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1. Introduction. One of the key problems of the 18th century dynamics was finding
procedures which could facilitate the integration of systems of Newtonian equations of
motion. These procedures turned out to be especially effective and universal for systems
which admitted integrals of the motion. Some dynamical variables could then be elimi-
nated from the system and, as a result of it, the number of equations left to be solved
was adequately reduced. In the 19th century a new problem emerged in this context. If
the original Newtonian equations were Euler-Lagrange equations of a certain Lagrangian
L, was it always true that the reduced equations could be brought to an Euler-Lagrange
form? And if yes, how could one find the new Lagrangian in terms of the original one?
In the particular case when the existence of a first integral was a consequence of the fact
that one of the generalized coordinates was a cyclic variable of the original Lagrangian,
the question was answered positively by Routh in 1876.

About ten years later Jacobi studied another problem of this kind, by then yet un-
solved on the variational level. It was the problem of a Lagrangian that did not depend
explicitly on the time t. Jacobi showed that with the help of the energy conservation law
the original action could be reduced to another action which described only the spatial
path of the dynamical system. His original proof was based on a very general variational
principle that for the first time had been formulated by L. Euler, who called it the Mau-
pertuis principle, and later was developed by J. L. Lagrange, about one hundred years
before Jacobi’s work. A result of the choice of the method of the original proof was that
in many text-books the Jacobi principle was presented under the name of the Maupertuis
principle, without even making any mention to the original principle of that name at all.
According to Arnold [1], Jacobi complained that his principle was presented, in almost
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all text-books known to him, in a non-understandable way. I agree with Arnold’s opinion
that this tradition is continued up to the present. The aim of this lecture is to present
some of the results of my work on this subject, which in my opinion shed new light on
the Jacobi principle.

Section 2 contains a short review of the Routh procedure of eliminating a cyclic
variable from the Lagrange equations of motion. This review is presented in order to fix
the framework which will be employed in the next sections. The procedure described here
is just a simple by-product of the general Routh formalism whose details may be found
in some texts on analytical dynamics; for further references see e.g. [4].

In Section 3 the case is studied of a dynamical system whose Lagrangian L does not
depend explicitly on time. It is demonstrated that the action of the system entering the
usual Hamilton principle can be brought to a form which enables one to employ the
Routh procedure, in order to eliminate from the action integral the piece of information
about the temporal evolution of the system. As a result of such elimination, the Hamilton
principle is reduced to the Jacobi principle whose Euler-Lagrange equations determine
only the spatial trajectories of the system.

Since the Jacobi Lagrangian is a homogeneous function of degree one in the velocities,
in Section 4 first a review of some properties of the Euler-Lagrange equations with a
general homogeneous Lagrangian of such a kind is presented. In particular, the freedom
of lifting solutions from the configuration space to the space of states is discussed. Next,
conclusions of this discussion are used to interpret the procedure of solving the complete
dynamical Lagrange equations as lifting the trajectories that are solutions to the Jacobi
problem from the configuration space to world lines in the space of states.

In Section 5 the same problem of lifting geometrical trajectories to world lines is
presented on the level of variational principles. Technically, it resolves itself to the inverse
Jacobi problem discussed in [2] which solves the following question. Given any Lagrange
function LH homogeneous of degree one in the velocities and a function G of positions
and velocities, how one can find a Lagrange function L such that G is its energy function
and LH its Jacobi Lagrangian?

In the text which follows, an abbreviated notation is used, in accordance with which
expressions like e.g. (qi, q̇j) stand for sequences (q1, q2, . . . , qn, q̇1, . . . , q̇n) or, depending
on ranges in which the indices vary, for some other sequences of a similar type. The
summation convention is employed throughout the article.

2. Routh’s procedure. Let us consider a dynamical system whose action is

(2.1) W [qα] =

t2∫

t1

L(qi(t), q̇β(t), t) dt,

where t is the time, α, β = 0, 1, . . . , n and qα = qα(t) is the motion of the system in a
configuration space Qn+1. It is assumed that the Lagrangian L is non-degenerate and the
variable q0 is cyclic, i.e., ∂L/∂q0 = 0. The corresponding conservation law

(2.2) p0 =
∂L
∂q̇0 = Γ(q̇0(t), qi(t), q̇j(t), t) = const,
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where i, j = 1, 2, . . . , n, permits us to reduce the number of independent variables to
(qi, q̇j) and, moreover, to demonstrate that the new dynamical system, described by
the reduced set of variables, has again a Lagrangian which can be found as a result
of the Routh procedure. In accordance with this procedure, Eq. (2.2) should at first
be solved with respect to the variable q̇0, which leaves us with a relationship q̇0(t) =
φ(p0, q

i(t), q̇j(t), t), where p0 is an arbitrary, but fixed, value of the integration constant
from (2.2). Next, the Routh function Rp0 , parametrized by the values of p0, ought to be
determined as

(2.3) Rp0(qi, q̇j , t) = L(qi, φ(p0, q
j , q̇k), q̇l, t)− q̇0p0.

In virtue of (2.2), the function Rp0 does not depend on q̇0. Furthermore, because of (2.2),
the following equalities are valid:

∂Rp0

∂qi
=
∂L
∂qi

,
∂Rp0

∂q̇i
=
∂L
∂q̇i

.

Thus the action of the reduced dynamical system is

(2.4) Wp0 [qi] =

t2∫

t1

Rp0(qi(t), q̇j(t), t)dt,

where p0 ought to be treated as a parameter. The Hamilton principle based on this action
leads one to the Euler-Lagrange equations on qi = qi(p0, t). Knowing explicitly a solution
of these equations, the corresponding function q0 = q0(p0, t) can then be determined by
solving the differential equation

(2.5) q̇0 = −∂Rp0

∂p0
= φ̃(p0, t),

where the function φ̃(p0, t) is a solution of the equation

(2.6) Γ(φ̃(p0, t), qi(t), q̇j(t), t) = p0

into which the now known functions qi(t) and q̇j(t) should be substituted.

3. The Jacobi variational principle. Let us consider now a class of non-degenerate
Lagrangians L(qi, q̇j) which do not explicitly depend on time. In such a case, as is known,
the Lagrange equations imply the energy conservation law G(qi, q̇j) = E, where

(3.1) G(qi, q̇j) = q̇i
∂L

∂q̇i
− L

is the energy function, and E is the energy constant.
In order to be able to apply the Routh formalism to the present case, we transform

the original action

(3.2) W [q] =

t2∫

t1

L(qi(t), q̇j(t))dt,
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which defines a dynamical system of n degrees of freedom, to the form

(3.3) W [θ, xi] =

τ2∫

τ1

Λ(xi(τ), θ′(τ), x′j(τ))dτ,

which in turn defines a system of n+1 degrees of freedom described by n+1 independent
variables (θ, xi) which are functions of a parameter τ . Primes are used in (3.3) to denote
differentiation with respect to τ . A transformation of this kind can be achieved just by
assuming that the time t is a monotonic function of another parameter τ , i.e. t = θ(τ),
with θ′(τ) 6= 0 everywhere. Introducing then the notation

(3.4) xi(τ) = qi(θ(τ)), and, as a result, x′
i(τ) = q̇i(θ(τ)) θ′(τ),

we can easily rewrite the action (3.2) in the form (3.3), where

(3.5) Λ(xi(τ), θ′(τ), x′j(τ)) = L

(
xi(τ),

x′j(τ)
θ′(τ)

)
θ′(τ).

The new Lagrangian Λ is a homogeneous function of degree one in the variables
(θ′, x′i). The appropriate Hamilton variational principle will thus lead us to n independent
differential equations of motion regardless of the fact that the system is described by n+1
dynamical variables. The Lagrangian Λ does not explicitly depend on θ. Therefore, this
variable plays here the same role as q0 does in the case of the Lagrangian L of the previous
section. Now, due to Eqs. (3.5) and (3.1), the counterpart of Eq. (2.2) reads as

p0 =
∂Λ
∂θ′

(3.6)

= L

(
xi(τ),

x′j(τ)
θ′(τ)

)
− x′k(τ)

θ′(τ)
∂L

∂q̇k

(
xi(τ),

x′j(τ)
θ′(τ)

)
= −G

(
xi(τ),

x′j(τ)
θ′(τ)

)
.

Comparing Eq. (3.6) with (2.2), we see that now Γ = Γ̃(θ′, xi, x′j) = −G(xi, x
′j

θ′ ), and as
a result of the conservation law G(qi, q̇j) = E, we have p0 = −E. Therefore, in order to
find the generalized velocity q̇0 = θ′ as a function of p0 and of the remaining dynamical
variables xi, x′j , we have to solve the equation

(3.7) G

(
xi(τ),

x′j(τ)
θ′

)
= E

with respect to θ′.
Unlike L, the homogeneous Lagrangian Λ is degenerate. This fact, however, is of no

importance in the special case when the Routh formalism is used for the reduction of a
single dynamical variable. The solvability of Eq. (2.2) is just assured by the non-vanishing
of the partial derivative of Γ with respect to q̇0. Now to check whether Eq. (3.7) is solvable
with respect to θ′, we have to compute at first ∂Γ̃/∂θ′. Using the definition (3.1) of G
and that of Γ̃(θ′, xi, x′j), we obtain

(3.8)
∂Γ̃
∂θ′

=
1
θ′

∂2L

∂vi∂vj
vivj .

For real motions, the non-vanishing of the expression on the right hand side above is a
sufficient condition that the original action (3.2) attain its extremum. This condition was
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already implicitly assumed while posing the Hamilton principle for the action (3.2). Now
the non-vanishing of (3.8) implies the existence of a function φE such that the value of
the variable θ′ given by the equation

(3.9) θ′(τ) = φE(xi(τ), x′j(τ))

is an algebraic solution to Eq. (3.7). For some Lagrangians L which occur in physical
problems the corresponding functions φE can be found explicitly.

The implicit-function theorem applied to Eq. (3.7) permits us to compute the deriva-
tives ∂φE

∂x′i as
∂φE

∂x′i
= φE

∂G

∂vi

( ∂G
∂vj

x′
j
)−1

,

which implies

(3.10)
∂φE

∂x′i
x′
i = φE .

Thus the function φE determined by Eq. (3.7), due to the implicit-function theorem
and Euler’s identity, is homogeneous of degree one in the variables x′i. This in turn
implies that the relation (3.9) is covariant with respect to reparametrizations τ → τ ′.

As was already said, the Lagrangian Λ does not explicitly depend on θ. Now we are
prepared to transform Λ to a corresponding Routh function, denoted here by LE ,

LE(xi, x′j) = Λ(xi, φE(xj , x′k), x′l)− p0 φE(xi, x′j)

=
[
L

(
xi,

x′j

φE(xk, x′l)

)
+ E

]
φE(xr, x′s)(3.11)

= x′
i
[
∂L

∂q̇i

(
xk,

x′l

φE(xr, x′s)

)]
.(3.12)

In accordance with Section 1, the Lagrangian LE describes a reduced system which
resulted from eliminating the information about the time evolution from the original sys-
tem with the Lagrangian L. The variables xi that remain describe trajectories (i.e. spatial
paths) of the system. The first Lagrangian of such type was, in a special case, found by
Jacobi. Therefore, LE is called here the Jacobi Lagrangian of a Lagrangian L which does
not depend explicitly on time t. Due to the homogeneity of the function φE , it follows
from the definition (3.11) that LE is a homogeneous function of degree one in the variables
x′i. To my knowledge, this derivation of LE was never published before.

4. Lagrange equations of a homogeneous Lagrangian. Let us for a moment
turn over to a review of some of the peculiarities of a Hamilton-like principle formulated
for a Lagrangian LH = LH(xi(τ), x′j(τ)) which is a homogeneous function of degree one
in the variables x′j .

Upon making the usual assumptions about the variations δxi(τ), the action

(4.1) WH [xi] =

τ2∫

τ1

LH(xi(τ), x′j(τ))dτ
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leads us to the system of Euler-Lagrange differential equations

(4.2)
δLH
δxi

=
∂LH
∂xi

− d

dτ

(
∂LH

∂x′i

)
= 0

which, however, due to the homogeneity of LH , are not independent of one another, for
their r.h. sides satisfy a strong identity x′i δLHδxi ≡ 0. In applications, one usually assumes
that the rank of the Hesse matrix of the Lagrangian LH equals n− 1, which means that
the r.h. sides of Eqs. (4.2) do not satisfy any further strong identities of a similar kind.

A consequence of this assumption is that the solution to an initial value problem of
the equations of motion (4.2) is not unique, but can be expressed in terms of one arbitrary
function. This can be more precisely stated as

Lemma. If a set of n functions xi : R ⊃ [a, b] → R, i = 1, . . . , n, is a solution of
Eqs. (4.2), in which LH = LH(xi, x′j) is a homogeneous function with respect to x′j of
degree one, and the Hesse matrix

[
∂2LH
∂x′i∂x′j

]
is of rank n − 1, then the set of composite

functions qi = xi ◦ ψ, where ψ is a C2 function ψ: [a, b] → [a′, b′] such that ψ′ 6= 0, is
also a solution of Eqs. (4.2).

Proof. This follows by inspection.

Let us discuss now the procedure of integrating the Lagrange equations (4.2). The
discussion may be held in either of the following two equivalent ways:

4.1. A complete elimination of the parameter. If a certain solution of Eqs. (4.2) cor-
responding to some initial conditions is found explicitly in terms of a parameter τ as
xi = xi(τ), then, by eliminating the parameter τ from these n equations, we obtain n−1
relations of the form FK(x1, . . . , xn) = 0, where K = 1, . . . , n−1. By virtue of the lemma,
any other solution of (4.2), which satisfies the same initial conditions as the previous one,
is of the form qi(τ) = xi(ψ(τ)). Because the functions xi(·) are here the same as before,
by eliminating now ψ(τ), we must derive the same n − 1 relations as in the first case,
which can be also written in a more universal form

(4.3) FK(q1, . . . , qn) = 0, where K = 1, . . . , n− 1.

Here the arguments qi of FK should be interpreted as coordinates of points in a config-
uration space Qn. A choice of n − 1 variables qK , for K = 1, . . . , n − 1, from all the n
variables qi such that the Jacobian

∂(F1, . . . , Fn−1)
∂(q1, . . . , qn−1)

6= 0

permits one to solve Eqs. (4.2) for qK , K = 1, . . . , n − 1, in terms of the free variable
qn: qK = qK(qn). These last equations determine a curve in a region of the configuration
space Qn in which all the steps described above are permissible. The equations (4.3),
on the other hand, render a global description of a trajectory P1, understood as a one-
dimensional locus of points in Qn.

Supplementing the n− 1 equations (4.3) by an equation of the form

(4.4) Fn(q1, . . . , qn) = τ,
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where Fn: Rn → R is a smooth function chosen in such a way that

∂(F1, . . . , Fn)
∂(q1, . . . , qn)

6= 0,

and besides that chosen arbitrarily, we can solve the system of n Eqs. (4.3) and (4.4) for qi

in terms of τ , obtaining qi = qi(τ). Thus, any function Fn that satisfies the assumptions
just made above introduces, with the aid of Eq. (4.4), a parameter description of a
family of trajectories {P1} which are labelled by sets of initial data posed on differential
equations (4.2). A parameter description of a family of parametrized curves is called
integrable iff for any two curves qi1(τ1) and qi2(τ2) from the family, the equality qi1(τ1) =
qi2(τ2) for i = 1, . . . , n implies τ1 = τ2. Evidently, a parameter descripton imposed by a
foliation of the type (4.4) is integrable. An integrable parameter description of a family
of trajectories {P1} can be used to define a mapping {P1} → Qn × R, defined for every
parametrized curve qi(τ) from the family as (q1(τ), . . . , qn(τ)) 7→ (q1(τ), . . . , qn(τ), τ).
Any composed mapping, defined as τ 7→ (q1(τ), . . . , qn(τ), τ), defines a parametrized
curve in Qn×R. One introduces, as usual, by means of reparametrizations an equivalence
relation in the set of parametrized curves in Qn × R. After dividing the set by this
equivalence relation, one obtains a set of oriented loci of points in Qn × R which are
called world lines over corresponding trajectories from the the family {P1} ⊂ Qn. In this
context, the space Qn×R is called sometimes the space of states 1) over the configuration
space Qn. The Jacobi action principle (4.1) when considered alone, or, more precisely,
its Lagrange equations (4.2) together with appropriate initial conditions, allow us to
determine only the set of trajectories {P1} in Qn. The foliation (4.4) introduces an
additional piece of information that after all steps described above lifts every trajectory
from {P1} to a corresponding world line.

4.2. The lift of trajectories on the level of differential equations. The starting point of
the procedure of lifting the trajectories, which was described at the end of the previous
subsection, was based on the knowledge of solutions (4.3) of differential equations. An
analogous procedure can also be performed by starting from the differential equations
(4.2) directly. To this end, one should reduce the number of Eqs. (4.2) by one, and take
into account only n− 1 equations

(4.5)
δLH
δxK

= 0, where K = 1, . . . , n− 1.

The equations above ought then be supplemented by an n-th equation of the form

(4.6) φ(xi(τ), x′j(τ)) = 1,

where φ is an arbitrary smooth function that satisfies the condition

(4.7) det




∂φ(xk, x′l)
∂x′1 . . . ∂φ(xk, x′l)

∂x′n

. . . . . . . . .
∂2LH

∂x′K∂x′1 . . . ∂2LH
∂x′K∂x′n

. . . . . . . . .
∂2LH

∂x′n−1∂x′1 . . . ∂2LH
∂x′n−1∂x′n



6= 0.

1)According to Synge’s terminology, see [6].
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The system of equations (4.5) and (4.6), together with appropriate initial conditions,
determines then a unique solution xi = xi(τ). A freedom of choice of the function φ

in (4.6) corresponds to the freedom of reparametrization of the solution. There exists a
canonical choice of parametrization, which does not depend on any external element to the
dynamics defined by Eqs. (4.1). It consists in taking for the function φ in (4.6) the square
of the homogeneous Lagrangian LH which defines the action (4.1). The corresponding
parametrization of the solution of (4.2) is then its Finslerian arc length, see e.g. [5]. In
general, the parametrizations introduced in the way described in the present subsection
are non-integrable.

4.3. The Jacobi Lagrange equations. Let us return to the case when LH is equal to
the Jacobi Lagrangian LE . The action (4.1) takes then the form

(4.8) WE [xi] =

τ2∫

τ1

LE(xi(τ), x′j(τ))dτ.

Now the fact that the rank of the Hesse matrix of the Jacobi Lagrangian is equal to n−1
need not be assumed any more, because it is a consequence of the original dynamical
Lagrangian L being a non-degenerate one (a proof can be found in the Appendix of [2]).
If all the information we have or would like to make use of is only the Lagrangian LE ,
then one should take into account that the lemma formulated at the beginning of Section
4 applies also to solutions of the Jacobi Lagrange equations

(4.9)
δLE
δxi

=
∂LE
∂xi

− d

dτ

(
∂LE

∂x′i

)
= 0.

These equations, together with appropriate initial conditions, can thus, in virtue of the
lemma, determine only trajectories P1 described either by Eqs. (4.3) or in the form
qK = qK(qn) for K = 1, . . . , n− 1.

In the literature, mainly for the so-called natural Lagrangians, also the world lines
over the trajectories were considered, comp. e.g. [3] or [7], which were parametrized by
their Jacobi arc length. The description of these world lines suffers certain anomalies. In
Section 5, Example 5.2, physical reasons for such an anomalous behaviour are exhibited.

Usually, besides knowing LE , we have also at our disposal the knowledge of the final
form of the energy function G(qi, q̇j) and/or of the function φE(xi, x′j), defined in an
implicit form by Eq. (3.7). In such a case, in addition to the trajectory, one can find the
complete motion of the system determined by the original Lagrangian L, corresponding
to a chosen value E of the energy constant. To that end, one has to complete the Jacobi
Lagrange equations (4.9)—or, to be more precise, the n− 1 equations arbitrarily picked
out from the system (4.9)—by an equation of the type (3.9). In this connection, there
are two equivalent procedures that permit us to find the motion qi(t) of the dynamical
system under consideration.

The first of them consists in taking any particular solution xi(τ) of (4.9) which satisfies
the required initial conditions at τ = τ0. One substitutes then this solution, together with
its first derivatives, for the arguments of the function φE , obtaining a function φ̃E(τ).
The integral
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θ(τ) =

τ∫

τ0

φ̃E(τ) dτ

determines then a function θ such that in accordance with the Jacobi reduction procedure
t = θ(τ), and qi(t) = xi(θ−1(t)) is the motion of the original dynamical system with the
action (3.2). At t0 = τ0 this motion satisfies initial conditions which can be computed
from those fulfilled by the solution xi(τ).

The second procedure starts by observing that for τ = t, θ′(τ) = 1, which implies
that xi = qi, and thus

(4.10) φE(qi(t), q̇j(t)) = 1.

The equations (4.9) are valid for any choice of parametrization. So we can write them
for τ = t, replace 2) the arguments in LE by qi and q̇j , and select from the so prepared
equations (4.9) any 3) n− 1 equations

(4.11)
∂LE
∂qK

− d

dt

(
∂LE
∂q̇K

)
= 0, where K = 1, . . . , n− 1.

By virtue of the Jacobi reduction procedure, one can easily prove that

(4.12) det




∂G
∂q̇1 . . . ∂G

∂q̇n

. . . . . . . . .
∂2LE
∂q̇K∂q̇1 . . . ∂2LE

∂q̇K∂q̇n

. . . . . . . . .
∂2LE

∂q̇n−1∂q̇1 . . . ∂2LE
∂q̇n−1∂q̇n



6= 0.

Since ∂φE
∂q̇j is proportional to ∂G

∂q̇j , it is evident that the condition (4.7) remains valid
after we replace in it φ by φE and LH by LE . Thus the initial value problem posed
on the system of n equations (4.10) and (4.11) has a unique solution qk = qk(t) which
determines the motion of the dynamical system with the Lagrangian L(qi(t), q̇j(t)) not
depending explicitly on the Newtonian time t. Of course, in the procedure just described,
the replacement of the constraint condition (4.10) by the condition

(4.13) G(qi(t), q̇j(t)) = E

would not have any influence upon the final solution. From a physical point of view, the
pair (qi(t), t) geometrically represents a world line in the space of states Qn×R in which
the unit taken along the real axis R is equal to the unit of the Newtonian time t. In
the space of states the parameter description of world lines with the aid of t is evidently
integrable.

The Jacobi action principle (4.8), which implies the Jacobi Lagrange equations (4.9),
permits us to find only a geometric trajectory being a projection of the world line (qi(t), t)
on the configuration spaceQn. The described above procedure of integrating the equations

2)Of course, while making such a replacement, we are not allowed to employ condition (4.10)
before performing all the differentiations in the Lagrange equations (4.2). The substitution, for
instance, of Eq. (4.10) into (3.11) would lead to a nonsense.

3)It ought to be remembered that any equations so selected are independent of one another
due to the fact that the Hesse matrix of LE is of rank n− 1.
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(4.9) with the help of the constraint condition (4.10), or (4.13), can be viewed upon as
lifting the trajectory in Qn to a complete motion qi = qi(t). Such a lift was described
here on the level of solving the differential equations.

Although, in principle, one could solve the Lagrange equations with the primary
Lagrangian L(qi, q̇j) directly, in practice very often the procedure described above is
the only workable one. For instance, while solving the Kepler problem, one finds first
trajectories of the motion which one lifts then to complete motions by solving the Kepler
equation.

5. The inverse Jacobi problem. The problem of lifting trajectories to world lines,
discussed in the previous section on the level of differential equations, has its counterpart
on the variational level. In a coordinate dependent way, which is very convenient for the
derivation of its solution, one can formulate the problem in the following way.

Suppose a Lagrange function LH(xi(τ), x′j(τ)) homogeneous of degree one in the
variables x′i is given. The arguments of LH are trajectories in a configuration space Qn
described in an arbitrary parametrization as xi = xi(τ) together with the vectors x′j(τ)
which are tangent to these trajectories. The following questions may then be asked.
i. What data should be added to the knowledge of LH , in order to be able to lift tra-

jectories xi = xi(τ) to motions qi = qi(t) determined by a Lagrangian L(qi(t), q̇j(t))
such that the given homogeneous Lagrangian LH is its Jacobi Lagrangian LE?

ii. What is the algorithm that enables us to determine L in terms of an arbitrarily given
LH and the necessary additional data that make the solution to the problem unique?
A problem of this kind was formulated and solved in [2] under the name of inverse

Jacobi problem. Now I would like to review the solution and add some comments on it.
A suggestion following from Section 4.3 is that a good candidate for the above-

mentioned additional data would be another arbitrarily assigned function G(qi, q̇j) which
is the hoped-for energy function of the yet unknown Lagrangian L. It is here simply called
the energy function even if it does not yet have anything in common with any energy
conservation law. After introducing the velocity variable vi = q̇i(t), we see that relation
(3.1) turns into a partial differential equation

(5.1) v1 ∂L

∂v1 + . . .+ vn
∂L

∂vn
− L = G

for an unknown function L(vi). In Eq. (5.1) G = G(vi) is treated as a given function,
and the dependence of L and G on qi is here suppressed since from the point of view
of the differential equation (5.1) the variables qi ought to be treated as parameters.
Equation (5.1) determines the class of Lagrangians L such that every one of them has
the same energy function G. Applying the standard method of integration of partial
linear differential equations, each Lagrangian L from that class is found in [2] in terms
of a quadrature as a functional of the energy function G. This result is achieved in the
following way. Equation (5.1) is transformed to a linear homogeneous equation

(5.2) v1 ∂V

∂v1 + . . .+ vn
∂V

∂vn
+ (L+G)

∂V

∂L
= 0,

where L plays the role of an n + 1-th independent argument of a function V which
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implicitly defines L as a function of vi:

(5.3) V (L, v1, . . . , vn) = 0.

As is shown in [2], the characteristic equations to Eq. (5.2) admit a system of independent
first integrals

(5.4)
ψ0(vi, L) :=

1√
vsvs

[
L−
√
vjvj I

(
vi√
vkvk

,
√
vlvl

)]
= c0,

ψi(vj) :=
vi√
vkvk

= ci, where I(ci, ρ) =
∫
G(ciρ)
ρ2 dρ.

In accordance with the general method of solving partial differential equations of the
first order, the general solution of Eq. (5.2) is of the form

(5.5) V = V

(
ψ0(vi, L), ψ1(vi), . . . , ψn(vi)

)
,

where V is an arbitrary function of n + 1 variables. Therefore, from Eq. (5.3) it follows
that the Lagrangian L(qi, vj) determined by a given energy function G(qi, vj) is

(5.6) L(qi, vj) =
√
vsvs I

(
qi,

vj√
vkvk

,
√
vlvl

)
+ Λ(qi, vj),

where Λ(qi, vj) is an arbitrary function homogeneous of degree one in the variables vj .
This is a general formula that determines a class of Lagrangians L describing a conserva-
tive dynamical system in terms of an a priori assigned energy function G of the system
and an arbitrary homogeneous Lagrangian Λ. Formula (5.6) could also be helpful when
one would like to decide whether a given conservative dynamical system is a Lagrangian
one.

To solve the inverse Jacobi problem, we have to remove the arbitrariness of Λ by
making use of the requirement that a given homogeneous Lagrangian LH(xi, x′j) be the
Jacobi Lagrangian corresponding to the Lagrangian L determined by Eq. (5.6).

In order to be able to use the definition (3.11) of LE , we have to find first the function
φE by solving the equation

(5.7) G

(
xi,

x′j

φE

)
= E,

where G is now the freely given energy function that was used in Eqs. (5.1) or (5.2)
and E is an arbitrary constant. Then, after taking into account that the function Λ is
homogeneous of degree one in the second set of its arguments, from (5.6) we obtain

(5.8) L

(
xi,

x′j

φE(xk, x′l)

)

=
1

φE(xr, x′s)

[√
x′qx′qI

(
xi,

x′j√
x′kx′k

,

√
x′lx′l

φE(xm, x′n)

)
+ Λ(xi, x′j)

]
.

We substitute now the expression (5.8) just computed into formula (3.11) on the r.h. side
of which we replace LE by LH . All of this gives us an equation
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(5.9) LH(xi, x′j) =
√
x′sx′s I

(
xi,

x′j√
x′kx′k

,

√
x′lx′l

φE(xm, x′n)

)
+ Λ(xi, x′j) + E φE(xi, x′j)

which we solve for the unknown function Λ

(5.10) Λ(xi, x′j) = LH(xi, x′j)−
√
x′sx′s I

(
xi,

x′j√
x′kx′k

,

√
x′lx′l

φE(xm, x′n)

)
−E φE(xi, x′j).

After changing the names of the variables (xi, x′j) to (qi, vj), we substitute the expression
(5.10) for Λ into (5.6), obtaining

L(qi, vj) =
√
vsvs

[
I

(
qi,

vj√
vkvk

,
√
vlvl

)
− I
(
qi,

vj√
vkvk

,

√
vlvl

φE(qm, vn)

)]
(5.11)

+ LH(qi, vj)− E φE(qi, vj).

The formula above renders us a unique solution 4) of the inverse Jacobi problem.

Remark. Because both the energy conservation law G((qi(t), q̇j(t)) = E and the
Eq. (4.10) equivalent to it are weak identities, i.e. satisfied only by the solutions of the
Lagrange equations, one must not make use of them in the Lagrangian (5.11), and in its
Lagrange equations one may apply them only after carrying out all the differentiations
which occur there.

Example 5.1. Natural dynamical systems. These are systems characterized by a
Lagrangian of the form

(5.12) L(qi, vj) =
1
2
gij(ql)vivj − V (ql).

The energy function (3.1) in this case is

(5.13) G(qi, vj) =
1
2
gij(ql)vivj + V (ql),

and Eq. (5.7) leads us to the following solution:

(5.14) φE(xi, x′j) =

√
gkl(xi)x′

kx′l

2(E − V (xj))
.

After substituting the function φE written above into Eq. (3.11), we obtain the Jacobi
Lagrangian

(5.15) LE(xi, x′j) =
√

2(E − V )gijx′ix′j

which is quoted in nearly every text-book on theoretical mechanics.

Example 5.2. The inverse problem to 5.1. Let us consider the case in which the
Jacobi Lagrangian (5.15) is known and is given in the form

(5.16) LH(xi, x′j) =
√
γijx′

ix′j ,

i.e. only the final form of the functions γij(xl) is known, and information about the
conformal factor is lost. What chances do we have to reconstruct an original Lagrangian

4)Note that Eq. (53) in [2] which corresponds to the present Eq. (5.11) contains a misprint
a consequence of which is a totally false Eq. (54).
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L such that its Jacobi Lagrangian is given by Eq. (5.16)? One can try to choose the energy
function in the form (5.13). But even then one is left with a set of unknown functions:
gij(xl), V (xk), and with an unknown value of the energy constant. While keeping all these
quantities unknown, one still can substitute the energy function (5.13), the function φE in
the form (5.14), and the energy constant E into formula (5.11), and look for the outcome.
After some algebra, one obtains

(5.17) L(qi, vj) =
1
2
gij(ql)vivj − V (ql) +

√
γijvivj −

√
2(E − V )gijvivj .

Thus, taking into account the occurrence of unknown quantities in Eq. (5.17), there is a
large variety of Lagrangians L that determine the same Jacobi Lagrangian (5.16). The
requirement that L be natural decreases this variety to

(5.18) La(qi, vj) =
1
2
a γij(ql)vivj −

V (ql)
a

,

where each Lagrangian La is labelled by a non-vanishing arbitrary constant a. All the
Lagrangians La given by Eq. (5.18), each La for the energy constant being equal to E/a,
lead one to the same Jacobi Lagrangian (5.16). First by fixing the value of the energy
constant, i.e. by fixing a and E, one can assure the uniqueness of L.

The richness of the class of Lagrangians L to which a single Jacobi Lagrangian can
be lifted, when there is no other information left except for that given by Eq. (5.16),
accounts for singular behaviour of Jacobi Lagrangians of natural systems studied e.g. in
[3] or [7].

The last example indicates that the knowledge of the Jacobi Lagrangian LE , sup-
plemented even by some requirements of a general nature, is not sufficient for a unique
reconstruction of the original Lagrangian L. In accordance with Eq. (5.11) it is informa-
tion contained in the triple (LE(xi, x′j), G(qi, q̇j), E) that is equivalent to the original
dynamics described by the Lagrangian L(qi, q̇j).
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