 = L with ι1 : M1 ↪→ T ∗Q, is a submersion.
(c) E := ∆L − L is projectable by L, i.e. E = L∗H, H ∈ Λ0(W ) being defined on an

open submanifold W of T ∗Q containing M1.

The above hypotheses generalize some of the features of a hyperregular Lagrangian
(whose Legendre morphism is an injective local diffeomorphism).

Indeed, if L is a local diffeomorphism, conditions (a) and (b) are automatically ful-
filled, since M1 is an open submanifold of T ∗Q and L1 is a local diffeomorphism as well.
Moreover, if—and only if—L is injective too, condition (c) is fulfilled (with H := E ◦L−1

1

uniquely determined on W := M1).

(ii) To start with, TL will be made to act on D. Let x ∈ TM and put z := TL(x) =
TL1(x) ∈ TM1 . Recall that x ∈ D iff [x = dE(v) with v := τM (x).

If M1 is given the presymplectic 2-form

ω1 := ι∗1ωQ

and [1 : TM1 → T ∗M1 denotes the corresponding musical morphism, from

ω = L∗ωQ = L∗1ι∗1ωQ = L∗1ω1

it follows that
[x = 〈ω1(L1(v)) | TvL1(x), TvL1(·)〉 = [1z ◦ TvL1.

Moreover, from E = L∗H = L∗1ι∗1H = L∗1H1 with H1 := ι∗1H, it follows that

dE(v) = dH1(L1(v)) ◦ TvL1 = dH1(τM1(z)) ◦ TvL1.

As L1 is a submersion, condition [x = dE(v) turns out to be equivalent to
[1z = dH1(τM1(z)).

So one has

(4.1) x ∈ D ⇔ x ∈ TM, TL(x) ∈ D1

with
D1 := {z ∈ TM1 | [1z = dH1(τM1(z))}.
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D1 is the Hamilton-Dirac equation generated by H1 on (M1, ω1).
It can be given an alternative formulation, making direct use of the canonical sym-

plectic 2-form of T ∗Q, as follows.
Let z ∈ TT ∗Q. Recall that z ∈ D1 iff z ∈ TM1, whence p := τT∗Q(z) ∈ M1, and

[1z = dH1(p).
From ω1 := ι∗1ωQ and H1 := ι∗1H, it follows that

[1z = 〈ωQ(ι1(p)) | Tpι1(z), Tpι1(·)〉 = βz ◦ Tpι1 = βz|TpM1
.

and
dH1(p) = dH(ι1(p)) ◦ Tpι1 = dH(p)|TpM1

.

Condition [1z = dH1(p) then reads βz− dH(p) ∈ (TpM1)o or, equivalently, z −XH(p) ∈
β−1

(TpM1)o (where we have put XH := β−1 ◦ dH ∈ χ(W )). So we obtain

(4.2) D1 = TM1 ∩ D̂1

with D̂1—equivalent to D1—given by

D̂1 = {z ∈ TT ∗Q | p := τT∗Q(z) ∈M1, z −XH(p) ∈ β−1
(TpM1)o}

(see [14, 18]).
Now we shall focus on the case of a singular Lagrangian, by reinforcing hypothesis

(a) as follows:

(a’) M1 = φ−1(µ) , where φ = (φ1, . . . , φm) : W → Rm (with 0 < m < dimT ∗Q and
Imφ 3 µ) is a submersion at every point of M1.

Clearly, (a’) implies (a) with dimM1 < dimT ∗Q, which in turn implies the singularity
of L.

From (a’) it follows that, at any p ∈M1,

(TpM1)o = Span dφ(p)

(where dφ(p) = (dφ1(p), . . . , dφm(p)) : TpT ∗Q → Rm is the differential of φ at p) and
then

β−1
(TpM1)o = SpanXφ(p)

(where we have put Xφ = (Xφ1 , . . . , Xφm) with Xφa := β−1 ◦ dφa ∈ χ(W ) for all
a = 1, . . . ,m; in the sequel, an index-free summation convention will be adopted, say
λXφ(p) := λ1Xφ1(p) + . . .+ λmXφm(p) for any λ = (λ1, . . . λm) ∈ Rm).

So, in the singular case (a’), D̂1 is expressed, in terms of Lagrange multipliers λ ∈ Rm,
by

(4.3) D̂1 := {z ∈ TT ∗Q | p := τT∗Q(z) ∈ φ−1(µ), ∃λ ∈ Rm : z = XH(p) + λXφ(p)}
In the hyperregular case, as β−1

(TpM1)o = β−1
(TpT ∗Q)o is the null subspace of

TpT
∗Q (for all p ∈M1), the equation D1 = D̂1 takes the explicit form (on M1)

D1 = ImXH .

(iii) Now TL will be made to act on T 2Q. Let x ∈ TM and put z := TL(x) ∈ TT ∗Q.
From πQ ◦ L = τQ|M , it follows that, if x ∈ T 2Q, one has

TπQ(z) = TπQ(TL(x)) = TτQ(x) = τTQ(x) = τM (x) ∈M
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whence
τT∗Q(z) = τT∗Q(TL(x)) = L(τM(x)) = L(TπQ(z)).

So we obtain

(4.4) x ∈ T 2
MQ := T 2Q ∩ TM ⇒ TL(x) ∈ T2

with
T2 := {z ∈ TT ∗Q | TπQ(z) ∈M, τT∗Q(z) = L(TπQ(z))}.

T2 is an implicit differential equation on T ∗Q, which—as well as any equation contained
in it—exhibits a sort of second-order character, consisting in the fact that the projection
k 7→ γ := πQ ◦ k of its integral curves onto the corresponding base integral curves is
inverted by the Legendre lifting γ 7→ k := L ◦ γ̇.

(iv) The operation of transforming E by TL, expressed by (4.1) and (4.4), can be
synthesized by

(4.5) x ∈ E ⇔ x ∈ T 2
MQ, TL(x) ∈ H

with
H := D1 ∩ T2.

The above equation also reads

(4.6) H = TM1 ∩ Ĥ
with Ĥ := D̂1 ∩ T2—equivalent to H—expressed by

Ĥ = {z ∈ TT ∗Q | TπQ(z) ∈M, p := τT∗Q(z) = L(TπQ(z)),(4.7)

z −XH(p) ∈ β−1
(TpM1)o }.

In the singular case (a’), Ĥ is expressed, in terms of Lagrange multipliers, by

Ĥ = {z ∈ TT ∗Q | TπQ(z) ∈M, p := τT∗Q(z) = L(TπQ(z)),(4.8)

∃λ ∈ Rm : z = XH(p) + λXφ(p)}.
A special situation, leading to the elimination of the unknown Lagrange multipliers,

occurs when hypothesis (a’) is further reinforced by assuming that

(a”) M1 = φ−1(µ), where φ = (φ1, . . . , φm) : W → Rm (with 0 < m < dimT ∗Q and
Imφ 3 µ) is such that Fφ(p) = (Fφ1(p), . . . , Fφm(p)) is a linearly independent
system at every point p ∈M1.

First remark that the vector field

ΓH : M → V τQ : v 7→ ΓH(v) := νv(FH(L(v)))

satisfies
TvL(ΓH(v)) = νL(v)(FL∗H(v))

and the vector field
∆ : M → V τQ : v 7→ ∆(v) := νv(v)

satisfies
TvL(∆(v)) = νL(v)(FE(v)).



GENERALIZED HAMILTONIAN DYNAMICS 87

Hence, owing to (c),

(4.9) ∆(v)− ΓH(v) ∈ kerTvL.
Then remark that also the vector fields

Γφa : M → V τQ : v 7→ Γφa(v) := νv(Fφa(L(v)))

(a = 1, . . . ,m) satisfy Γφa(v) ∈ kerTvL (since TvL(Γφa(v)) = νL(v)(FL∗φa(v)) and
L∗φa = µa). Owing to (a”), Γφ(v) := (Γφ1(v), . . . ,Γφm(v)) is then a basis of kerTvL.

As a consequence, there exists a unique m-tuple J = (J1, . . . , Jm) of real-valued
functions on M such that

(4.10) ∆(v) = ΓH(v) + J(v)Γφ(v),

that is, v = FH(L(v)) + J(v)Fφ(L(v)) for all v ∈M .
Now let z ∈ Ĥ. By applying the above result to TπQ(z) ∈ M and recalling that

p := τT∗Q(z) = L(TπQ(z)) ∈M1, one obtains

TπQ(z) = FH(p) + J(TπQ(z))Fφ(p).

Moreover, from z = XH(p) + λXφ(p) for some λ ∈ Rm, it follows that TπQ(z) =
FH(p) + λFφ(p). Hence, owing to (a”),

(4.11) λ = J(TπQ(z)).

So, in the singular case (a”), one has
(4.12)
Ĥ = {z ∈ TT ∗Q | v := TπQ(z) ∈M, p := τT∗Q(z) = L(v), z = XH(p) + J(v)Xφ(p) }.

which shows the announced elimination of the unknown Lagrange multipliers λ (replaced
by the values (4.11) of the known functions J on M).

Finally note that, in the hyperregular case, (4.9) reads ∆(v) − ΓH(v) = 0, i.e. v =
FH(L(v)), for all v ∈M . As a consequence, for any z := XH(p) ∈ D1, one has

TπQ(z) = FH(p) = FH(L(v)) = v ∈M
with v := L−1

1 (p), and then

τT∗Q(z) = p = L1(v) = L(TπQ(z)).

That means D1 = ImXH ⊂ T2 , i.e.

(4.13) H = D1 = ImXH .

(v) Let us now turn back to the link between E and H given by (4.5), that is,

(4.14) E = (TL)−1(H) ∩ T 2Q.

Let us also remark that the definition of H obviously exhibits its second-order cha-
racter, i.e.

(4.15) H ⊂ T2.

From (4.14) and (4.15), we shall deduce the following characterization of the integral
curves of H. Let k be a smooth curve in T ∗Q. Firstly, assume that k is an MPS trajectory,
i.e. k = L ◦ c with Im ċ ⊂ E . In such a case, from (4.14) one immediately obtains
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Im k̇ = Im (TL ◦ ċ) = TL(Im ċ) ⊂ TL(E) ⊂ H,
i.e. k is an integral curve of H.

Conversely, assume that k is an integral curve of H, i.e. Im k̇ ⊂ H. Owing to (4.15),
one has Im c ⊂M and k = L ◦ c with c := (πQ ◦ k)· = TπQ ◦ k̇. Then, from

TL(Im ċ) = Im (TL ◦ ċ) = Im k̇ ⊂ H
and

Im ċ = Im (πQ ◦ k)·· ⊂ T 2Q

it follows that Im ċ ⊂ (TL)−1(H) ∩ T 2Q. Therefore we obtain k = L ◦ c with Im ċ ⊂ E ,
i.e. k is an MPS trajectory.

So the integral curves of H are precisely the MPS trajectories of (Q,L).

The above result does not extend to the Hamilton-Dirac equation D1 , for the latter—
though fulfilling the condition E = (TL)−1(D1)∩T 2Q because of (4.1) and then admitting
the MPS trajectories among its integral curves—need not exhibit the second-order char-
acter D1 ⊂ T2 which would restrict its integral curves to the above trajectories.

The situation here is exactly the same as in Lagrangian dynamics.
Observe the structure of H, extracted from the Hamilton-Dirac equation D1 via inter-

section with the ‘second-order’ equation T2 .
Owing to such a structure, the problem of integrating H will in principle be solved

by determining the integral curves k’s of D1, characterized by the condition Im k̇ ⊂ D1,
and then sorting out those which satisfy the second-order condition Im k̇ ⊂ T2.

For instance, in the singular case (a’), a smooth curve k in T ∗Q is an integral curve
of D1—or D̂1 , given by (4.3)—iff it satisfies the constraint

(4.16) φ ◦ k = µ

and there exists an m-tuple Λ = (Λ1, . . . ,Λm) of time-dependent Lagrange multipliers
such that

(4.17) k̇ = XH ◦ k + Λ(Xφ ◦ k)

(conditions (4.16) and (4.17) exactly correspond, in coordinate formalism, to Dirac’s
equations [8, 9] of generalized Hamiltonian dynamics).

However, such a k will be an MPS trajectory of the system, i.e. an integral curve of
H—or Ĥ , given by (4.8)—iff it satisfies the stronger Legendre condition

(4.18) Im γ̇ ⊂M, k = L ◦ γ̇
with

γ := πQ ◦ k
coupled with Dirac’s condition (4.17).

If (a’) is replaced by (a”), the MPS trajectories will be characterized by Legendre’s
condition (4.18) coupled with a version of (4.17) where the unknown multipliers Λ no
longer appear, namely

(4.19) k̇ = XH ◦ k + (J ◦ γ̇)(Xφ ◦ k)

(see [5] for a deduction of (4.19) in coordinate formalism).
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Finally note that, in the hyperregular case, the second order condition Im k̇ ⊂ T2 is
hidden by the circumstance D1 = ImXH ⊂ T2.

As a consequence, the MPS trajectories turn out to be characterized by the only
condition Im k̇ ⊂ D1, which takes the normal form k̇ = XH ◦ k (with Im k ⊂M1).

5. Hamiltonian dynamics after Tulczyjew. Tulczyjew’s approach to Hamilto-
nian dynamics—based on a more general idea of Legendre transformation—will be related
to (the revised version of) Dirac’s.

(i) According to Tulczyjew (see, e.g., Tulczyjew and Urbański [19]), Legendre trans-
formation is the mapping L 7→ H̃ which takes any Lagrangian function L, defined
on an open manifold M ⊂ TQ, onto the Hamiltonian Morse family H̃ defined on
Y := π−1

1 (M) ⊂ TQ⊕ T ∗Q (π1 being the natural projection of TQ⊕ T ∗Q onto TQ) by
putting

H̃ : Y → R : y = (v, p) 7→ H̃(y) := 〈p | v〉 − L(v).

Let Σ := {y ∈ Y | dH̃(y) ∈ V oρ} be the critical set of H̃ with respect to ρ := π2|Y :
Y → T ∗Q (π2 being the natural projection of TQ⊕ T ∗Q onto T ∗Q).

If GraphL : M → Y : v 7→ (v,L(v)) is the graph of the Legendre morphism L := FL ,
Σ turns out to be given by

Σ = Im GraphL.
By composing dH̃ |Σ : Σ→ V oρ with $ρ : V oρ→ T ∗T ∗Q, we obtain

h := $ρ ◦ dH̃|Σ : Σ→ T ∗T ∗Q

(a section of πT∗Q along ρ|Σ), which is transformed by β−1 : T ∗T ∗Q → TT ∗Q into a
‘Hamiltonian field’

Xh := β−1 ◦ h : Σ→ TT ∗Q

(a section of τT∗Q along ρ|Σ), satisfying

Xh ◦GraphL = α−1 ◦ dL.
With reference to a mechanical system (Q,L), the equation of dynamics (in Hamilto-

nian form) proposed in [19] is
T := ImXh.

T will be called the Tulczyjew equation.

(ii) The Tulczyjew equation can be given a number of expressions.
Start off with the definition itsef, i.e.

T = {z ∈ TT ∗Q | ∃ v ∈M : z = Xh(v,L(v))}.
Then remark that, for any z ∈ T , one has

TπQ(z) = (TπQ ◦Xh ◦GraphL)(v) = (TπQ ◦ α−1 ◦ dL)(v) = (πTQ ◦ dL)(v) = v ∈M
whence

(5.1) T = {z ∈ TT ∗Q | TπQ(z) ∈M, z = Xh(TπQ(z),L(TπQ(z)))}.
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Moreover, any z ∈ T satisfies

τT∗Q(z) = (τT∗Q ◦Xh ◦GraphL)(TπQ(z)) = (ρ ◦GraphL)(TπQ(z)) = L(TπQ(z))

whence

(5.2) T ={z∈TT ∗Q |TπQ(z)∈M, τT∗Q(z)=L(TπQ(z)), z=Xh(TπQ(z), τT∗Q(z))}.

(iii) In order to find out the link between the Euler-Lagrange equation E and the
Tulczyjew equation T , we shall try again the operation of transforming E by TL (without
making use, this time, of any additional hypothesis).

Let x ∈ T 2
MQ. As is known, x ∈ E iff dE(τ(x)) − [x = 0, where τ := τM ◦ j :

T 2
MQ ↪→ TM → M is the bundle projection of T 2

MQ onto M . We shall reexpress the
above condition in terms of z := TL(x).

To that end, it will prove to be useful to focus on the ‘pull-back’ of dE(τ(x))− [x by
τ , i.e.

(dE(τ(x))− [x) ◦ Txτ = dE(τ(x)) ◦ Txτ − [x ◦ Txτ
= d∆L(τ(x)) ◦ Txτ − dL(τ(x)) ◦ Txτ − ixω ◦ TxτM ◦ Txj
= τ∗d∆L(x)− dL(τ(x)) ◦ Txτ − j∗iTω(x)

= (dτ∗∆L− j∗iTω)(x)− dL(τ(x)) ◦ Txτ.
As to (dτ∗∆L− j∗iTω)(x), we first remark that

τ∗∆L = ∆L ◦ τ = 〈dL ◦ τ | ∆ ◦ τ〉 = 〈dL ◦ τM ◦ j | S ◦ j〉
= 〈dSL ◦ τM ◦ j | j〉 = (iT dSL) ◦ j = j∗iT dSL

whence

dτ∗∆L− j∗iTω = j∗diT dSL+ j∗iT ddSL = j∗dT dSL = j∗dTL∗ϑQ
= j∗(TL)∗dTϑQ = j∗(TL)∗α∗ϑTQ = (α ◦ TL ◦ j)∗ϑTQ

and then

(dτ∗∆L− j∗iTω)(x) = ϑTQ(α(z)) ◦ Tx(α ◦ TL ◦ j) = α(z) ◦ Tα(z)πTQ ◦ Tx(α ◦ TL ◦ j)
= α(z) ◦ Tx(πTQ ◦ α ◦ TL ◦ j)
= α(z) ◦ Tx(TπQ ◦ TL ◦ j) = α(z) ◦ Tx(TτQ ◦ j) = α(z) ◦ Txτ.

As to dL(τ(x)) ◦ Txτ , we just recall from Sec. 4(iii) that TπQ(z) = τ(x) ∈ M. So we
obtain

(dE(τ(x))− [x) ◦ Txτ = (α(z)− dL(TπQ(z))) ◦ Txτ,
that is, τ being a submersion,

dE(τ(x))− [x = α(z)− dL(TπQ(z)).

Therefore, condition dE(τ(x))− [x = 0 reads

α(z) = dL(TπQ(z)), z = (α−1 ◦ dL)(TπQ(z)), z = Xh(TπQ(z),L(TπQ(z))).

In view of (5.1), we have proved that

x ∈ E ⇔ x ∈ T 2
MQ, TL(x) ∈ T .
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(iv) The above link between E and T reads

(5.3) E = (TL)−1(T ) ∩ T 2Q.

Moreover, expression (5.3) naturally exhibits the second-order character of T , i.e.

(5.4) T ⊂ T2.

Observe that properties (5.3) and (5.4) are exactly the same as those encountered in
Sec. 4(v). Therefore, by proceeding in the same way as we did there, from (5.3) we infer
that the MPS trajectories are integral curves of T , and then from (5.4) we infer the
converse.

So the integral curvers of T are precisely the MPS trajectories of (Q,L).

From the expressions of T , it then follows that a smooth curve k in T ∗Q is an MPS
trajectory iff it satisfies

k̇ = Xh ◦ (c, L ◦ c)
for some curve c in M , or, putting γ := πQ ◦ k,

Im γ̇ ⊂M, k̇ = Xh ◦ (γ̇,L ◦ γ̇)

or
Im γ̇ ⊂M, k = L ◦ γ̇, k̇ = Xh ◦ (γ̇, k).

(v) Clearly, under the hypotheses (a), (b) and (c) of Sec. 4, the equationH (or Ĥ)—but
not generally the Hamilton-Dirac equation D1—is an equivalent reformulation of T , for
they share the integral curves.

More precisely, Ĥ is just an ‘enlarged’ version of T , as will now be shown. The starting
point is the obvious equality

E = (GraphL)∗H̃

whence, for any v ∈M and putting p := L(v),

dE(v) = dH̃(v, p) ◦ TvGraphL = h(v, p) ◦ T(v,p)ρ ◦ TvGraphL
= h(v, p) ◦ Tv(ρ ◦GraphL) = h(v, p) ◦ TvL.

On the other hand, from the hypothesis E = L∗H it follows that dE(v) = dH(p) ◦ TvL.
Hence, TvL having been assumed to be surjective onto TpM1 ,

h(v, p)|TpM1
= dH(p)|TpM1

h(v, p)− dH(p) ∈ (TpM1)o(5.5)

Xh(v, p)−XH(p) ∈ β−1
(TpM1)o.

In view of (5.5), a comparison between (4.7) and (5.2) immediately yields

(5.6) T ⊂ Ĥ.
Focus in particular on the singular case (a”). Owing to (4.12), for any z ∈ Ĥ one has

z = XH(p) + J(v)Xφ(p)

(with v := TπQ(z) and p := τT∗Q(z) = L(v)), whence, by applying TπQ,

v = FH(p) + J(v)Fφ(p).
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Owing to (5.5), one also has

Xh(v, p) = XH(p) + λXφ(p).

(with λ ∈ Rm), whence, by applying TπQ,

v = FH(p) + λFφ(p).

Owing to (a”), we then obtain J(v) = λ and then z = Xh(v, p) that is, z ∈ T . In view of
(5.6), the above result means

(5.7) T = Ĥ.
Of course, in the hyperregular case (when (TpM1)o = {0} for all p ∈M1), property (5.5)
reads Xh ◦GraphL = XH ◦ L and then—as well as (4.13)—we have T = ImXH .

6. Relativistic dynamics. Relativistic particle dynamics will exhibit a Hamiltonian
setting where one can effectively contrast Hamilton-Dirac with Tulczyjew.

(i) The space-time of General Relativity is a 4-dimensional smooth manifold Q equip-
ped with a Lorentz metric tensor

g : TQ→ T ∗Q

(symmetric vector bundle isomorphism of signature +, −, −, − ).
The causal character of g allows one to distinguish the time-like vectors (i.e. the

elements v ∈ TQ satisfying 〈g(v) | v〉 > 0) and particularly, under the hypothesis of
time-orientability (i.e. existence of a time-like vector field ζ on Q), the future-pointing
vectors, sweeping the open submanifold (of TQ)

M := {v ∈ TQ | 〈g(v) | v〉 > 0, 〈g(v) | ζ(τQ(v))〉 < 0}.
A future-pointing, time-like, smooth curve γ in Q (i.e. one with Im γ̇ ⊂M), together

with all of its orientation-preserving reparametrizations, determines an oriented orbit
Im γ , which is meant to be the world line of a material particle.

As is known, the curvature tensor of a Lorentz metric g on Q represents a gravitational
field, whereas the exterior derivative of a 1-form A on Q represents an electromagnetic
field.

We shall be concerned with the problem of determining the possible world lines of a
particle (m, e) of proper mass m > 0 and electric charge e ∈ R, living in the gravitational
and electromagnetic fields (g,A).

Such a problem will be framed into the Hamiltonian dynamics of a system (Q,L),
whose Lagrangian L, defined on the above open submanifold M of TQ, is given by the
relativistic Lagrangian of a mass m minus the generalized potential of the electromagnetic
force field acting on a charge e (see [3]), i.e.

L := m
√

2K + e iT |MA
with

K : M → R : v 7→ K(v) :=
1
2
|v|2 :=

1
2
〈g(v) | v〉
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and
iT |M (·) := (iT (·))|M .

(ii) We shall prove that L fulfils the almost-regularity conditions (a”), (b) and (c).
To that end, we focus on the Legendre morphism L := FL. As

L(v) = dL(v) ◦ νv =
m

|v| dK(v) ◦ νv + e d iTA(v) ◦ νv =
m

|v| g(v) + eA(τQ(v))

for all v ∈M , we obtain

L =
m√
2K

g|M + eA ◦ τQ|M .

The geometric structure of M1 := ImL will emerge from the following considerations.
Put

ψ := idT∗Q − eA ◦ πQ : T ∗Q→ T ∗Q

and, on the open manifold W := ψ−1(g(M)) of T ∗Q, define

φ := 2K ◦ g−1 ◦ ψ|W : W → R.

A direct calculation would show that

Fφ = 2g−1 ◦ ψ|W .
Remark that, as Fφ takes values in M , one has

(6.1) Fφ(p) 6= 0, ∀ p ∈W.
Also remark that, if p ∈M1 (i.e. p = L(v) = m

|v| g(v) + eA(τQ(v)) for some v ∈M), one
has

ψ(p) = g

(
m

|v| v
)
∈ g(M),

i.e. p ∈W , and

φ(p) = 2K(g−1(ψ(p))) = 2K
(
m

|v| v
)

= m2.

Conversely, if p ∈W and φ(p) = m2, one has

v :=
1
m
g−1(ψ(p)) ∈M, |v| = 1

and
L(v) = mg(v) + eA(τQ(v)) = ψ(p) + eA(πQ(p)) = p,

i.e. p ∈M1. So

(6.2) M1 = φ−1(m2) ⊂W.
From (6.1) and (6.2), it follows that condition (a”) is fulfilled.
Now some information about TL will be obtained by taking a look at the Euler-

Lagrange equation E = (TL)−1(T ) ∩ T 2Q , i.e.

E = {x ∈ TM | TvL(x) = α−1(dL(v)), v = τM (x)}.
In the present case, E takes the form [2, 3]

E = {x ∈ TM | ∃λ ∈ R : x = Γ(v) + λ∆(v), v := τM (x)}
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(where Γ is the vector field on M characterized by iΓωK = dK + e
m

√
2K iT |MdA , ωK

being the symplectic Poincaré-Cartan 2-form of K).
From the above expressions of E , one infers that, for any v ∈ M , Ev := E ∩ TvM

(containing Γ(v)) is an affine space modelled on

(6.3) kerTvL = Span ∆(v).

From (6.1)-(6.3), it immediately follows that condition (b) is fulfilled as well.
As to the energy E of L, just remark that E = 0 since

E(v) = 〈L(v) | v〉 − L(v)

=
m

|v| 〈g(v) | v〉+ e 〈A(τQ((v)) | v〉 −m |v| − e iTA(v) = 0

for all v ∈M . As a consequence, condition (c) is obviously satisfied by taking H = 0.

(iii) We can now turn to the Hamiltonian dynamics of (Q,L) and examine the equa-
tions therein appearing.

First remark that, in the present case, one obviously has

XH = 0, Xφ(M1) ⊂ TM1.

Therefore, owing to (4.2) and (4.3), the Hamilton-Dirac equation D1 = { z ∈ TM1 :
izω1 = 0 }, the characteristic distribution of ω1, takes the form

D1 = D̂1 = { z ∈ TT ∗Q | p := τT∗Q(z) ∈ φ−1(m2/2), ∃λ ∈ R : z = λXφ(p)}.
So D1 is the 1-dimensional distribution spanned by Xφ|M1

∈ χ(M1).
Now observe the identities

ΓH = 0, Γφ =
2m√
2K

∆

(the last one being due to Γφ(v) := νv(Fφ(L(v))) = νv(2g−1 ◦ ψ ◦ L(v)) = νv( 2m
|v| v) =

2m
|v| ∆(v) for all v ∈M), owing to which equality (4.10) is satisfied by

J =

√
2K

2m
.

Also note that, for any z ∈ TT ∗Q satisfying

p := τT∗Q(z) ∈ φ−1(m2), z = λXφ(p)

with λ > 0 one has v := TπQ(z) = λFφ(p) ∈ M (whence
√

2K(v) = λ
√

2K ◦ Fφ(p) =
2λ
√
φ(p) = 2λm) and then

L(v) =
m√

2K(v)
g(v) + eA ◦ τQ(v) = ψ(p) + eA ◦ πQ(p) = p,

J(v) =
1

2m

√
2K(v) = λ.

As a consequence, from (4.6) and (4.12), we obtain

H = Ĥ = { z ∈ TT ∗Q | p := τT∗Q(z) ∈ φ−1(m2/2), ∃λ > 0 : z = λXφ(p) }.
which, owing to (5.7), is the expression of the Tulczyjew equation T as well.

So T = H is the ‘future-pointing’ component of D1 −Do1 (where Do1 denotes the null
section of D1), i.e. the one containing ImXφ|M1

.
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(iv) Some comments on the integral curves of D1 and T are now in order.
Firstly, it is clear that not all of the integral curves of D1 are MPS trajectories of

(Q,L), for the integral curves of both Do1 and the ‘past-pointing’ component of D1 −Do1
are not integral curves of T .

Then focus on X1 := 1
2m Xφ|M1

∈ χ(M1). An integral curve k of T1 := ImX1 ⊂ T
satisfies

(6.4) φ ◦ k = m2, k̇ = X1 ◦ k
and then the corresponding base integral curve γ = πQ ◦ k is parametrized in such a way
that its tangent lifting γ̇ := TπQ ◦ k̇ fulfils the causal condition Im γ̇ ⊂M with

|γ̇| =
√

2K ◦ TπQ ◦X1 ◦ k =
1

2m

√
2K ◦ Fφ ◦ k =

1
m

√
φ ◦ k = 1

(such a parametrization is called proper time).
The base integral curves of ImX1—which are the same as those of Im Γ|C (with

C := {v ∈ M : |v| = 1}), since TL ◦ Γ|C = X1 ◦ L—have been shown [3] to be the
(possible) life histories of the particle (i.e. the smooth curves of Q satisfying the standard
laws of relativistic dynamics [15] for a particle (m, e) living in (g,A)).

As to the whole family of integral curves of T , it is set up by precisely the orientation-
preserving reparametrizations of the integral curves of T1.

Indeed, let k and χ := k ◦ s be smooth curves in T ∗Q related to each other by a re-
parametrization s with derivative s′ > 0 (their tangent liftings are related to each other
by χ̇ = s′(k̇ ◦ s)). Then remark that Im k̇ ⊂ T1 , i.e. (6.4), is equivalent to Im χ̇ ⊂ T , i.e.

φ ◦ χ = m2, χ̇ = Λ(Xφ ◦ χ)

with Λ > 0, if s′ = 2mΛ.
The above result shows that the integral curves of T just determine a family of oriented

orbits in T ∗Q—carrying no distinguished parametrization—which project down by πQ
onto the possible world-lines (i.e. the oriented orbits of the possible life histories) of the
particle.

7. Concluding remarks. In conclusion, we have been drawing a methodological
line—based on the use of Legendre morphism—for deducing, in geometric terms, the
Hamiltonian side of dynamics from the Lagrangian side.

A focal result is to have shown, by following such a line, that the geometric structure
of Lagrangian dynamics is shared—in the almost-regular case—by Hamiltonian dynam-
ics, both being governed by the Hamilton-Dirac equations D and D1 (on suitable Dirac
manifolds) restricted to second-order equations via intersection with T 2Q and T2 , respec-
tively.

For regular systems, we have seen that the second-order character of the equations
D∩T 2Q and D1∩T2 is hidden by their reducing to D and D1, which automatically satisfy
D ⊂ T 2Q and D1 ⊂ T2.

For singular systems, the Hamilton-Dirac equations D and D1 may not fulfil the above
second-order conditions (as in fact occurs in Relativity) and then fail to express—on their
own—the laws of dynamics.
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A consequence is that, on the one hand, the Hamilton-Dirac equations are the common
area where problems of Lagrangian and Hamiltonian dynamics—such as integrability,
symmmetries and conserved momentum mappings, reductions and reconstructions—can
firstly be treated, but, on the other hand, all of the possible results should then be adapted
to real dynamics by taking the restriction to second-order into due consideration.

The second-order character of the equation of dynamics—well known, in a form or
another, on the Lagrangian side—had never been highlighted before (as far as we know)
on the Hamiltonian side.

A further confirmation of such a character comes from the analysis of the Tulczyjew’s
equation T := Im (α−1 ◦ dL) = Im (β−1 ◦ h), which has proved to be the law of dynamics
for every (regular or singular) Lagrangian. As T ⊂ T2, the Tulczyjew equation is indeed
second-order, and that is why—in the almost-regular case—it turns out to be equivalent
to D1 ∩ T2 rather than D1.

Owing to its generality and to the fact of being independently generated by the
Lagrangian and the corresponding Hamiltonian (through α and β, respectively), the Tul-
czyjew equation is the ideal candidate for being assumed—in some extended version—as
the basic principle of both Lagrangian and Hamiltonian dynamics for more general types
of constrained systems (described, e.g., by singular Lagrangians, nonpotential force fields,
nonholonomic constraints and constraint reactions), as will be shown in a forthcoming
paper [4].
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