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Abstract. We introduce an infinite-dimensional version of the Amann-Conley-Zehnder re-
duction for a class of boundary problems related to nonlinear perturbed elliptic operators with
symmetric derivative. We construct global generating functions with finite auxiliary parameters,
describing the solutions as critical points in a finite-dimensional space.

1. Introduction. Research in symplectic topology applied to mechanics has been
highly developed in the last two decades, mainly due to Arnol’d, Chaperon, Sikorav,
Viterbo and other authors. For example, a very important conjecture (Weinstein) on
the Calculus of Variations has been resolved by Viterbo [V1] in 1987 by using modern
topological symplectic techniques; he was able to show—as a consequence of a more
general theorem—that every compact energy surface admits at least one periodic orbit.
These techniques, arising on the topological side from Morse and Lusternik-Schnirelman
theory, and on the symplectic side from early works by Maslov and Hörmander in the
sixties, were developed e.g. by Libermann, Lichnerowicz, Marle, Weinstein and other au-
thors in geometry, but surely their crucial role in analytical mechanics has been exhaus-
tively investigated by Tulczyjew, see e.g. [T2], [T3]. Among many interesting applications
and results, we may recall the fruitful use of the symplectic arena in the theory of the
Hamilton-Jacobi equation, both in the geometrical mechanical framework—see the sem-
inal paper [T1] and the paper [B-T]—and as well as in the purely analytical one: by
using the global Hamilton principal function with parameters, Bardi and Evans [B-E] in
1984 were able, first, to give an explicit construction for the viscosity solution of a H-J
problem (i.e., ∂S/∂t +H(∂S/∂x) = 0, S(0, x) = σ(x)), for a p-convex Hamiltonian H(p),
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by means of an inf-sup procedure on the auxiliary parameters, an obvious—although non
trivial—analytical version of the well known stationarization method to describe the re-
lated Lagrangian submanifold, the geometrical solution of the same problem. Almost ten
years ago, Chaperon and Viterbo, see [V3], proposed a new global theory of solutions for
H-J equations: the so-called min-max solution, founded on symplectic topology and the
theory of the Lusternik-Schnirelman. Here one encounters a very intriguing fact, not yet
completely understood: sometimes, when e.g. the Hamiltonian function is not p-convex,
the viscosity solution and the min-max solution do not coincide.

In [V2], Viterbo proposed a version of the Amann-Conley-Zehnder Reduction (see
[A-Z]) in order to construct global generating functions of the (wave-front) geometrical
solutions of H-J problems of the evolution type in the non-compact environment Q = Rn.
Whenever these generating functions are ‘quadratic at infinity’—here we do not enter into
details—then they are Palais-Smale functions, so the Lusternik-Schnirelman theory works
in order to find the min-max solutions. These techniques have recently been taken into
account and utilized to build global generating functions of the (space-time) geometrical
solutions for the above H-J problems [C3], a result well known whenever the Hamiltonian
system is integrable, see [T1], [C1], [C2].

In this paper, in Sec. 2, we recall the Amann-Conley-Zehnder reduction scheme in
Viterbo’s version and we construct the afore mentioned global generating function for
the wave-front Lagrangian submanifold of a H-J problem starting from the zero section.
In Sec. 3, we consider a simple infinite-dimensional system (Neumann boundary problem
for a scalar harmonic field) and we recall the (more or less standard) interpretation of
the functional of its variational formulation as a generating function with infinite auxil-
iary parameters. In Sec. 4, we consider a certain class of infinite-dimensional nonlinear
problems related to operators with symmetric derivative, having the structure of nonlin-
ear perturbation of an elliptic problem. Motivated by the above Amann-Conley-Zehnder
reduction, we construct global generating functions with finite parameters, describing
the solutions as critical points in a finite-dimensional space. (These techniques seems
to be comparable with a Liapunov-Schmidt reduction, although this last procedure is
rather different.) Notice now that this theory allows us to study the existence of solu-
tions by searching for critical points of a function defined on a finite-dimensional space:
if this function is Palais-Smale, the search can be performed, as already fruitfully done
in related subjects, by techniques from the Lusternik-Schnirelman theory.

I gratefully thank Włodzimierz Marek Tulczyjew, whose relevant experience has been
transmitted during many enriching and illuminating conversations which allowed the
maturation of several geometrical ideas of this and other papers.

2. Global generating functions with finite auxiliary parameters for evolu-
tive Hamilton-Jacobi problems

2.1. The Hamilton-Helmholtz functional. In this section we sketch an application of the
Amann-Conley-Zehnder reduction, in Viterbo’s version, in order to see the construction
of global generating functions describing the Lagrangian wave-front set (at the time
t = T > 0) related to the evolutive Hamilton-Jacobi equation and starting at t = 0
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(for simplicity, and without loss of generality) from the zero-section Λ0 of T ∗Rn, Λ0 =
{(q, p) ∈ T ∗Rn : q ∈ Rn, p = 0}:

∂S

∂t
(q, t) +H

(
t, q,

∂S

∂q
(q, t)

)
= 0, S(q, t)

∣∣
t=0 ≡ 0.

Let us consider the set of curves

Γ := {γ(·) = (q(·), p(·)) ∈ H1,2([0, T ], R2n) : p(0) = 0}.
By the Sobolev imbedding theorem, H1,2((0, T ), R2n) ↪→ C0([0, T ], R2n), and it is self-
evident that the set Γ has a natural linear space structure, and then TγΓ = Γ, for all γ ∈ Γ.

An equivalent way of describing the curves of Γ is to assign the q-projection of the
end point, q(T ) ∈ Rn, and the velocity γ̇, for each s ∈ [0, T ], of the curve γ by means of
a function φ ∈ L2. One then has the following simple

Lemma 1. For all φ ∈ L2 set φ = (φq, φp). The map g,

g : Rn × L2 → Γ, (q(T ), φ) 7→ g(q(T ), φ)(s) :=
(
q(T )−

∫ T

s

φq(r) dr,
∫ s

0
φp(r) dr

)
,

is a bijection.

We recall that the flow Φs = Φs,0XH , Φ0,0
XH

= idR2n , related to Hamilton’s equations
γ̇ = J∇H, transforms Lagrangian manifolds into Lagrangian manifolds: Λs = Φs(Λ0).
We call Λ = ΛT = ΦT (Λ0) the Lagrangian wave-front set at the time T > 0.

The map

A : Γ→ R, γ 7→ A[γ] :=
∫ T

0
[p(s) · q̇(s)−H(s, q(s), p(s))] ds

is the action functional of the Hamilton-Helmholtz variational principle related to the
Hamiltonian H. By a simple direct computation, the following lemma allows us to regard
the action functional A as a generating function of ΛT with infinite parameters (in L2).

Lemma 2.2. The map

W := A ◦ g : Rn × L2 → R, (q(T ), φ) 7→W (q(T ), φ) := A ◦ g(q(T ), φ) = A[g(q(T ), φ)]

generates ΛT , that is:

ΛT =
{

(q(T ), p(T )) : q(T ) ∈ Rn, p(T ) =
∂W

∂q(T )
(q(T ), φ),

DW

Dφ
(q(T ), φ) = 0

}
.

2.2. Cut-off decomposition of Fourier expansions and fixed point. For every φ ∈ L2

let us consider the Fourier expansion

φ(s) =
∑

k∈Z
φk e

i 2πk
T s.

For each fixed m ∈ N let us consider the projection maps on the basis {ei 2πk
T s}k∈Z of L2,

Pmφ(s) :=
∑

|k|≤m
φk e

i 2πk
T s, Qmφ(s) :=

∑

|k|>m
φk e

i 2πk
T s.

Clearly,
PmL

2 ⊕QmL2 = L2,

and for φ ∈ L2 we will write u := Pmφ and v := Qmφ.
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Remark 2.1. The idea for proving existence of a generating function with finitely
many parameters is to show that the ‘infinite’ tail Qmγ̇ of γ̇, for γ a curve in Γ solving
Hamilton’s equations, can be deleted from the expression of the action functional; in
other words, γ is completely determined by a suitable choice of its ‘finite’ part Pmγ̇, for
suitable (large) m ∈ N .

Lemma 2.3 (Lipschitz). For fixed q(T ) ∈ Rn and u ∈ PmL2, the map

QmL
2 → (Γ, || · ||L2) , v 7→ g(q(T ), u+ v)

is Lipschitz with

Lip(g) ≤ T

2πm
(1 +

√
2m).

Lemma 2.4 (Contraction map). Suppose that

supy∈R2n, s∈[0,T ]

∣∣∇2
yyH

∣∣ = C < +∞ (y := (q, p)).

For m large enough:
TC

2πm
(1 +

√
2m) < 1,

for every fixed q(T ) ∈ Rn and u ∈ PmL2([0, T ];R2n) the map:

QmL
2([0, T ];R2n)→ QmL

2([0, T ];R2n), v 7→ QmJ∇H(g(q(T ), u+ v))

is a contraction map.

By the Banach-Caccioppoli Theorem there exists one and only one fixed point
f(q(T ), u) for the above contraction map. By standard arguments one can easily see
that this fixed point depends smoothly on q(T ) and u, and one has

f(q(T ), u) = QmJ∇H(g(q(T ), u+ f(q(T ), u))).

It is crucial to observe that, if we solve the finite (say, algebraic) equation for u,

u = PmJ∇H(g(q(T ), u+ f(q(T ), u))),

and we sum the last two formulas, then the resulting equation

γ̇ = J∇H(γ)

implies that the curve γ = g(q(T ), u+f(q(T ), u)) solves the Hamilton canonical differen-
tial equations, and it starts from the zero section (so that γ ∈ Γ). Furthermore, we point
out that dim(PmL2([0, T ];R2n)) = 2n(2m+ 1) =: k(n,m).

To conclude, we must establish the following Theorem.

Theorem 2.1 (The finite-parameters generating function). The function

S : Rn ×Rk(n,m) → R,

(q(T ), u) 7→ S(q(T ), u) := A ◦ g(q(T ), u+ f(q(T ), u)) = W (q(T ), u+ f(q(T ), u)),

is a global generating function for Λ = ΦT (Λ0).

Proof. We write
∂S

∂u
(q(T ), u) =

DW

Dφ

(
Dφ

Du
+
Dφ

Dv

Df

Du

)



GLOBAL GENERATING FUNCTIONS 137

(note that Dφ
Du and Dφ

Dv are the projectors Pm and Qm respectively),

∂S

∂u
(q(T ), u) = −

∫ T

0
[Pm(Jγ̇ +∇H(γ))]|γ=g(q(T ),u+f(q(T ),u)) ds

−
∫ T

0
[Qm(Jγ̇ +∇H(γ))]|γ=g(q(T ),u+f(q(T ),u))

Df

Du
ds.

By the very construction of f(q(T ), u) the second integral vanishes, so

∂S

∂u
(q(T ), u) = −

∫ T

0
[Pm(Jγ̇ +∇H(γ))]|γ=g(q(T ),u+f(q(T ),u)) ds,

so that
∂S

∂u
(q(T ), u) = 0 is equivalent to [Pm(Jγ̇ +∇H(γ))]|γ=g(q(T ),u+f(q(T ),u)) = 0.

On the other hand,

∂S

∂q(T )
=

∂W

∂q(T )
+
DW

Dφ

Dφ

Dv

Df

Dq(T )
,

∂S

∂q(T )
=

∂W

∂q(T )
−
∫ T

0
[Qm(Jγ̇ +∇H(γ))]|γ=g(q(T ),u+f(q(T ),u))

Df

Dq(T )
ds,

hence
∂S

∂q(T )
(q(T ), u) =

∂W

∂q(T )
(q(T ), φ)|φ=u+f(q(T ),u).

Now it is easy to conclude that the pair (q(T ), φ) ∈ Rn × L2 satisfies
{
p(T ) = ∂W

∂q(T ) (q(T ), φ),
0 = DW

Dφ (q(T ), φ),

if and only if the pair (q(T ), u) ∈ Rn ×Rk(n,m), where

φ = u+ f(q(T ), u), so that u = Pmφ,

satisfies {
p(T ) = ∂S

∂q(T ) (q(T ), u),
0 = ∂S

∂u (q(T ), u).

3. Global generating functions with infinite auxiliary parameters for lin-
ear elliptic problems. In this section we interpret the functional J of the calculus of
variations for the Neumann boundary problem of the Laplace equation as a generating
function with “infinite parameters”. It describes a Lagrangian set drawing the physical
landscape related to the solutions of the problem.

In a bounded Stokesian set Ω ⊂ Rn we consider a suitable space H of functions
u : Ω → R (e.g., H1,2) and we take into account also a space of functions defined on
the boundary of Ω, B = B∂Ω, q(·) ∈ B, q : ∂Ω → R. We denote by T ∗B ∼= B × B the
(formal) cotangent bundle of B and the (candidate) generating function:

J : B ×H → R, (q, u) 7→ J(q, u) :=
1
2

∫

Ω
|∇u|2 −

∫

∂Ω
qu.
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We perform the following computation, in the sense of distributions:
∂J

∂u
(q, u)h =

∫

Ω
∇u · ∇h −

∫

∂Ω
qh,

=
∫

Ω
[∇ · (∇u h)−∆u h] −

∫

∂Ω
qh,

= −
∫

Ω
∆u h +

∫

∂Ω
(∇u · n− q)h.

Thus,
∂J

∂u
(q, u) = 0⇔

{
∆u = 0 in Ω,

∇u · n = q on ∂Ω.

Now we define

p =
∂J

∂q
(q, u)ψ =

∫

∂Ω
uψ.

Finally, the Lagrangian set Λ ⊂ T ∗B, which collects all the solutions of the Neumann
problems, is precisely defined by the generating function with infinite auxiliary parameters
u ∈ H given by the functional J :

Λ =
{

(q, p) ∈ T ∗B : p =
∂J

∂q
(q, u), 0 =

∂J

∂u
(q, u)

}
.

4. Global finite generating functions for nonlinear variational elliptic prob-
lems

4.1.Volterra-Vainberg systems. As in Sec. 3, let Ω ⊂ Rn be a Stokesian set, and
consider a suitable space H of functions u,

u : Ω 3 x 7→ u(x) ∈ Rk.
Later we will specify the structure of the function space. Consider a nonlinear operator

N : H → K.

For example, by thinking of a context like elasticity, setting

i) the function spaces:

H = C∞(Ω̄;Rk), K = C∞(Ω̄;Rk)× C∞(∂Ω;Rk),

ii) N (u): the ‘divergence’ operator acting on the stress, depending on ∇u (so that
N (u) is a second order differential operator), and

iii) for fixed q ∈ C∞(∂Ω;Rk),

we define the operator

H 3 u 7→ N(u) := (N (u),∇xu · n− q) ∈ K,
so the nonlinear equation N(u) = 0 is a (version of the) Neumann boundary problem on
the domain Ω.

Suppose the derivative of N is symmetric with respect to a nondegenerate bilinear
form 〈 , 〉 : K ×H → R,

〈N ′(u)h, k〉 = 〈N ′(u)k, h〉 ∀u, h, k ∈ H,
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where, for example,

〈(v1, v2), u〉 =
∫

Ω
v1 · u d(n)x+

∫

∂Ω
v2 · u d(n−1)x.

In this case, by invoking the Volterra-Vainberg theorem [Vo], [Va], the above equation
N(u) = 0 is equivalent to the following variational principle:

dJ [u]h = 0, ∀h ∈ H,
where

J [u] :=
∫ 1

0
〈N(tu), u〉dt.

Indeed:

J ′[u]h =
d

dλ
J(u+ λh)

∣∣
λ=0 =

∫ 1

0

[
〈N ′(tu)th, u〉+ 〈N(tu), h〉

]
dt

=
∫ 1

0

[
〈N ′(tu)u, th〉+ 〈N(tu), h〉

]
dt =

∫ 1

0

d

dt

[
〈N(tu), th〉

]
dt = 〈N(u), h〉.

4.2. Nonlinear perturbation of elliptic problems. Fix a function ū satisfying ∇ū ·n = q

on ∂Ω. We will search for functions w satisfying N (ū + w) = 0 in Ω with ∇w · n = 0
on ∂Ω. Equivalently, we may consider the above boundary problem with q = 0, since we
have seen this is not restrictive.

Let us now suppose that the structure of N (u) is of the form −Lu + F (ε, u), or,
simply,

N (u) = −Lu+ εF (u),

where L is a linear elliptic operator, and F a nonlinear operator, both mapping H =
C∞(Ω̄;Rk) into itself. Our main hypothesis is that L and F ′ are symmetric with respect
to 〈 , 〉; moreover, we will suppose ellipticity for L on H = C∞(Ω̄;Rk) with ∇u · n = 0:

−Luj = λjuj , ∇uj · n = 0, 〈ui, uj〉L2 = δij , λ0 = 0 < λ1 ≤ λ2 ≤ ...
so that the related linear problem

Lu = f,

for generic f ∈ H with ∇f · n = 0, is solved in a unique way by

u = g(f) := −
+∞∑

j=1

uj
λj
〈f, uj〉L2 .

4.3. Cut-off decomposition of H. Given a natural number m ∈ N , we define the
following decomposition of H:

µ = Pmu :=
m∑

j=1

uj 〈u, uj〉L2 , η = Qmu :=
+∞∑

j>m

uj 〈u, uj〉L2 ,

H = PmH ⊕QmH, u = µ+ η.

Now, fix m ∈ N , µ ∈ PmH, and consider the map

g̃ : QmH → H, η 7→ g̃(η) := g(µ+ η).
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We recognize that this map η 7→ g̃(η) is Lipschitz:

|g̃(η2)− g̃(η1)| =
∣∣∣

+∞∑

j>m

uj
λj
〈η2 − η1, uj〉L2

∣∣∣ ≤ 1
λm
|η2 − η1|.

4.4. The fixed point map. Finally, once again for fixed m ∈ N , µ ∈ PmH, consider
the map

QmH → QmH, η 7→ εQm(F (g(µ+ η))).

This map, under the hypothesis that

sup
u∈H
|F ′(u)| ≤ C < +∞,

is a contraction map if for a suitably small perturbation parameter ε, and for a suitably
large cut-off number m, we have:

ε C

λm
< 1.

Indeed:

|εQm(F (g(µ+ η2)))− εQm(F (g(µ+ η1)))| ≤ ε C

λm
|g(η2)− g(η1)|.

The Banach-Caccioppoli theorem gives us a unique fixed point d(m,µ) for this contraction
map, it works in the following way:

(∗) d(m,µ) = εQm(F (g(µ+ d(m,µ)))).

Together with (∗), we consider the finite equation for µ ∈ PmH ∼= Rm+1:

(∗∗) µ = εPm(F (g(µ+ d(m,µ)))).

Concretely, in connection with each solution µ of (∗∗), we note that, by adding (∗) to (∗∗),
we obtain one (and only one) solution of the nonlinear problem Lu = εF (u), ∇u · n = 0,
by the formula:

u = g(µ+ d(m,µ)).

Remark 4.1. It is interesting to investigate what happens when one considers the
finite equation (∗∗) in a sequence of spaces Rm of increasing dimension. Let us initially
consider m = 1, so we are led to take into account rather small values for ε:

0 ≤ ε < λ1/C, µ ∈ R1.

Whenever we wish to consider perturbations ε ≥ λ1/C, we should take m to be at least 2:

λ1 ≤ λ2, ε < λ2/C, µ ∈ R2.

We notice that, for a fixed ε < λ1/C, the set of the solutions u = g(µ+d(1, µ)) generated
by the equation in R1

µ = εP1(F (g(µ+ d(1, µ)))), ε < λ1/C,

is contained in the set of the solutions u = g(µ+d(2, µ)) generated by the equation in R2

µ = εP2(F (g(µ+ d(2, µ)))), ε < λ1/C.

When ε crosses the value λ1/C, this last equation in R2 could suddenly produce a growing
number of solutions; in other words, we can recognize in the following sequence of ‘critical’
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perturbation values
ε = λ1/C, λ2/C, λ3/C, ...

a sequence of possible approximate (C may not be optimal) bifurcation values for the
global ε-depending set of solutions of our variational problem Lu = εF (u), indicating a
hierarchically growing complexity for it.

4.5. Global generating function with a finite number of auxiliary parameters. For a
fixed m ∈ N , we define the real-valued function W : Rm → R by

(•) W (µ) := J ◦ g(µ+ d(m,µ)).

Theorem 4.1. Suppose that

sup
φ∈H
|F ′(φ)| ≤ C < +∞.

Then, for fixed ε < λm/C, the stationary points of W : Rm → R, say µ1, ... , µα, ..., µnm ,
produce exactly the stationary points of J :

u1 = g(µ1 + d(m,µ1)), ..., uα = g(µα + d(m,µα)), ..., unm = g(µnm + d(m,µnm)).

Proof.

dW =
∂W

∂µ
(µ)dµ = dJ [u]|u=g(µ+d(m,µ))dµg(µ+ d(m,µ)),

= 〈(Lu− εF (u))|u=g(µ+d(m,µ)), dµg(µ+ d(m,µ))〉,
but from the definition of the map g and from the very definition (∗) of the fixed point
d(m,µ) we have

L(g(µ+ d(m,µ))) = µ+ d(m,µ), Qm(µ+ d(m,µ)− εF (g(µ+ d(m,µ)))) = 0,

hence
Qm(Lu− εF (u))|u=g(µ+d(m,µ)) = 0,

thus
dW = 〈µ− εPmF (g(µ+ d(m,µ))), Pm dµg(µ+ d(m,µ))〉.

From g(f) = −∑+∞
j>0

uj
λj
〈f, uj〉L2 , it is easy to see that

Pm dµg(µ+ d(m,µ)) = −
m∑

j>0

uj
λj
dµj ,

so that dW = 0 if and only if

µ− εPmF (g(µ+ d(m,µ))) = 0,

which is precisely the condition (∗∗).
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