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Abstract. Some simple examples from quantum physics and control theory are used to
illustrate the application of the theory of Lie systems.

We will show, in particular, that for certain physical models both of the corresponding
classical and quantum problems can be treated in a similar way, may be up to the replacement
of the Lie group involved by a central extension of it.

The geometric techniques developed for dealing with Lie systems are also used in problems
of control theory. Specifically, we will study some examples of control systems on Lie groups and
homogeneous spaces.

1. Introduction: Lie systems. There exists a class of systems of time-dependent
first order differential equations

dxi

dt
= Xi(x1, . . . , xn, t), i = 1, . . . , n,(1)

for which there is a function Φ : Rn(m+1) → Rn such that the general solution can be
written as x = Φ(x(1), . . . , x(m); k1, . . . , kn), where {x(j) | j = 1, . . . ,m} is any set of
particular but independent solutions of (1), and k1, . . . , kn are n constants characterizing
each particular solution. These systems, to be called Lie systems, have been characterized
by Lie [19] and are receiving much attention in recent years, both in physics and in
mathematics [5–9]. From the geometric viewpoint, Lie systems correspond to t-dependent
vector fields which can be written as a linear combination, with t-dependent coefficients,
of a finite set of true vector fields closing on a finite-dimensional real Lie algebra [5, 7].
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A simple instance of Lie system is the linear system

dxi

dt
=

n∑

j=1

Ai j(t)xj, i = 1, . . . , n,(2)

for which the general solution can be written as a linear combination of n independent
particular solutions x(1), . . . , x(n), i.e., x = Φ(x(1), . . . , x(n), k1, . . . , kn) = k1 x(1) + · · · +
kn x(n), and in a similar way, the general solution for an inhomogeneous linear system
can be written as an affine function of n+ 1 independent particular solutions.

Another very remarkable example is the Riccati equation
dx(t)
dt

= a2(t)x2(t) + a1(t)x(t) + a0(t),

for which the superposition formula comes from the fact that the cross ratio of four
different solutions is a constant, see, e.g., [10].

The main point is that Lie systems are always related with Lie systems on Lie groups
defined by right-invariant vector fields. Let G be a Lie group. If {a1, . . . , ar} is a basis of
the tangent space TeG at the neutral element e ∈ G and XR

α denotes the right-invariant
vector field in G such that XR

α (e) = aα, a Lie system on G will be written as

ġ(t) = −
r∑

α=1

bα(t)XR
α (g(t)).(3)

When applying (Rg(t)−1)∗g(t) to both sides we obtain

(Rg(t)−1)∗g(t)(ġ(t)) = −
r∑

α=1

bα(t)aα,(4)

which is usually written, with a slight abuse of notation, as

(ġ g−1)(t) = −
r∑

α=1

bα(t)aα.

This equation is right-invariant: if ḡ(t) is a solution with initial condition ḡ(0) = e, the
solution with initial condition g(0) = g0 is given by ḡ(t)g0. Therefore, we only need to
find the solution of (4) starting from the neutral element.

Let H be any closed subgroup of G, M = G/H the corresponding homogeneous
space, τ : G→ G/H the natural projection, and Φ : G×M →M the usual left action of
G on M . The right-invariant vector fields XR

α are τ -projectable onto the corresponding
fundamental vector fields −Xα = −Xaα , i.e.,

τ∗gX
R
α (g) = −Xα(gH),

and therefore we have a Lie system on M = G/H associated to (3):

ẋ(t) =
r∑

α=1

bα(t)Xα(x(t)),

where we denote x = gH ∈ M . Then, the solution of this system starting from x0 is
given by x(t) = Φ(g(t), x0), where g(t) is the solution of (3) starting from the identity. In
this sense the equation (3) has a universal character, and it will have an associated Lie
system on each homogeneous space of G [7].
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Lie systems are of interest not only in the theory of differential equations but also
in other related fields. For example, they are important in classical or even in quantum
physics (for instance, in order to study the non-relativistic dynamics of a spin 1/2 particle,
when only the spinorial part is considered [5, 6]). Another field where Lie systems play
an important rôle is in geometric control theory.

The aim of this article is to illustrate these applications. Thus, after a brief account
of a generalization of the method proposed by Wei and Norman [6, 8, 12, 23, 24], to
be used later, we will study the particular case where the Lie systems of interest are
Hamiltonian systems as well, both in the classical and quantum frameworks. The the-
ory is illustrated through the particularly interesting example of generic classical and
quantum quadratic time-dependent Hamiltonians. In particular, we show that there ex-
ist t-dependent quantum systems for which one is able to write in an explicit way the time
evolution of any state of the system. The very simple case of both the classical and quan-
tum time-dependent linear potential will be explicitly solved. We will show as well the
use of the theory of Lie systems in geometric control theory, when dealing with drift-free
systems that are linear in the control functions. In particular, we will study from this
new perspective several well-known control systems: the robot unicycle [21], the Brockett
nonholonomic integrator [4] and its realization in the model of a hopping robot in flight
phase [20], and the kinematic equations of a generalization due to Jurdjevic [15] of the
elastic problem of Euler.

2. The Wei and Norman method. Let G be a Lie group as in the previous section.
We are interested in finding the curve g(t) ∈ G such that

ġ(t) g(t)−1 = −
r∑

α=1

bα(t)aα,(5)

with g(0) = e ∈ G. We can use a method which is a generalization of the method proposed
by Wei and Norman, in order to find the time-evolution operator for linear systems of type

dU(t)
dt

= H(t)U(t),

with U(0) = I. The generalized Wei–Norman method consists of writing the previous
g(t) in terms of a set of second kind canonical coordinates,

g(t) =
r∏

α=1

exp(−vα(t)aα) = exp(−v1(t)a1) · · · exp(−vr(t)ar),

and transforming the equation (5) into a system of differential equations for the vα(t),
with initial conditions vα(0) = 0, α = 1, . . . , r. Such a system is obtained from the
following relation:

r∑

α=1

v̇α

(∏

β<α

exp(−vβ(t) ad(aβ))
)
aα =

r∑

α=1

bα(t)aα.(6)

If the Lie algebra of G is solvable, the solution of the previous system can be obtained
by quadratures. If instead, the Lie algebra of G is semi-simple, then the integrability by
quadratures is not assured [6, 8, 12, 23, 24].
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3. Hamiltonian systems of Lie type. An interesting and important case occurs
when (M,Ω) is a symplectic manifold and the vector fields in M arising in the expression
of the t-dependent vector field describing a Lie system are Hamiltonian vector fields
closing on a finite-dimensional real Lie algebra g. These vector fields correspond to a
symplectic action of a Lie group G with Lie algebra g on the symplectic manifold (M,Ω).

The Hamiltonian functions hα of such vector fields, defined by i(Xα)Ω = −dhα, in
general do not close on the same Lie algebra g when the Poisson bracket is considered,
since we can only assure that

d({hα, hβ} − h[α,β]) = 0,

and therefore, they span a Lie algebra extension of the original one.
The situation in quantum mechanics is quite similar: the Hilbert space H can be seen

as a real manifold with a global chart. The tangent space TφH at any point φ ∈ H can be
identified with H itself, where the isomorphism which associates ψ ∈ H with the vector
ψ̇ ∈ TφH is given by:

ψ̇f(φ) :=
(
d

dt
f(φ+ tψ)

)

|t=0
, ∀f ∈ C∞(H).

The Hilbert space H is endowed with a symplectic 2-form Ω defined by

Ωφ(ψ̇, ψ̇′) = 2 Im〈ψ|ψ′〉.
A vector field is just a map A:H → H; therefore a linear operator A on H is a special
kind of vector field. Given a smooth function a:H → R, its differential daφ at φ ∈ H is
an element of the (real) dual H′ given by

〈daφ, ψ〉 :=
(
d

dt
a(φ+ tψ)

)

|t=0
.

Actually, the skew-self-adjoint linear operators −i A in H, for a self-adjoint operator A,
define Hamiltonian vector fields, the Hamiltonian function of −i A being a(φ) = 1

2 〈φ,Aφ〉.
Therefore, the Schrödinger equation plays the rôle of Hamilton equations, because it
determines the integral curves of the vector field −iH, where H is the Hamiltonian of
the system [2].

In particular, the theory of Lie systems applies in the previous framework when we
have a t-dependent quantum Hamiltonian that can be written as a linear combination,
with t-dependent coefficients, of Hamiltonians Hi closing on a finite-dimensional real Lie
algebra under the commutator bracket. However, note that this Lie algebra does not
necessarily coincide with that of the corresponding classical problem, but it may be a Lie
algebra extension of the latter.

4. Time-dependent quadratic Hamiltonians. For the illustration of the classical
and quantum situations described in the previous section, we consider now the important
examples provided by the time-dependent classical and quantum quadratic Hamiltonians.

The first one is the mechanical system for which the configuration space is the real line
R, the corresponding phase space T ∗R, endowed with its canonical symplectic structure
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ω = dq ∧ dp, and the time-dependent classical Hamiltonian

H = α(t)
p2

2
+ β(t)

q p

2
+ γ(t)

q2

2
+ δ(t) p+ ε(t) q.(7)

The dynamical vector field solution of the dynamical equation

i(ΓH)ω = dH,

is given by

ΓH =
(
α(t) p+

1
2
β(t) q + δ(t)

)
∂

∂q
−
(

1
2
β(t) p+ γ(t) q + ε(t)

)
∂

∂p
,(8)

which can be rewritten as

ΓH = α(t)X1 + β(t)X2 + γ(t)X3 − δ(t)X4 + ε(t)X5,

with

X1 = p
∂

∂q
, X2 =

1
2

(
q
∂

∂q
− p ∂

∂p

)
, X3 = −q ∂

∂p
, X4 = − ∂

∂q
, X5 = − ∂

∂p
,

being vector fields which satisfy the following commutation relations:

[X1, X2] = X1, [X1, X3] = 2X2, [X1, X4] = 0, [X1, X5] = −X4,

[X2, X3] = X3, [X2, X4] = −1
2
X4, [X2, X5] =

1
2
X5,(9)

[X3, X4] = X5, [X3, X5] = 0, [X4, X5] = 0,

and therefore they close on a five-dimensional real Lie algebra. Consider the abstract,
five-dimensional, Lie algebra g such that in a basis {a1, a2, a3, a4, a5}, the Lie products
are analogous to that of (9). Then, g is a semi-direct sum of the Abelian two-dimensional
Lie algebra generated by {a4, a5} with the sl(2,R) Lie algebra generated by {a1, a2, a3},
i.e., g = R2 o sl(2, R). The corresponding Lie group will be the semi-direct product
G = T2 � SL(2,R) relative to the linear action of SL(2,R) on the two-dimensional
translation algebra. When computing the flows of the previous vector fields Xα, we see
that they correspond to the affine action of G on R2, and therefore, the vector fields
Xα can be regarded as fundamental fields with respect to that action, associated to the
previous basis of the Lie algebra.

In order to find the time-evolution provided by the Hamiltonian (7), i.e., the integral
curves of the time-dependent vector field (8), we can solve first the corresponding equation
in the Lie group G and then use the affine action of G on R2. We focus on the first of
these questions: we should find the curve g(t) in G such that

ġ g−1 = −
5∑

i=1

bi(t) ai, g(0) = e,

with b1(t) = α(t), b2(t) = β(t), b3(t) = γ(t), b4(t) = −δ(t), and b5(t) = ε(t). The explicit
calculation can be carried out by using the generalized Wei–Norman method, i.e., writing
g(t) in terms of a set of second class canonical coordinates, for instance,

g(t) = exp(−v4(t)a4) exp(−v5(t)a5) exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3),
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and then, a straightforward application of (6) leads to the system

v̇1 = b1 + b2 v1 + b3 v
2
1 , v̇2 = b2 + 2 b3 v1, v̇3 = ev2 b3,

v̇4 = b4 +
1
2
b2 v4 + b1 v5, v̇5 = b5 − b3 v4 −

1
2
b2 v5,

with initial conditions v1(0) = · · · = v5(0) = 0.
For some specific choices of the functions α(t), . . . , ε(t), the problem becomes simpler

and it may be enough to consider a subgroup, instead of the whole Lie group G, to deal
with the arising system. For instance, consider the classical Hamiltonian

H =
p2

2m
+ f(t) q,

which in the notation of (7) has the only non-vanishing coefficients α(t) = 1/m and
ε(t) = f(t). Then, the problem is reduced to one in a three-dimensional subalgebra,
generated by {X1, X4, X5}. The associated Lie group will be the subgroup of G generated
by {a1, a4, a5}. This example will be used later for illustrating the theory: since such a
subgroup is solvable, the problem can be integrated by quadratures.

Another remarkable property is that the Hamiltonian functions hα corresponding to
the Hamiltonian vector fields X1, . . . , X5, defined by i(Xα)ω = −dhα, i.e.,

h1(q, p) = −p
2

2
, h2(q, p) = −1

2
q p, h3(q, p) = −q

2

2
, h4(q, p) = p, h5(q, p) = −q,

have almost the same Poisson bracket relations as the vector fields Xα, but they do not
coincide because of {h4, h5} = 1, instead of [X4, X5] = 0. In other words, they close on a
Lie algebra which is a central extension of R2 o sl(2, R) by a one-dimensional algebra.

Let us now consider the quantum case [25], with applications in a number of physical
problems, as for instance, the quantum motion of charged particles subject to time-
dependent electromagnetic fields (see, e.g., [14]), and connects with the theory of exact
invariants developed by Lewis and Riesenfeld (see [18] and references therein).

A generic time-dependent quadratic quantum Hamiltonian is given by

H = α(t)
P 2

2
+ β(t)

QP + P Q

4
+ γ(t)

Q2

2
+ δ(t)P + ε(t)Q+ φ(t)I.(10)

where Q and P are the position and momentum operators satisfying the commutation
relation

[Q,P ] = i I.

The previous Hamiltonian can be written as a sum with t-dependent coefficients

H = α(t)H1 + β(t)H2 + γ(t)H3 − δ(t)H4 + ε(t)H5 − φ(t)H6,

of the Hamiltonians

H1 =
P 2

2
, H2 =

1
4

(QP + P Q), H3 =
Q2

2
, H4 = −P, H5 = Q, H6 = −I,

which satisfy the commutation relations

[iH1, iH2] = iH1, [iH1, iH3] = 2 iH2, [iH1, iH5] = −iH4, [iH2, iH3] = iH3,

[iH2, iH4] = − i
2
H4, [iH2, iH5] =

i

2
H5, [iH3, iH4] = iH5, [iH4, iH5] = iH6,
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and [iH1, iH4] = [iH3, iH5] = [iHα, iH6] = 0, α = 1, . . . , 5. That is, the skew-self-adjoint
operators iHα generate a six-dimensional real Lie algebra which is a central extension
of the Lie algebra arising in the classical case, R2 o sl(2, R), by a one-dimensional Lie
algebra. It can be identified as the semi-direct sum of the Heisenberg–Weyl Lie algebra
h(3), which is an ideal in the total Lie algebra, with the Lie subalgebra sl(2,R), i.e.,
h(3) o sl(2, R). Sometimes this Lie algebra is referred to as the extended symplectic
Lie algebra hsp(2,R) = h(3)o sp(2, R). The corresponding Lie group is the semi-direct
product H(3) � SL(2,R) of the Heisenberg–Weyl group H(3) with SL(2,R), see also
[25].

The time-evolution of a quantum system can be described in terms of the evolution
operator U(t) which satisfies the Schrödinger equation (see, e.g., [13])

i
dU

dt
= H(t)U, U(0) = Id,

where H(t) is the Hamiltonian of the system. In our current case, the Hamiltonian is
given by (10), and therefore the time-evolution of the system is given by an equation of
the type

ġ g−1 = −
6∑

α=1

bα(t) aα, g(0) = e,(11)

with the identification of g(t) with U(t), e with Id, iHα with aα for α ∈ {1, . . . , 6} and
the time-dependent coefficients bα(t) are given by

b1(t) = α(t), b2(t) = β(t), b3(t) = γ(t),

b4(t) = −δ(t), b5(t) = ε(t), b6(t) = −φ(t).

We would like to remark that time-dependent quantum Hamiltonians are seldom
studied, because it is generally difficult to find their time evolution. However, in the case
the system could be treated as a Lie system in a certain Lie group, the calculation of
the evolution operator is reduced to the problem of integrating the system appearing
after the application of the Wei–Norman method. In the case the associated Lie group is
solvable, the integration can be made by quadratures, leading to an exact solution of the
problem. We will see an example in the next section.

The calculation of the solution of (11) can be carried out by using the generalized Wei–
Norman method, i.e., writing g(t) in terms of a set of second class canonical coordinates.
We take, for instance, the factorization

g(t) = exp(−v4(t)a4) exp(−v5(t)a5) exp(−v6(t)a6)

× exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3),

and therefore, the equation (6) leads in this case to the system

v̇1 = b1 + b2 v1 + b3 v
2
1 , v̇2 = b2 + 2 b3 v1, v̇3 = ev2 b3,

v̇4 = b4 +
1
2
b2 v4 + b1 v5, v̇5 = b5 − b3 v4 −

1
2
b2 v5,

v̇6 = b6 + b5 v4 −
1
2
b3 v

2
4 +

1
2
b1 v

2
5 ,

with initial conditions v1(0) = · · · = v6(0) = 0.
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Analogously to what happened in the classical case, special choices of the time-
dependent coefficient functions α(t), . . . , φ(t) may lead to problems for which the as-
sociated Lie algebra is a subalgebra of that of the complete system, and similarly for the
Lie groups involved. For example, we could consider as well the quantum Hamiltonian
linear in the positions

H =
P 2

2m
+ f(t)Q,

which in the notation of (10) has the only non-vanishing coefficients α(t) = 1/m and
ε(t) = f(t). This problem can be regarded as a Lie system associated to the four-
dimensional Lie algebra generated by {iH1, iH4, iH5, iH6}, which is also solvable, and
hence the problem can be solved by quadratures.

The treatment of this system, as well as that of its classical version, according to the
theory of Lie systems, is the subject of the next section.

5. An example: classical and quantum time-dependent linear potential. Let
us consider the classical system described by the classical Hamiltonian

Hc =
p2

2m
+ f(t) q,(12)

and the corresponding quantum Hamiltonian

Hq =
P 2

2m
+ f(t)Q,(13)

describing, for instance when f(t) = eE0 + eE cosωt, the motion of a particle of electric
charge e and mass m driven by a monochromatic electric field.

We will study in parallel the classical and the quantum problems by reduction of both
of them to similar equations, and solving them by the generalized Wei–Norman method.
The only difference between the two cases is that the Lie algebra arising in the quantum
problem is a central extension of that of the classical one.

The classical Hamilton equations of motion for the Hamiltonian (12) are
{

q̇ =
p

m
,

ṗ = −f(t),
(14)

and therefore, the motion is given by

q(t) = q0 +
p0 t

m
− 1
m

∫ t

0
dt′
∫ t′

0
f(t′′) dt′′,

p(t) = p0 −
∫ t

0
f(t′) dt′.

(15)

The t-dependent vector field describing the time evolution,

X =
p

m

∂

∂q
− f(t)

∂

∂p
.

can be written as a linear combination

X =
1
m
X1 − f(t)X2,
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with X1 = p ∂/∂q and X2 = ∂/∂p being vector fields closing on a 3-dimensional Lie
algebra with X3 = ∂/∂q, isomorphic to the Heisenberg–Weyl algebra, namely,

[X1, X2] = −X3, [X1, X3] = 0, [X2, X3] = 0.

The flow of these vector fields is given, respectively, by

φ1(t, (q0, p0)) = (q0 + p0 t, p0),

φ2(t, (q0, p0)) = (q0, p0 + t),

φ3(t, (q0, p0)) = (q0 + t, p0).

In other words, {X1, X2, X3} are fundamental vector fields with respect to the action
of the Heisenberg–Weyl group H(3), realized as the Lie group of upper triangular 3× 3
matrices, on R2 given by




q̄

p̄

1


 =




1 a1 a3

0 1 a2

0 0 1






q

p

1


 .

Note that X1, X2 and X3 are Hamiltonian vector fields with respect to the usual
symplectic structure, Ω = dq ∧ dp, while the corresponding Hamiltonian functions hα
such that i(Xα)Ω = −dhα are

h1 = −p
2

2
, h2 = q, h3 = −p,

and therefore
{h1, h2} = −h3, {h1, h3} = 0, {h2, h3} = −1.

Then, the functions {h1, h2, h3}, jointly with h4 = 1, close on a four-dimensional Lie
algebra under the Poisson bracket which is a central extension of that generated by
{X1, X2, X3}.

If {a1, a2, a3} is a basis of the Lie algebra with non-vanishing defining relations
[a1, a2] = −a3, the corresponding equation in the group H(3) to the system (14) reads

ġ g−1 = − 1
m
a1 + f(t) a2.

Using the Wei–Norman formula (6) with g = exp(−u3 a3) exp(−u2 a2) exp(−u1 a1) we
arrive at the system of differential equations

u̇1 =
1
m
, u̇2 = −f(t), u̇3 − u̇1 u2 = 0,

together with the initial conditions u1(0) = u2(0) = u3(0) = 0, with solution

u1 =
t

m
, u2 = −

∫ t

0
f(t′) dt′, u3 = − 1

m

∫ t

0
dt′
∫ t′

0
f(t′′) dt′′.

Therefore, the motion is given by



q

p

1


 =




1 t
m − 1

m

∫ t
0 dt

′ ∫ t′
0 f(t′′) dt′′

0 1 −
∫ t

0 f(t′) dt′

0 0 1







q0

p0

1


 ,
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in agreement with (15). We can immediately identify the constants of motion

I1 = p(t) +
∫ t

0
f(t′) dt′,

I2 = q(t)− 1
m

(p(t) +
∫ t

0
f(t′) dt′)t+

1
m

∫ t

0
dt′
∫ t′

0
f(t′′) dt′′.

As far as the quantum problem is concerned, notice that the quantum Hamiltonian
Hq may be written as a sum

Hq =
1
m
H1 − f(t)H2,

with

H1 =
P 2

2
, H2 = −Q.

The skew-self-adjoint operators −iH1 and −iH2 close on a four-dimensional Lie al-
gebra with −iH3 = −i P , and −iH4 = i I, isomorphic to the above mentioned central
extension of the Heisenberg–Weyl Lie algebra,

[−iH1,−iH2] = −iH3, [−iH1,−iH3] = 0, [−iH2,−iH3] = −iH4.

As we have seen in the preceding section, the time-evolution of our current system is
described by means of the evolution operator U , which satisfies

dU

dt
= −iHqU, U(0) = Id.

This equation can be identified as that of a Lie system in a Lie group such that its Lie
algebra is the one mentioned above. Let {a1, a2, a3, a4} be a basis of the Lie algebra
with non-vanishing defining relations [a1, a2] = a3 and [a2, a3] = a4. The equation in the
group to be considered now is

ġ g−1 = − 1
m
a1 + f(t) a2.

Using g = exp(−u4 a4) exp(−u3 a3) exp(−u2 a2) exp(−u1 a1), the Wei–Norman method
provides the following equations:

u̇1 =
1
m
, u̇2 = −f(t),

u̇3 = − 1
m
u2, u̇4 = f(t)u3 +

1
2m

u2
2,

together with the initial conditions u1(0) = u2(0) = u3(0) = u4(0) = 0, whose solution is

u1(t) =
t

m
, u2(t) = −

∫ t

0
f(t′) dt′, u3(t) =

1
m

∫ t

0
dt′
∫ t′

0
f(t′′) dt′′,

and

u4(t) =
1
m

∫ t

0
dt′f(t′)

∫ t′

0
dt′′
∫ t′′

0
f(t′′′) dt′′′ +

1
2m

∫ t

0
dt′
(∫ t′

0
dt′′f(t′′)

)2

.

These functions provide the explicit form of the time-evolution operator:

U(t, 0) = exp(−iu4(t)) exp(iu3(t)P ) exp(−iu2(t)Q) exp(iu1(t)P 2/2).
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However, in order to find the expression of the wave-function in a simple way, it is
advantageous to use instead the factorization

g = exp(−v4 a4) exp(−v2 a2) exp(−v3 a3) exp(−v1 a1).

In such a case, the Wei–Norman method gives the system

v̇1 =
1
m
, v̇2 = −f(t),

v̇3 = − 1
m
v2, v̇4 = − 1

2m
v2

2 ,

jointly with the initial conditions v1(0) = v2(0) = v3(0) = v4(0) = 0. The solution is

v1(t) =
t

m
, v2(t) = −

∫ t

0
dt′ f(t′),

v3(t) =
1
m

∫ t

0
dt′
∫ t′

0
dt′′f(t′′),

v4(t) = − 1
2m

∫ t

0
dt′
(∫ t′

0
dt′′f(t′′)

)2

.

Then, applying the evolution operator on the initial wave-function φ(p, 0), which is as-
sumed to be written in momentum representation, we have

φ(p, t) = U(t, 0)φ(p, 0)

= exp(−iv4(t)) exp(−iv2(t)Q) exp(iv3(t)P ) exp(iv1(t)P 2/2)φ(p, 0)

= exp(−iv4(t)) exp(−iv2(t)Q)ei(v3(t)p+v1(t)p2/2)φ(p, 0)

= exp(−iv4(t))ei(v3(t)(p+v2(t))+v1(t)(p+v2(t))2/2)φ(p+ v2(t), 0),

where the functions vi(t) are given by the preceding equations.

6. Applications in control theory. Control systems are described by systems of
differential equations

dxi

dt
= F (xi, uα), i = 1, . . . , n, α = 1, . . . ,m,(16)

where uα are the so-called control functions or simply controls, which are to be determined
in such a way that, e.g., the trajectory passes through one or two specific points in the
configuration space, or maybe gives some cost functional a stationary value.

A control system is said to be controllable if for any given initial point p there exists
an integral curve of the corresponding vector field along π : Rn+m → Rn such that
(π ◦ γ)(0) = p, and a value t1 of the parameter of the curve γ such that (π ◦ γ)(t1) = q

for any final point q.
Consider the case of drift-free systems, linear in the control functions uα(t), for which

the time-dependent vector field, whose integral curves are the solutions of (16), is

X(t, x) = u1(t)X1(x) + · · ·+ ur(t)Xr(x).

Lie systems arise when the vector fields Xα close on a finite-dimensional real Lie algebra.
The cases in which the Xα are either right-invariant vector fields in a certain Lie group G,
or vector fields in a homogeneous space of G, can be dealt with according to the theory
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of Lie systems: reducing the problem to solving an equation on the Lie group G, of the
form

ġ(t) =
r∑

α=1

uα(t)Xα(g(t)).

Controllability of control systems on Lie groups has been analyzed by Brockett [3]
and Jurdjevic and Sussmann [16]. It can be determined by studying algebraic properties
of the corresponding Lie algebra g.

Theorem. A drift-free right invariant system on a connected Lie group G is control-
lable if and only if the Lie algebra generated by {X1, . . . , Xr} is g.

Proof. If h is the Lie algebra generated by {X1, . . . , Xr}, then the Lie algebra of the
Lie system is not g but the subalgebra h. The orbit of the neutral element e ∈ G is the
subgroup H of G with Lie subalgebra h. It is then clear that if h is a proper subalgebra
of G, the system is not controllable, while it is so when h = g.

As examples of application of the theory of Lie systems to specific systems treated
in control theory, we will study several well-known systems: the robot unicycle [17, 21],
the Brockett system termed sometimes as Brockett nonholonomic integrator [4], and a
system which under certain approximation can be reduced to the former, i.e., the model
of a hopping robot in flight phase [20]. Afterwards, we will study the kinematic equations
of a generalization due to Jurdjevic [15] of the elastic problem of Euler, and finally we
will briefly show how the reduction theory of Lie systems can be applied to two of these
examples.

6.1. Robot unicycle or model of an automobile as a Lie system. Our first example
corresponds to the robot unicycle (see, e.g., [17]). Essentially, the same control system
arises in a very simplified model of maneuvering an automobile [21].

The configuration space is R2×S1, with coordinates (x1, x2, x3). The control system
can be written as

ẋ1 = b2(t) sinx3, ẋ2 = b2(t) cosx3, ẋ3 = b1(t),(17)

where b1(t) and b2(t) are the control functions. Its solutions are the integral curves of
b1(t)X1(x) + b2(t)X2(x), where

X1 =
∂

∂x3
, X2 = sinx3

∂

∂x1
+ cosx3

∂

∂x2
.

The Lie bracket of both vector fields,

X3 = [X1, X2] = cosx3
∂

∂x1
− sin x3

∂

∂x2
,

is linearly independent of X1, X2. They satisfy

[X1, X2] = X3, [X2, X3] = 0, [X1, X3] = −X2,

therefore closing on a Lie algebra isomorphic to se(2). This Lie algebra has a basis
{a1, a2, a3} for which

[a1, a2] = a3, [a2, a3] = 0, [a1, a3] = −a2.
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Writing the solution of the associated problem in SE(2) as

g(t) = exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3),

the Wei–Norman method leads to the system

v̇1 = b1, v̇2 = b2 cos v1, v̇3 = b2 sin v1,

with v1(0) = v2(0) = v3(0) = 0. Denoting B1(t) =
∫ t

0 b1(s) ds, the solution is

v1(t) = B1(t), v2(t) =
∫ t

0
b2(s) cosB1(s) ds, v3(t) =

∫ t

0
b2(s) sinB1(s) ds.

The action of SE(2) on R2×S1 such that X1, X2, X3 are the associated fundamental
vector fields turns out to be Φ((θ, a, b), (x1, x2, x3)) = (x̄1, x̄2, x̄3) with

x̄1 = x1 − b cosx3 − a sinx3, x̄2 = x2 + b sin x3 − a cosx3, x̄3 = x3 − θ,
where (θ, a, b) are the second kind canonical coordinates determined by the factorization
g = exp(θa1) exp(aa2) exp(ba3). The composition law is

(θ, a, b)(θ′, a′, b′) = (θ + θ′, a′ + a cos θ′ + b sin θ′, b′ − a sin θ′ + b cos θ′).

Then, the general solution of (17) is

Φ((−v1,−v2,−v3), (x10, x20, x30)) = (x10 + v3 cosx30 + v2 sinx30,

x20 − v3 sinx30 + v2 cosx30, x30 + v1),

where v1 = v1(t), v2 = v2(t) and v3 = v3(t) are given above.
In an alternative way, as the vector fields X2 and X3 commute, there exist coordinates

(y1, y2, y3) such that X2 = ∂/∂y2 and X3 = ∂/∂y3. For instance,

y2 = x1 sin x3 + x2 cosx3, y3 = x1 cosx3 − x2 sin x3,

which can be completed with y1 = x3. Then,

X1 =
∂

∂y1
+ y3

∂

∂y2
− y2

∂

∂y3
.

The control system of interest, whose solutions are again the integral curves of the time-
dependent vector field b1(t)X1 + b2(t)X2, reads

ẏ1 = b1(t), ẏ2 = b1(t)y3 + b2(t), ẏ3 = −b1(t)y2.(18)

Now, the expression of the previous action in terms of the coordinates (y1, y2, y3) is

Φ((θ, a, b), (y1, y2, y3)) = (y1 − θ, y2 cos θ − y3 sin θ − a cos θ + b sin θ,

y2 sin θ + y3 cos θ − a sin θ − b cos θ),

and therefore, the general solution of (18) is Φ((−v1,−v2,−v3), (y10, y20, y30)), i.e.,

y1 = y10 + v1,

y2 = y20 cos v1 + y30 sin v1 + v2 cos v1 + v3 sin v1,

y3 = y30 cos v1 − y20 sin v1 + v3 cos v1 − v2 sin v1,

where the vi’s are those given above.
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6.2. Brockett nonholonomic control system. Another interesting example introduced
by Brockett, when dealing with problems of optimal control and its relation with singu-
lar Riemannian geometry, is related with the three-dimensional Heisenberg–Weyl group
H(3), which is the lowest-dimensional non-Abelian nilpotent Lie group. Such a system
is very often considered as one of the prototypical examples relating control theory and
extremal problems in sub-Riemannian geometry,

It is the control system in R3, with coordinates (x, y, z)

ẋ = b1(t), ẏ = b2(t), ż = b2(t)x− b1(t)y,(19)

where the functions b1(t) and b2(t) are regarded as the controls. The solutions of this
system are the integral curves of the time-dependent vector field b1(t)X1 +b2(t)X2, with

X1 =
∂

∂x
− y ∂

∂z
, X2 =

∂

∂y
+ x

∂

∂z
.

The Lie bracket

X3 = [X1, X2] = 2
∂

∂z

is linearly independent from X1, X2, and the set {X1, X2, X3} close on the Lie algebra
defined by

[X1, X2] = X3, [X1, X3] = 0, [X2, X3] = 0,(20)

isomorphic to the Lie algebra h(3) of the Heisenberg–Weyl group H(3).
The Lie algebra h(3) has a basis {a1, a2, a3} for which the Lie products are

[a1, a2] = a3, [a1, a3] = 0, [a2, a3] = 0.

A generic Lie system for the particular case of H(3) takes the form

Rg(t)−1∗g(t)(ġ(t)) = −b1(t)a1 − b2(t)a2 − b3(t)a3,

and we are now interested in the one with b3(t) = 0 for all t, i.e.,

Rg(t)−1∗g(t)(ġ(t)) = −b1(t)a1 − b2(t)a2.(21)

Writing the solution starting from the identity of (21) as the product of exponentials

g(t) = exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3),

and applying the Wei–Norman formula (6) we find the system of differential equations

v̇1 = b1, v̇2 = b2, v̇3 = b2 v1,

with initial conditions v1(0) = v2(0) = v3(0) = 0. The solution can be found immediately:

v1(t) =
∫ t

0
b1(s) ds, v2(t) =

∫ t

0
b2(s) ds, v3(t) =

∫ t

0
b2(s)

∫ s

0
b1(r) dr ds.(22)

The preceding solution can be used in order to find the general solution of the given
system (19). We only need to find a suitable parametrization of the Lie group H(3), and
the expression of the group action with respect to which the original vector fields are the
fundamental vector fields. If we take the canonical coordinates of second class defined
by g = exp(aa1) exp(ba2) exp(ca3), when g ∈ H(3), it can be shown that such an action
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reads
Φ : H(3)×R3 → R3

((a, b, c), (x, y, z)) 7→ (x− a, y − b, z + ay − bx− ab− 2c),

the group law being expressed as

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ − ba′).
Then, the general solution of (19) is

Φ((−v1, −v2, −v3), (x0, y0, z0)) = (x0 + v1, y0 + v2, z0 + x0v2 − y0v1 − v1v2 + 2v3),

where v1 = v1(t), v2 = v2(t), and v3 = v3(t) are given by (22).

6.3. Hopping robot in flight phase. Next we consider another example coming from a
physical model: a hopping robot in flight phase, which has been studied, e.g., in [20]. The
system consists of a body with an actuated leg that can rotate and extend. The coordi-
nates are (ψ, l, θ), describing the body angle, leg extension and leg angle of the robot,
respectively. The constant ml is the mass of the leg, and the mass of the body is taken to
be one. The interest is focused on the behaviour of the system for small elongation, that
is, near l = 0. Precisely, the approximation of the system in the neighbourhood of l = 0
will lead to a Lie system related to the Heisenberg–Weyl group, and therefore related
also to the previous example.

The controls of the system are the leg angle and extension velocities. The control
system takes the form [20]

ψ̇ = b1(t), l̇ = b2(t), θ̇ = − ml(l + 1)2

1 +ml(l + 1)2 b1(t),(23)

whose solutions are the integral curves of the time-dependent vector field b1(t)Y1 +
b2(t)Y2, where now

Y1 =
∂

∂ψ
− ml(l + 1)2

1 +ml(l + 1)2

∂

∂θ
, Y2 =

∂

∂l
.

However, the system (23) cannot be considered as a Lie system, since the iterated Lie
brackets

[Y2, [Y2, . . . [Y2, Y1] · · ·]]
generate at each step vector fields linearly independent from those obtained at the pre-
vious stage. Notwithstanding, in order to steer the original system by sinusoids, it was
proposed in [20] to take the Taylor approximation, linear in l, of the system, that is,

ψ̇ = b1(t), l̇ = b2(t), θ̇ = −(k1 + k2l)b1(t),(24)

where the constants k1 and k2 are defined as

k1 =
ml

1 +ml
, k2 =

2ml

(1 +ml)2 ,

and then the vector fields become

X1 =
∂

∂ψ
− (k1 + k2l)

∂

∂θ
, X2 =

∂

∂l
.(25)
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Now, the new vector field

X3 = [X1, X2] = k2
∂

∂θ

closes, jointly with X1, X2, the Lie algebra (20), so that (24) can be regarded as a Lie
system with associated Lie algebra h(3).

If we use the previously defined canonical coordinates (a, b, c) of second kind for
parametrizing the group g ∈ H(3), the corresponding (local) action to our Lie system
reads

Φ : H(3)×M → M

((a, b, c), (ψ, l, θ)) 7→ (ψ − a, l − b, θ + k2(al − c− ab) + ak1),

where M is a suitable open set of R3. Then, the general solution of the system (24) can
be written, for t small enough, as

Φ((−v1, −v2, −v3), (ψ0, l0, θ0)) = (ψ0 + v1, l0 + v2, θ0 + k2(v3 − v1l0 − v1v2)− k1v1),

where v1 = v1(t), v2 = v2(t), and v3 = v3(t) are given by (22). This result can be checked
by direct integration.

6.4. Kinematics of the generalization of the elastic problem of Euler as a Lie system.
Recently, Jurdjevic has generalized the so-called elastic problem of Euler to homogeneous
spaces of constant curvature embedded in a three dimensional Euclidean space, in order
to study certain integrable Hamiltonian systems from the point of view of optimal control
theory [15]. We will only deal with the kinematic equations of such systems, which turn
out to be Lie systems.

The system of interest is the control system with configuration space R3, and coor-
dinates (x1, x2, x3), given by

ẋ1 = −b1(t)x2 − b2(t)x3, ẋ2 = b1(t)x1 + b3(t)x3, ẋ3 = ε (b2(t)x1 − b3(t)x2),(26)

where ε = ±1, 0. Its solutions are the integral curves of the time-dependent vector field
b1(t)X1(x) + b2(t)X2(x) + b3(t)X3(x), where

X1 = x1
∂

∂x2
− x2

∂

∂x1
, X2 = ε x1

∂

∂x3
− x3

∂

∂x1
, X3 = x3

∂

∂x2
− ε x2

∂

∂x3
.(27)

These vector fields satisfy the commutation relations

[X1, X2] = X3, [X2, X3] = εX1, [X3, X1] = X2,

and hence they generate a Lie algebra isomorphic to gε of the Lie group Gε, given by
G0 = SE(2), G1 = SO(3) and G−1 = SO(2, 1). Therefore, the case ε = 0 essentially
reduces to the first example studied in this section. We take a basis {a1, a2, a3} of gε in
which the Lie products read

[a1, a2] = a3, [a2, a3] = ε a1, [a3, a1] = a2,

and define the signature-dependent trigonometric functions (see, e.g., [1]):

Cε(x) =





cosx ε = 1
1 ε = 0
coshx ε = −1

Sε(x) =





sin x ε = 1
x ε = 0
sinh x ε = −1

Tε(x) =
Sε(x)
Cε(x)

,
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which satisfy

Cε(x+ y) = Cε(x)Cε(y)− ε Sε(x)Sε(y), Sε(x+ y) = Cε(x)Sε(y) + Sε(x)Cε(y),

as well as C2
ε (x) + ε S2

ε (x) = 1, and

dCε(x)
dx

= −ε Sε(x),
dSε(x)
dx

= Cε(x),
dTε(x)
dx

= 1 + ε T 2
ε (x) =

1
C2
ε (x)

.

Writing the solution of the problem associated to (26) in the group Gε as the product
g(t) = exp(−v1(t)a1) exp(−v2(t)a2) exp(−v3(t)a3), and using the Wei–Norman formula
(6), we obtain the system of differential equations for v1(t), v2(t) and v3(t):

v̇1 = b1 + ε Tε(v2)(b3 cos v1 + b2 sin v1),

v̇2 = b2 cos v1 − b3 sin v1,

v̇3 =
b3 cos v1 + b2 sin v1

Cε(v2)
,

with v1(0) = v2(0) = v3(0) = 0. Other possible reorderings of the factorization in expo-
nentials will give rise to similar systems of equations. For ε = ±1 the group Gε is simple
and none of the Wei–Norman systems can be integrated by quadratures in a general
case. For the particular case treated by Jurdjevic [16] we must put (with our notation)
b1(t) = 1, b2(t) = 0 and b3(t) = k(t).

6.5. Reduction of Lie systems in control theory. Finally, we would like to point out
that there exist a technique for reducing the problem of solving a given Lie system in a
Lie group G to solving a similar Lie system but in a subgroup H, provided a particular
solution of the problem corresponding to the former in an associated homogeneous space
G/H is known (see, e.g., [7]). This reduction procedure can be shown to be useful as
well in the study of the particular kind of drift-free control systems, linear in the control
functions, which in addition are Lie systems.

Take for instance, in the simplified model of maneuvering an automobile discussed
before, the subgroup H = {(0, 0, b)}. In these coordinates, τ : SE(2) → SE(2)/H is
τ(θ, a, b) = (θ, a). Taking coordinates (z1, z2) in M = SE(2)/H, we have that the left
action of SE(2) on M is given by

Φ((θ, a, b), (z1, z2)) = (z1 + θ, z2 + a cos z1 + b sin z1).

The fundamental vector fields with respect to this action are

XH
1 = − ∂

∂z1
, XH

2 = − cos z1
∂

∂z2
, XH

3 = − sin z1
∂

∂z2
,

which satisfy

[XH
1 , X

H
2 ] = XH

3 , [XH
2 , X

H
3 ] = 0, [XH

1 , X
H
3 ] = −XH

2 ,

and the equations on the homogeneous space M to be solved are

ż1 = −b1(t), ż2 = −b2(t) cos z1.

Assume we have a curve on SE(2), g1(t), such that the coordinates of its projection
τ(g1(t)) = (z1(t), z2(t)) satisfy the previous equations. For example, we take g1(t) =
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(z1(t), z2(t), 0). Then, we can reduce the problem to solving an equation on H, which
takes the form

ḃ(t) = b2(t) sin z1(t),

which is just a Lie system for the additive group of the real line.
As a second and last example, consider again the kinematic equations of the general-

ized elastic problem of Euler treated previously. In this case, however, it is advantageous
to consider instead of the Lie group Gε, its universal covering Ḡε, in order to perform
the reduction. We have that Ḡ1 = SU(2), Ḡ−1 = SU(1, 1), and Ḡ0 = SE(2). The ele-
ments of the group Ḡε can be parametrized by four real numbers (a, b, c, d) such that
a2 + b2 + ε(c2 + d2) = 1, the group law

(a, b, c, d)(a′, b′, c′, d′) = (a′′, b′′, c′′, d′′)

being given by

a′′ = aa′ − bb′ − ε (cc′ + dd′), b′′ = ba′ + ab′ − ε (dc′ − cd′),
c′′ = ca′ + db′ + ac′ − bd′, d′′ = da′ − cb′ + bc′ + ad′,

see also [3, 22]. To perform the reduction we take the subgroup H generated by a1. The
projection τ : Ḡε → Ḡε/H is defined by

τ(a, b, c, d) =
(
ac− bd
a2 + b2

,
bc+ ad

a2 + b2

)
.

Taking coordinates (z1, z2) in M = Ḡε/H, the left action of Ḡε on M reads

Φ((a, b, c, d), (z1, z2)) =
(
N1

D
,
N2

D

)
,

where

N1 = (a2 − b2 − ε (c2 − d2))z1 − 2(ab+ ε cd)z2 + (ac− bd)(1− ε (z2
1 + z2

2)),

N2 = 2(ab− ε cd)z1 + (a2 − b2 + ε (c2 − d2))z2 + (ad+ bc)(1− ε (z2
1 + z2

2)),

D = a2 + b2 − 2ε ((ac+ bd)z1 + (ad− bc)z2) + ε2(c2 + d2)(z2
1 + z2

2).

The fundamental vector fields with respect to this action are

XH
1 = z2

∂

∂z1
− z1

∂

∂z2
, XH

2 = −1
2

(1 + ε (z2
1 − z2

2))
∂

∂z1
− ε z1z2

∂

∂z2
,

XH
3 = −ε z1z2

∂

∂z1
− 1

2
(1− ε (z2

1 − z2
2))

∂

∂z2
,

which satisfy

[XH
1 , X

H
2 ] = XH

3 , [XH
2 , X

H
3 ] = εXH

1 , [XH
1 , X

H
3 ] = −XH

2 ,

and the equations on the homogeneous space M to be solved are

ż1 = b1(t)z2 −
1
2
b2(t)(1 + ε (z2

1 − z2
2))− b3(t) ε z1z2,

ż2 = −b1(t)z1 − b2(t) ε z1z2 −
1
2
b3(t)(1− ε (z2

1 − z2
2)).
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Assume we have a curve g1(t) on Ḡε such that its projection τ(g1(t)) = (z1(t), z2(t))
satisfies the previous equations. We can take, for example,

g1(t) =
(1, 0, z1(t), z2(t))√
1 + ε (z2

1(t) + z2
2(t))

.

Then, we can reduce the problem to an equation on H: if its solution is of the form
h(t) = (cos(v(t)/2), sin(v(t)/2), 0, 0), then v(t) satisfies

v̇(t) = −b1(t) + ε (b3(t)z1(t)− b2(t)z2(t)).
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