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Abstract. A new geometrical setting for classical field theories is introduced. This descrip-
tion is strongly inspired by the one due to Skinner and Rusk for singular lagrangian systems.
For a singular field theory a constraint algorithm is developed that gives a final constraint sub-
manifold where a well-defined dynamics exists. The main advantage of this algorithm is that the
second order condition is automatically included.

1. Introduction. The search of a convenient setting for classical field theories has
been an strong motivation for geometers and physicists in the last forty years. In the end
of the sixties the so-called multisymplectic formalism was developed, which is a natural
extension of the symplectic framework for mechanics.
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The multisymplectic approach was developed by the Polish school led by W. Tulczyjew
(see [3] for more details), and independently by P. L. Garćıa and A. Pérez-Rendón [12, 13],
and Goldschmidt and Sternberg [14]. This approach leads to a geometric definition of
multisymplectic form in [17, 18], and more recently in [4, 5] where a careful study of
these structures is developed (see also [27, 28] for previous results, and [2, 25, 29, 30] for
recent developments).

There are two different ways to present the evolution equations in a geometric form.
One uses the notion of Ehresmann connections [23, 24] which is widely employed along
the present paper. The other one uses the notion of multivector field (see [8, 9, 10, 11]).
Of course, both are equivalent, and permit to develop a convenient constraint algorithm
when we are dealing with singular lagrangians.

Alternative geometric approaches based on the so-called n-symplectic geometry (see
[20] for a recent survey), and polysymplectic geometry (see [31, 32]) are also available.

The aim of the present paper is to give a new geometric setting, based on that devel-
oped by Skinner and Rusk [33, 34]. In order to treat with singular lagrangian systems,
Skinner and Rusk have constructed a hamiltonian system on the Withney sum T ∗Q⊕TQ
over the configuration manifold Q. The advantage of their approach lies in the fact that
the second order condition of the dynamics is automatically satisfied. This does not hap-
pen in the Gotay and Nester formulation, where the second order condition problem has
to be considered after the implementation of the constraint algorithm (see [15, 16, 21]).

Here, we start with a lagrangian function defined on Z, where πXZ : Z → X is the 1-jet
prolongation of a fibration πXY : Y → X. We consider the fibration πXW0 : W0 → X,
where W0 = Λn2Y ×Y Z is the fibered product. On W0 we construct a multisymplectic
form by pulling back the canonical multisymplectic form on Λn2Y , and define a conve-
nient hamiltonian. The solutions of the field equations are viewed as integral sections of
Ehresmann connections in the fibration πXZ : Z → X. The resulting algorithm is com-
pared with the ones developed in the lagrangian and hamiltonian settings. The scheme
is applied to an example, the bosonic string. The case of time-dependent mechanics is
recovered as a particular case. The paper also contains three appendices exhibiting some
notions and properties of Ehresmann connections.

2. Lagrangian formalism. A classical field theory consists of a fibration πXY : Y →
X (that is, πXY is a surjective submersion) over an orientable n-dimensional manifold X
and an n-form Λ (the lagrangian form) defined on the 1-jet prolongation πXZ : J1πXY →
X along the projection πXY . We will use the notation Z = J1πXY . In addition, if η is
a fixed volume form on X we have Λ = Lη, where L is a function on Z. An additional
fiber bundle πY Z : Z → Y is also obtained. Here X represents the space-time manifold,
and the fields are viewed as sections of πXY . (See [3, 17, 18, 19, 31, 32]).

Definition 2.1. A lagrangian L : Z → R is said to be regular if the hessian matrix
(

∂2L

∂ziµ∂z
j
ν

)

is regular. Otherwise, L is said to be singular.
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Along this paper we will choose fibered coordinates (xµ, yi, ziµ) on Z such that η =
dnx = dx1 ∧ . . . ∧ dxn. Here µ runs from 1 to n, and i runs from 1 to m, so that Y has
dimension n+m. A useful notation will be dn−1xµ = i ∂

∂xµ
η.

The volume form η permits to construct a tensor field of type (1, n) on Z:

Sη = (dyi − ziµdxµ) ∧ dn−1xν ⊗ ∂

∂ziν
.

Next, the Poincaré-Cartan n-form and (n+ 1)-form are defined as follows:

ΘL = Λ + S∗η(dL), ΩL = −dΘL,

where S∗η is the adjoint operator of Sη. In coordinates, we have

ΘL =
(
L− ziµ

∂L

∂ziµ

)
dnx+

∂L

∂ziµ
dyi ∧ dn−1xµ

ΩL = −d
(
L− ziµ

∂L

∂ziµ

)
∧ dnx− d(

∂L

∂ziµ
) ∧ dyi ∧ dn−1xµ.

An extremal of L is a section φ of πXY such that, for any vector field ξZ on Z,

(j1φ)∗(iξZΩL) = 0(1)

where j1φ is the first jet prolongation of φ.
As is well-known, φ is an extremal of L if and only if it satisfies the Euler-Lagrange

equations:

(j1φ)∗
(
∂L

∂yi
− d

dxµ

(
∂L

∂ziµ

))
= 0, 1 ≤ i ≤ n.(2)

We can consider a more general kind of solutions, those sections ψ of the fiber bundle
πXZ : Z → X such that

ψ∗(iξZΩL) = 0,(3)

for any vector field ξZ on Z. Equation (3) is referred as the de Donder equations.
Looking at (3) we have an alternative characterization. Let Γ be an Ehresmann con-

nection in πXZ : Z → X, with horizontal projector h. Consider the equation

ihΩL = (n− 1)ΩL.(4)

The horizontal sections (if they exist) of Γ are just the solutions of the de Donder problem.
Indeed, if

h
(

∂

∂xµ

)
=

∂

∂xµ
+ Γiµ

∂

∂yi
+ Γiνµ

∂

∂ziν

then a direct computation shows that equation (4) holds if and only if

(Γjν − zjν)
(

∂2L

∂ziµ∂z
j
ν

)
= 0(5)

∂L

∂yi
− ∂2L

∂xµ∂ziµ
− Γjµ

∂2L

∂yj∂ziµ
− Γjµν

∂2L

∂zjν∂ziµ
+ (Γjν − zjν)

∂2L

∂yi∂zjν
= 0(6)

(see [23]).
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If the lagrangian L is regular, then Eq. (5) implies that Γiµ = ziµ and therefore (6)
becomes

∂L

∂yi
− ∂2L

∂xµ∂ziµ
− zjµ

∂2L

∂yj∂ziµ
− Γjµν

∂2L

∂zjν∂ziµ
= 0.(7)

Now, if τ(xµ) = (xµ, τ i(x), τ iµ(x)) is an integral section of Γ we would have

ziµ =
∂τ i

∂xµ
Γiµν =

∂τ iµ
∂xν

which proves that Eq. (7) is nothing but the Euler-Lagrange equations for L.
If the lagrangian L is regular, then every solution ψ of the de Donder equations (3)

is automatically a 1-jet prolongation, say ψ = j1φ and the section φ of πXY is a solution
of equations (1).

In terms of Ehresmann connections, if L is regular, then any solution Γ of equations
(4) is semi-holonomic (see Appendix B).

3. Hamiltonian formulation. Let ΛnrY , 1 ≤ r ≤ m, be the subbundle of the bundle
ΛnY of n-forms on Y consisting of those n-forms which vanish when r of their arguments
are vertical. We have a chain of vector bundles over Y :

0 ⊂ Λn1Y ⊂ Λn2Y ⊂ · · · ⊂ ΛnY.

The elements of Λn1Y (resp. Λn2Y ) are locally expressed as p(x, y)dnx (resp. pdnx +
pµi dy

i ∧ dn−1xµ). Thus, we introduce local coordinates (xµ, yi, p) on the manifold Λn1Y ,
and (xµ, yi, p, pµi ) on Λn2Y .

The manifold ΛnY carries a canonical n-form, Θ0, which is defined as follows:

Θ0(ω)(ξ1, ξ2, . . . , ξn) = ω(ν(ω))(ν∗(ξ1), ν∗(ξ2), . . . , ν∗(ξn))

where ω ∈ ΛnY , ξi ∈ Tω(ΛnY ), and ν : ΛnY → Y is the canonical projection.
This form Θ0 induces an n-form Θr on Λnr Y , for each r, 1 ≤ r ≤ m.
The closed (n+ 1)-forms Ωr = −dΘr (and of course, Ω0 = −dΘ0) are examples of the

so-called multisymplectic forms according the following definition.

Definition 3.1. A multisymplectic form on a manifold M is a closed k-form Ω on M
such that the linear mapping v ∈ TxM → ivΩ ∈ Λk−1T ∗xM is injective for all x ∈ M .
The manifold M equipped with a multisymplectic form Ω will be called a multisymplectic
manifold, usually denoted by the pair (M,Ω). Two multisymplectic manifolds (M,Ω) and
(M̄, Ω̄) will be said multisymplectomorphic if there exists a diffeomorphism φ : M → M̄

preserving the multisymplectic forms, say φ∗Ω̄ = Ω; φ will be called a multisymplecto-
morphism.

Remark 3.2. It will be useful to write the local expressions of the canonical multi-
symplectic forms on Λn2Y :

Θ2 = pdnx+ pµi dy
i ∧ dn−1xµ, Ω2 = −dp ∧ dnx− dpµi ∧ dyi ∧ dn−1xµ.

A direct computation shows the following.

Proposition 3.3. Assume that n ≥ 2. Then, a lagrangian L is regular if and only if
the pair (Z,ΩL) is a multisymplectic manifold.
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Since Λn1Y is a vector subbundle of Λn2Y we can construct the quotient vector bundle
Λn2Y/Λ

n
1Y which will be denoted by Z∗. The projection Λn2Y → Z∗ will be denoted by

λ. We also have a fibration πXZ∗ : Z∗ → X.
In this context, a hamiltonian h is a section of λ. Using this hamiltonian we define

an n-form Θh on Z∗ by pulling back the canonical n-form Θ2, i.e. Θh = h∗Θ2. We put
Ωh = −dΘh so that Ωh = h∗Ω2.

A section σ of πXZ∗ : Z∗ → X is said to satisfy the Hamilton equations for a given
hamiltonian h if

σ∗(iξZ∗Ωh) = 0 ,(8)

for any vector fields ξZ∗ on Z∗.
In local coordinates (xµ, yi, pµi ) for Z∗, the section h may be represented by a local

function H:
p = −H(xµ, yi, pµi )

then

Θh = −Hdnx+ pµi dy
i ∧ dn−1xµ, Ωh = dH ∧ dnx− dpµi ∧ dyi ∧ dn−1xµ,(9)

and the Hamilton equations for a section σ become:

∂yi

∂xµ
=
∂H

∂pµi
,

∂pµi
∂xµ

= −∂H
∂yi

.(10)

As in the preceding section, we can consider a connection Γ̃ in πXZ∗ : Z∗ → X, with
horizontal projector h̃. An intrinsic version of equations (10) is then the following:

ih̃Ωh = (n− 1)Ωh.(11)

Indeed, if Γ̃ is flat, then its integral sections are solutions of the Hamilton equations.

Remark 3.4. If n ≥ 2 then, from (9), it follows that Ωh is a multisymplectic form
on Z∗.

4. The Legendre transformation. Let L be a lagrangian function. We define a
fiber preserving map

legL : Z → Λn2Y

as follows:
legL(j1

xφ)(X1, . . . , Xn) = (ΘL)j1xφ(X̃1, . . . , X̃n)

for all j1
xφ ∈ Z and Xi ∈ Tφ(x)Y , where X̃i ∈ Tj1xφZ are such that (πY Z)∗(X̃i) = Xi.

In local coordinates, we have

legL(xµ, yi, ziµ) =
(
xµ, yi, p = L− ziµ

∂L

∂ziµ
, pµi =

∂L

∂ziµ

)
.

The Legendre transformation LegL : Z → Z∗ is defined as the composition LegL =
λ ◦ legL, and it is locally expressed as

LegL(xµ, yi, ziµ) =
(
xµ, yi,

∂L

∂ziµ

)
.(12)

From the definitions, we deduce that (legL)∗Θ2 = ΘL and (legL)∗Ω2 = ΩL.
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Proposition 4.1. The lagrangian L is regular if and only if the Legendre transfor-
mation LegL : Z → Z∗ is a local diffeomorphism.

The Legendre transformation permits to connect the lagrangian and hamiltonian de-
scriptions as follows.

Assume that the lagrangian L is hyper-regular, that is, LegL : Z → Z∗ is a global
diffeomorphism. We define a hamiltonian section h : Z∗ → Λn2Y by setting

h = legL ◦ (LegL)−1.

Then, from (12) it follows that

Leg∗LΘh = ΘL, Leg∗LΩh = ΩL.

Therefore, the solutions of equations (3) and (8) are LegL-related. In terms of connections,
the solutions of equations (4) and (11) are also LegL-related.

If the lagrangian is regular, the equivalence is only at local level. More precisely, if
n ≥ 2, we have that LegL is a local multisymplectomorphism between the multisymplectic
manifolds (Z,ΩL) and (Z∗,Ωh).

For singular lagrangians, a constraint algorithm was developed in [23] (see Section 6).

5. A new geometric setting. Consider the fibered product W0 = Λn2Y ×Y Z with
canonical projections pr1 : W0 → Λn2Y and pr2 : W0 → Z. We consider fibered coordi-
nates (xµ, yi, p, pµi , z

i
µ) on W0.

Define the n-form Θ = pr∗1Θ2 and the (n+ 1)-form Ω = −dΘ = pr∗1Ω2.
We also define a function Φ : W0 → R as follows. Take an element (ωφ(x), j

1
xφ) ∈W0,

then Φ((ωφ(x), j
1
xφ)) = a(x), where

φ∗(ωφ(x)) = a(x)η(x).

Locally, we have
Φ(xµ, yi, p, pµi , z

i
µ) = p+ pµi z

i
µ.

Define also the function H0 : W0 → R by setting

H0 = Φ− pr∗2L.

The function H0 locally reads as

H0(xµ, yi, p, pµi , z
i
µ) = p+ pµi z

i
µ − L(xµ, yi, ziµ).

Put
ΩH0 = Ω + dH0 ∧ η.

In local coordinates we have

ΩH0 = −dp ∧ dnx− dpµi ∧ dyi ∧ dn−1xµ + dH0 ∧ dnx.
Let Γ̄ be an Ehresmann connection in the fibered bundle πXW0 : W0 → X, with horizontal
projector h̄.

We search for a solution of the equation:

ih̄ΩH0 = (n− 1)ΩH0 .(13)
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Define

W1 = {u ∈W0 / ∃h̄u : TuW0 → TuW0 linear such that h̄2
u = h̄u,

ker h̄u = (V πXW0)u, ih̄uΩH0(u) = (n− 1)ΩH0(u)}.
Suppose that the local expression of h̄ is

h̄
(

∂

∂xµ

)
=

∂

∂xµ
+Aiµ

∂

∂yi
+Bµ

∂

∂p
+ Cνµi

∂

∂pνi
+Di

µν

∂

∂ziν

h̄
(
∂

∂yi

)
= 0, h̄

(
∂

∂p

)
= 0,

h̄
(

∂

∂pµi

)
= 0, h̄

(
∂

∂ziµ

)
= 0.

We then obtain

ih̄ΩH0 = ih̄(−dp ∧ dnx− dpµi ∧ dyi ∧ dn−1xµ + dH0 ∧ dnx)

= (n− 1)ΩH0 +
(
Cµµi −

∂L

∂yi

)
dyi ∧ dnx

+(ziµ −Aiµ) dpµi ∧ dnx+
(
pµi −

∂L

∂ziµ

)
dziµ ∧ dnx.

Therefore, the submanifold W1 ofW0 is determined by the vanishing of the constraints:

pµi −
∂L

∂ziµ
= 0,

and the components of the connection h̄ would satisfy the following relations:

Aiµ = ziµ,(14)

Cµµi =
∂L

∂yi
.(15)

From the definition of W1 we know that for each point u ∈W1 there exists a “horizon-
tal projector” h̄u : TuW0 → TuW0 satisfying equation (13). However, we cannot ensure
that such h̄u for each u ∈W1 will take values in TuW1.

But notice that the condition h̄u(TuW0) ⊂ TuW1, ∀u ∈W1 is equivalent to having

h̄
(

∂

∂xµ

)(
pκj −

∂L

∂zjκ

)
= 0

or, equivalently,

Cκµj =
∂2L

∂zjκ∂xµ
+ ziµ

∂2L

∂zjκ∂yi
+Di

µν

∂2L

∂zjκ∂ziν
.(16)

We remark that if the lagrangian L is regular, then equations (16) have solutions D’s
for a particular choice of C’s satisfying equations (15). Of course, we can take arbitrary
values for the B’s. A global solution is obtained using partitions of unity.

In such a case, we obtain by restriction a connection Γ̄ in the fiber bundle πXW1 :
W1 → X, which is a solution of equation (13) when it is restricted to W1 (in fact, we have
a family of such solutions). Assume that Γ̄ is flat, and ψ̄ is a horizontal section of Γ̄. First
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of all, notice that ψ̄ takes values in W1 which implies that ψ = pr2◦ψ̄ is a jet prolongation.
Let us explain better this assertion. If ψ̄(xµ) = (xµ, yi(x), p(x), pµi (x), ziµ(x)) then we have

ziµ(x) =
∂yi

∂xµ
.

Since

Di
µν =

∂ziν
∂xµ

we deduce that along ψ we have

∂L

∂yj
− ∂2L

∂zjµ∂xµ
− ∂yi

∂xµ
∂2L

∂zjµ∂yi
− ∂ziν
∂xµ

∂2L

∂zjµ∂ziν
= 0,

that is,
∂L

∂yj
− d

dxµ

(
∂L

∂zjµ

)
= 0

which are the Euler-Lagrange equations for L.
Up to now, we have no assigned any meaning to the coordinate p. Consider the

submanifold W̄1 of W1 defined by the equation H0 = 0. In other words, W̄1 is locally
characterized by the equation

p = −(pµi z
i
µ − L),

which defines a local energy.
We can ask when a solution exists on W̄1. Indeed, it is possible to construct a family

of connections in the fiber bundle πXW̄1
: W̄1 → X which solve equation (13) as follows.

We have to choose coefficients Bµ, Cνµi, and Di
µν verifying (15) and (16), and in

addition,

h̄(
∂

∂xµ
)(H0) = 0.(17)

A direct computation shows that (17) is equivalent to the following local conditions:

Bµ + Cνµiz
i
ν =

∂L

∂xµ
+ ziµ

∂L

∂yi
.(18)

Now, if we choose appropriate values for Cνµi satisfying (15) and (16), then we can take the
values for Bµ given by equation (18). A global solution is finally obtained using partitions
of the unity.

Denote by ΩW̄1
the restriction of ΩH0 to W̄1.

Proposition 5.1. If n ≥ 2 and the Lagrangian L is regular then ΩW̄1
is a multisym-

plectic form.

Proof. The result follows from a direct computation taking into account that on W1

we have

pµi =
∂L

∂ziµ

and that the hessian matrix (
∂2L

∂ziµ∂z
j
ν

)

is regular.
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Next, we shall relate the above construction with the preceding ones in the lagrangian
and the hamiltonian settings.

First of all, the following results are quite obvious:

• The submanifold W̄1 is diffeomorphic to Z.
• If n ≥ 2 and L is (hyper)regular, then the multisymplectic manifolds (W̄1,ΩW̄1

),
(Z,ΩL) and (Z∗,Ωh) are (globally) locally multisymplectomorphic. Indeed, the cor-
responding multisymplectomorphisms are the following ones:

(pr2)|W̄1
: W̄1 → Z, LegL : Z → Z∗, LegL ◦ (pr2)|W̄1

: W̄1 → Z∗.

(Note that λ ◦ (pr1)|W̄1
= LegL ◦ (pr2)|W̄1

).

• As a consequence, one can choose connections h, h̃ and h̄ in the fibrations πXZ :
Z → X, πXZ∗ : Z∗ → X, and πXW̄1

: W̄1 → X, respectively, such that they are
solutions of equations (4), (11) and (13), respectively, and, in addition, they are
related by the above multisymplectomorphisms.

The following diagram summarizes the above discussion:

W0 = Λn2Y ×Y Z�������)

PPPPPPPq
Z Λn2Y

pr2 pr1

W1

W̄1

Y

X

�
�>

HH
HHY

XXX
XXX

XXX
Xy

�
��/

?

HHHHHHHHj Z∗

Q
Q
Q
Qs�������9

@
@
@
@
@
@
@
@@R

����������

πXZ

?
πXY πXZ∗

6. Singular lagrangians. For a singular lagrangian L, we usually have to go further
in the constraint algorithm. Therefore, we will consider a subset W̄2 defined in order to
satisfy the tangency condition:

W̄2 = {u ∈ W̄1 / ∃h̄u : TuW0 → TuW̄1 linear such that h̄2
u = h̄u,

ker h̄u = (V πXW0)u, ih̄uΩH0(u) = (n− 1)ΩH0(u)}.

Assume that W̄2 is a submanifold of W̄1. If h̄u(TuW0) is not contained in TuW̄2, we go
to the next step, and so on.

At the end, and if the system has solutions, we will find a final constraint submanifold
W̄f , fibered over X (or over some open subset of X) (see Appendix C) and a connection
Γ̄f in this fibration such that Γ̄f is a solution of equation (13) restricted to W̄f .

Similar constraint algorithms can be developed using equations (4) and (11). Our
purpose in the following is to relate these three algorithms.
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Indeed, we can consider the subset

Z2 = {z ∈ Z / ∃hz : TzZ → TzZ linear such that h2
z = hz,

ker hz = (V πXZ)z, ihzΩL(z) = (n− 1)ΩL(z)}.
If Z2 is a submanifold, then there are solutions but we have to include the tangency
condition, and consider a new step:

Z3 = {z ∈ Z2 / ∃hz : TzZ → TzZ2 linear such that h2
z = hz ,

ker hz = (V πXZ)z, ihzΩL(z) = (n− 1)ΩL(z)}.
If Z3 is a submanifold of Z2, but hz(TzZ) is not contained in TzZ3, we go to the next step,
and so on. Finally, we will obtain (in the favorable cases) a final constraint submanifold
Zf and a connection in the fibration πXZ : Z → X along the submanifold Zf (in fact, a
family of connections) with horizontal projector h which is a solution of equation (4).

There is an additional problem, since our connection would be a solution of the de
Donder problem, but not a solution of the Euler-Lagrange equations. This problem is
solved by constructing a submanifold of Zf where such a solution exists (see [23, 24] and
below for more details).

To develop a hamiltonian counterpart, we need some weak regularity of the la-
grangian L.

Definition 6. 1. A lagrangian L : Z → R is said to be almost regular if legL(Z) = Z̃

is a submanifold of Λn2Y , and legL : Z → Z̃ is a submersion with connected fibers.

If L is almost regular, one has:

• Z̃1 = LegL(Z) is a submanifold of Z∗, and in addition, a fibration over X.
• The restriction λ1 : Z̃ → Z̃1 of λ is a diffeomorphism.
• The mapping Leg1 : Z → Z̃1 is a submersion with connected fibers.

Define a mapping h1 = (λ1)−1 : Z̃1 → Z̃, and a (n + 1)-form Ω̃1 on Z̃1 by Ω̃1 =
h∗1((Ω2)|

Z̃
). Obviously, we have Leg∗1Ω̃1 = ΩL.

The hamiltonian description is now based on the equation

ih̃Ω̃1 = (n− 1)Ω̃1(19)

where h̃ is a connection in the fibration πXZ̃1
: Z̃1 → X.

Proceeding as above, we construct a constraint algorithm as follows.
First, we define

Z̃2 = {z̃ ∈ Z̃1 / ∃h̃z̃ : Tz̃Z̃1 → Tz̃Z̃1 linear such that h̃2
z̃ = h̃z̃,

ker h̃z̃ = (V πXZ̃1
)z̃, ih̃z̃ Ω̃1(z̃) = (n− 1)Ω̃1(z̃)}.

If Z̃2 is a submanifold, then there are solutions but we have to include the tangency
condition, and consider a new step:

Z̃3 = {z̃ ∈ Z̃2 / ∃h̃z̃ : Tz̃Z̃1 → Tz̃Z̃2 linear such that h̃2
z̃ = h̃z̃,

ker h̃z̃ = (V πXZ̃1
)z̃, ih̃z̃ Ω̃1(z̃) = (n− 1)Ω̃1(z̃)}.

If Z̃3 is a submanifold of Z̃2, but h̃z̃(Tz̃Z̃1) is not contained in Tz̃Z̃3, we go to the next
step, and so on. Finally, we will obtain (in the favorable cases) a final constraint sub-
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manifold Z̃f and a connection in the fibration πXZ̃1
: Z̃1 → X along the submanifold

Z̃f (in fact, a family of connections) with horizontal projector h̃ which is a solution of
equation (11).

The important facts are the following:

• The mapping Leg1 : Z → Z̃1 preserves the constraint algorithms, that is, we have
Leg1(Zr) = Z̃r for each integer r ≥ 2.
• In consequence, both algorithms have the same behavior; in particular, if one of

them stabilizes, the same happens with the other, and at the same step, so we have
Leg1(Zf ) = Z̃f .
• In the latter case, the restriction Legf : Zf → Z̃f is a surjective submersion (that

is, a fibration) and Leg−1
f (Legf (z)) = Leg−1

1 (Leg1(z)), for all z ∈ Zf .

Therefore, the lagrangian and hamiltonian sides can be compared through the fibra-
tion Legf : Zf → Z̃f . Indeed, if we have a connection in the fibration πXZ : Z → X along
the submanifold Zf with horizontal projector h which is a solution of equation (4) (the de
Donder equation) and, in addition, the connection is projectable via Legf to a connection
in the fibration πXZ̃ : Z̃ → X along the submanifold Z̃f , then the horizontal projector of
the projected connection is a solution of equation (11) (the Hamilton equations). Con-
versely, given a connection in the fibration πXZ̃ : Z̃ → X along the submanifold Z̃f , with
horizontal projector h̃ which is a solution of equation (11), then every connection in the
fibration πXZ : Z → X along the submanifold Zf that projects onto h̃ is a solution of
the de Donder equation (4).

Assume that L is almost regular and construct the above algorithms. Take a Legf -
projectable connection Γ in the fibration πXZ : Z → X along the submanifold Zf with
horizontal projector h which is a solution of equation (4), and denote by Γ̃ its projection.
As we have shown, the horizontal projector h̃ is a solution of equation (11).

In general, Γ is not semi-holonomic, that is, Sη(h, . . . ,h) 6≡ 0 along Zf . However, we
can define a section β of the fibration LegL : Zf → Z̃f such that

(Sη(h, . . . ,h))|β(Z̃f )
= 0.

The construction of β is based on the following interpretation of the elements of Z.
Take z ∈ Z, that is, z is a 1-jet of a section φ of the fibration πXY : Y → X.

Since Hφ(x) = Tφ(x)(TxX) is a horizontal subspace of Tφ(x)Y , for every x ∈ X (in
fact, in the domain of φ) we can identify z with this horizontal subspace, which in local
coordinates means that if z = (xµ, yi, ziµ), then Hφ(x) is spanned by the tangent vectors
∂/∂xµ + ziµ∂/∂y

i.
With the above notations and the obvious identifications, we define

β(z̃) = TπY Z(h(Tz0Z)),(20)

where z0 ∈ Zf is an arbitrary point projecting onto z̃ through the projection Legf :
Zf → Z̃f .

We have:

• β(z̃) is independent of the choice of z0. This is a consequence of the following two
facts: h projects onto h̃, and πXZ∗ ◦ Legf = πXZ .
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• The point β(z̃) belongs to Zf . Indeed, consider the local vector field

U = (Γiµ − ziµ)
∂

∂ziµ
,

where Γiµ are the Christoffel components of Γ, that is,

h
(

∂

∂xµ

)
=

∂

∂xµ
+ Γiµ

∂

∂yi
+ Γiµν

∂

∂ziν
.

Since Γ is Legf -projectable, Γiµ is constant along the fiber over z̃.
From (5) and (12), we deduce that U is a vertical vector field with respect to the
fibration Legf : Zf → Z̃f , and in consequence it is tangent to the fiber over z̃.
Consider the curve

α(t) = ((xµ)0, (yi)0, (Γiµ)0 − exp(−t)((Γiµ)0 − (ziµ)0)),

where ((xµ)0, (yi)0, (ziµ)0) are the coordinates of z0, and (Γiµ)0 are the values of
Γiµ at the point z0 (in fact, along the whole fiber). α(t) is an integral curve of U
passing through z0 and totally contained in the fiber over z̃. Thus, the limit point
limt→+∞ α(t) is in this fiber, and a direct computation shows that limt→+∞ α(t) =
β(z̃).
• Now, it is obvious that Γ is semiholonomic at the point β(z̃).

Since β is a section, we deduce that β(Z̃f ) is a submanifold of Zf and hence of Z. In
addition, (Legf )|β(Z̃f )

: β(Z̃f )→ Z̃f is a diffeomorphism.

Next, we define a connection Γs in the fibration πXZ : Z → X along β(Z̃f ) as follows.
Its horizontal projector is given by

(hs)z : TzZ → Tzβ(Z̃f ), (hs)z = (T (Legf )|β(Z̃f )
(z))−1 ◦ h̃z̃ ◦ TLegf (z),

for all z ∈ β(Z̃f ), where z = β(z̃). A straightforward computation shows that Γs is a
solution of (4) and, in addition, is transported onto Γ̃ via the diffeomorphism (LegL)|β(Z̃f )

:

β(Z̃f ) → Z̃f . Thus, since Γ is semiholonomic along β(Z̃f ), we deduce that Γs is also
semiholonomic along β(Z̃f ).

Next, we will relate the above constructions with the algorithm developed from equa-
tion (13).

To do that, we first develop an alternative constraint algorithm based on the following
equation:

iĥ ΩW̄1
= (n− 1)ΩW̄1

,(21)

where ΩW̄1
is the restriction of ΩH0 to W̄1, and ĥ is the horizontal projector of a connec-

tion Γ̂ in the fibration πXW̄1
= (πXW0)|W̄1

: W̄1 → X.
The algorithm proceeds now as in the above cases, and it produces a chain of sub-

manifolds (in the favorable cases). Indeed, we define

Ŵ2 = {u ∈ W̄1 / ∃ĥu : TuW̄1 → TuW̄1 linear such that ĥ2
u = ĥu,

ker ĥu = (V πXW̄1
)u, iĥuΩW̄1

(u) = (n− 1)ΩW̄1
(u)}.

If we assume that Ŵ2 is a submanifold of W̄1, since in general ĥu(TuW̄1) is not contained
in TuŴ2, we go to the next step, and so on.
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At the end, and if the system has solutions, we will find a final constraint submanifold
Ŵf , fibered over X (or over some open subset of X) (see Appendix C) and a connection
Γ̂f in this fibration such that Γ̂f is a solution of equation (21) restricted to Ŵf .

It should be noticed that W̄r ⊂ Ŵr, for all integer r ≥ 2. Indeed, any pointwise solution
of equation (13) is a solution of equation (21). As a consequence, both algorithms have
the same behavior.

This last algorithm can be compared with the lagrangian and hamiltonian ones. In
fact, since

(p̃r2)∗ΩL = ΩW̄1
, (p̃r1)∗Ω̃1 = ΩW̄1

,

where p̃r1 = λ1 ◦ (pr1)|W̄1
and p̃r2 = (pr2)|W̄1

, we have

p̃r1(Ŵr) = Z̃r, p̃r2(Ŵr) = Zr,

for all r ≥ 2, and a fortiori we deduce that all the algorithms have the same behavior
and

p̃r1(Ŵf ) = Z̃f , p̃r2(Ŵf ) = Zf .

Thus, the corresponding solutions can be related via the convenient projections. More
precisely, we can construct a connection Γ (resp. Γ̃, Γ̂) in the fibration πXZ : Z → X

(resp. πXZ̃1
: Z̃1 → X, πXW̄1

: W̄1 → X) along the submanifold Zf (resp. Z̃f , Ŵf ) such
that they are related by the projections Legf , p̃r1 and p̃r2.

In addition, the connection Γ can be chosen such that its restriction to W̄f is a
solution of equation (13). Making all these selections, and performing the construction
of the section β we conclude that β(Z̃f ) ⊂ W̄f .

The following diagram summarizes the above discussion:

W̄1 W̄1

Z Z̃1

@
@
@
@

@
@
@
@

@
@
@@R-LegL

(pr2)|W̄1

(pr1)|W̄1
(pr1)|W̄1

Ŵ2 W̄2

Z2 Z̃2

@
@
@
@

@
@
@
@

@
@
@@R-

...
...

...
...

Ŵf W̄f

Zf Z̃f

@
@
@
@

@
@
@
@

�

@
@
@@R-Legf

(pr2)|Ŵf

(pr1)|W̄f(pr1)|Ŵf

�

PPPPPPPPPPPq

PPPPPPPPPPPq

6

6

66

6

6

6

6

6

6

PPPPPPPPPPPPq

6

6

6
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Remark 6.2. According to Appendix C, one has that all the connections considered
in this section define bona fide connections in the corresponding restricted fibrations

πX0Zf : Zf → X0,

πX0Z̃f
: Z̃f → X0,

πX0W̄f
: W̄f → X0,

πX0Ŵf
: Ŵf → X0,

where X0 is an open submanifold of X.

7. Example: The bosonic string (see [1, 17]). Let X be a 2-dimensional manifold,
and (B, g) a d + 1-dimensional spacetime manifold endowed with a Lorentz metric g of
signature (−,+, . . . ,+). A bosonic string is a map φ : X → B.

In the following, we will follow the Polyakov approach to classical bosonic string
theory. Let S1,1

2 (X) be the bundle over X of symmetric 2-covariant tensors with signature
(−,+) or (1, 1). We take the vector bundle π : Y = X ×B×S1,1

2 (X)→ X. Therefore, in
this formulation, a field ψ is a section (φ, h) of the vector bundle Y = X×B×S1,1

2 (X)→
X, where φ : X → Y is the bosonic string and h is a Lorentz metric on X.

Lagrangian description. We have that Z = J1(X×B)×X J1(S1,1
2 (X)). Taking coordi-

nates (xµ), (yi) and (xµ, hµη) on X, B and S1,1
2 (X) then the canonical local coordinates

on Z are (xµ, yi, hηξ, yiµ, hηξµ). In this system of local coordinates, the Lagrangian density
is given by

Λ = −1
2

√
− det(h)hηξgijyiηy

j
ξd

2x.

The Cartan 3-form is

ΩL = dyi ∧ d(−
√
− det(h)hηξgijy

j
ξ) ∧ d1xη

−d
(

1
2

√
− det(h)hηξgijyiηy

j
ξ

)
∧ d2x

= −1
2

(
∂
√
− det(h)
∂hρσ

hηξgijy
i
ηy
j
ξ −

√
− det(h)hηρhξσgijyiηy

j
ξ

)
dhρσ ∧ d2x

−1
2

√
− det(h)hηξ

∂gij
∂yk

yiηy
j
ξ dy

k ∧ d2x−
√
− det(h)hηξgijyiη dy

j
ξ ∧ d2x

+
(
∂
√
− det(h)
∂hρσ

hηξgijy
j
ξ −

√
− det(h)hηρhξσgijy

j
ξ

)
dhρσ ∧ dyi ∧ d1xη

+
√
− det(h)hηξ

∂gij
∂yk

yjξ dy
k ∧ dyi ∧ d1xη

+
√
− det(h)hηξgij dy

j
ξ ∧ dyi ∧ d1xη.

If we solve the equation ihΩL = ΩL, where

h = dxµ ⊗
(

∂

∂xµ
+ Γiµ

∂

∂yi
+ γηξµ

∂

∂hηξ
+ Γiηµ

∂

∂yiη
+ γηξρµ

∂

∂hηξρ

)
,

we obtain that:
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Γiµ = yiµ

0 =
1
2

√
− det(h)hηξ

∂gij
∂yk

yiηy
j
ξ −

√
− det(h)hηξ

∂gkj
∂yi

yiηy
j
ξ −

√
− det(h)hηξgkjΓ

j
ξη

−
(
∂
√
− det(h)
∂hρσ

hηξgkjy
j
ξ −

√
− det(h)hηρhξσgkjy

j
ξ

)
γρση,

and the constraints are given by the equations

∂

∂hρθ
(
√
− det(h)hηξ)gijyiηy

j
ξ = 0.

The previous equation corresponds to the following three constraints:
[
hη0hξ0(h2

01 − h00h11) +
1
2
hηξh11

]
gijy

i
ηy
j
ξ = 0,

[
hη1hξ1(h2

01 − h00h11) +
1
2
hηξh00

]
gijy

i
ηy
j
ξ = 0,

[
hη0hξ1(h2

01 − h00h11)− hηξh01
]
gijy

i
ηy
j
ξ = 0,

which determine Z2.

Hamiltonian description. The Legendre transformation is given by

LegL(xµ, yi, hηξ, yiµ, hηξµ) = (xµ, yi, hηξ,−
√
− det(h)hµηgijyjη , 0).

Therefore, the Lagrangian L is almost-regular and, moreover, Z̃1 = Im LegL ∼= Z̃ =
legL(Z) ∼= J1(X × B) ×X S1,1

2 (X). Take now coordinates (xµ, yi, hηξ, p
µ
i ) on Z̃1 and

consider the mapping h1 : Z̃1 → Z̃ given by

h1(xµ, yi, hηξ, p
µ
i ) = (xµ, yi, hηξ, p =

1

2
√
− det(h)

hηξg
ijpiηp

j
ξ, p

µ
i ).

Then, we have

Ω̃1 = −d
(

1

2
√
− det(h)

hηξg
ijpηi p

ξ
j

)
∧ d2x+ dyi ∧ dpµi ∧ d1xµ

and the Hamilton equations are given by ih̃Ω̃1 = Ω̃1,

h̃ = dxµ ⊗
(

∂

∂xµ
+ Γ̃iµ

∂

∂yi
+ γ̃ηξµ

∂

∂hηξ
+ Γ̃ηiµ

∂

∂pηi

)
.

Solving the above equation, we obtain

Γ̃iµ = − 1√
− det(h)

hηµg
ijpηj ,

Γ̃µiµ =
1

2
√
− det(h)

hηξ
∂gij

∂yk
piηp

j
ξ,

and the secondary constraints

gij√
− det(h)

(
1

2 det(h)
∂ det(h)
∂hρσ

hηξp
η
i p
ξ
j − pρi pσj

)
= 0

determining Z̃2.
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The new geometrical setting. We have that W0 = Λ2
2Y ×Y Z with fibered coordinates

(xµ, yi, hηξ, p, p
µ
i , q

ηξµ, yiµ, hηξµ).

Therefore,

H0 = p+ pµi y
i
µ + qηξµhηξµ +

1
2

√
− det(h)hηξgijyiηy

j
ξ ,

ΩH0 = −dp ∧ d2x− dpµi ∧ dyi ∧ d1xµ − dqηξµ ∧ dhηξ ∧ d1xµ + dH0 ∧ d2x.

Consider now an Ehresmann connection in the fibered manifold πXW0 : W0 → X with
horizontal projector:

h̄ = dxµ ⊗
(

∂

∂xµ
+Aiµ

∂

∂yi
+Aηξµ

∂

∂hηξ
+Bµ

∂

∂p
+ Cηµi

∂

∂pηi
+ Cηξσµ

∂

∂qηξσ

+Di
ηµ

∂

∂yiη
+Dηξσµ ∂

∂hηξσ

)

Solving ih̄ΩH0 = ΩH0 we obtain that the submanifold W1 is determined by the con-
straints:

pµi = −
√
− det(h)hµηgijyjη,

qηξµ = 0.

Let W̄1 be the submanifold of W1 defined by the equation H0 = 0, that is,

p =
1
2

√
− det(h)hηξgijyiηy

j
ξ .

W̄1 is locally defined by coordinates (xµ, yi, hηξ, yiµ, hηξµ).
In these coordinates, the solutions of equation (21) are exactly the same as the ones

obtained in the lagrangian setting, and Ŵ2, as a submanifold of W0, is determined by
the following constraints:

pµi +
√
− det(h)hµηgijyjη = 0,

qηξµ = 0,

p− 1
2

√
− det(h)hηξgijyiηy

j
ξ = 0,

∂
√
− det(h)
∂hρσ

hηξgijy
i
ηy
j
ξ −

√
− det(h)hηρhξσgijyiηy

j
ξ = 0.

It is easy to show that W̄2 = Ŵ2 and the solutions of equation (13) are the solutions of
equation (21) which, in addition, are semiholonomic.

8. Time-dependent mechanics. The jet bundle description of time-dependent me-
chanical systems takes X = R and η = dt, where t is the usual coordinate on R (see, for
instance, [22]).

If L : Z → R is a lagrangian function, ΩL is the Poincaré-Cartan 2-form on Z and ηZ
is the 1-form on Z defined by ηZ = (πRZ)∗(η), then the de Donder equation (4) can be
written as
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iξZΩL = 0, iξZηZ = 1,(22)

where ξZ is a vector field on Z. The integral curves of ξZ are the solutions of the de
Donder problem.

The lagrangian function L is regular if and only if the pair (ΩL, ηZ) is a cosymplectic
structure on Z. We recall that a cosymplectic structure on a manifold M of odd dimension
2n+1 is a pair which consists of a closed 2-form Ω and a closed 1-form η such that η∧Ωn

is a volume form.
If L is regular then there exists a unique vector field ξZ which satisfies (22). In fact,

ξZ is the Reeb vector field of the cosymplectic structure (ΩL, ηZ) and it is a second order
differential equation, that is, SdtξZ = 0. The trajectories of ξZ are the solutions of the
Euler-Lagrange equations.

On the other hand, in this case, Λ1
2Y is the cotangent bundle T ∗Y of the manifold Y

and Ω0 is the canonical symplectic structure of T ∗Y . Moreover, if h : Z∗ → Λ1
2Y = T ∗Y

is a hamiltonian and ηZ∗ = (πRZ∗)∗(dt), then: i) the pair (Ωh, ηZ∗) is a cosymplectic
structure on Z∗ and ii) the solutions of the Hamilton equations are just the integral
curves of the Reeb vector field ξh of the cosymplectic structure (Ωh, ηZ∗).

It should be noticed that if the lagrangian L is regular and ηW̄1
=

(πRW̄1
)∗(dt), we have that the pair (ΩW̄1

, ηW̄1
) is again a cosymplectic structure on W̄1

and there exists a unique solution of equation (13) restricted to W̄1, namely, the Reeb
vector field of the cosymplectic structure (ΩW̄1

, ηW̄1
). Furthermore, if L is (regular) hyper-

regular then the maps (pr2)|W̄1
: W̄1 → Z, LegL : Z → Z∗ and LegL◦(pr2)|W̄1

: W̄1 → Z∗

are (local) cosymplectomorphisms between the cosymplectic manifolds (W̄1,ΩW̄1
, ηW̄1

),
(Z,ΩL, ηZ) and (Z∗,Ωh, ηZ∗), where h = legL ◦ (LegL)−1. Thus, the Reeb vector fields
ξW̄1

, ξZ and ξZ∗ are related by the above cosymplectomorphisms.
When the lagrangian L is singular, we can develop the two algorithms using equations

(13) and (21) and we obtain the corresponding constraint submanifolds

W̄i = {u ∈ W̄i−1 / ∃ξ ∈ TuW̄i−1, iξΩH0(u) = 0, ηW̄1
(ξ) = 1},

Ŵi = {u ∈ Ŵi−1 / ∃ξ ∈ TuŴi−1, iξΩW̄1
(u) = 0, ηW̄1

(ξ) = 1},
for all i ≥ 2, with W̄1 = Ŵ1 (see Section 6).

If L is almost regular, then we have that

W̄i ⊂ Ŵi,

p̃r1(Ŵi) = Z̃i = {z̃ ∈ Z̃i−1 / ∃ξ̃ ∈ Tz̃Z̃i−1, iξ̃Ω̃1(z̃) = 0, ηZ∗(z̃)(ξ̃) = 1},
p̃r2(Ŵi) = Zi = {z ∈ Zi−1 / ∃ξ ∈ TzZi−1, iξΩL(z) = 0, ηZ(z)(ξ) = 1},

for all i ≥ 2. Moreover, one can construct the section β of Legf : Zf → Z̃f and the
submanifold β(Z̃f ) of Zf where a solution of the Euler-Lagrange equations exists.

The constraint algorithms using equations (4) and (11) and the construction of the
corresponding constraint submanifolds Zi and Z̃i and of the submanifold β(Z̃f ) has been
done in [22] (see also [6, 26]). We remark that, in this case, there exists a unique solution
of the Euler-Lagrange equations on the submanifold β(Z̃f ) (for more details, see [22]).

The previous approach to time-dependent mechanics was also proposed in a recent
contribution by Cortés, Mart́ınez and Cantrijn [7].
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Appendices

A. Projectable connections. A connection Γ in the fibration πXY : Y → X is
given by a horizontal distribution H which is complementary to the vertical one V πXY ,
that is,

TY = H⊕ V πXY .
Associated to the connection there exists a horizontal projector h : TY → H defined in
the obvious manner.

If (xµ, yi) are fibered coordinates, then H is locally spanned by the local vector fields
(

∂

∂xµ

)h
=

∂

∂xµ
+ Γiµ(x, y)

∂

∂yi
;

(∂/∂xµ)h is called the horizontal lift of ∂/∂xµ, and Γiµ are the Christoffel components of
the connection.

Along the paper we repeatedly use the following construction.
Assume that πXZ : Z → X and πXY : Y → X are two fibrations with the same base

manifold X, and that Φ : Z → Y is a surjective submersion (in other words, a fibration
as well) preserving the fibrations, say, πXY ◦ Φ = πXZ .

Let Γ be a connection in πXZ : Z → X with horizontal projector h.

Definition A.1. Γ is said to be projectable if TΦ(z)(Hz) = TΦ(z′)(Hz′), for all
z, z′ ∈ Z in the same fiber of Φ.

If Γ is projectable, then we define a connection Γ′ in the fibration πXY : Y → X as
follows: The horizontal subspace at y ∈ Y is given by

H̄y = TΦ(z)(Hz),

for an arbitrary z in the fiber of Φ over y. It is routine to prove that H̄ defines a horizontal
distribution in the fibration πXY : Y → X.

We can choose fibered coordinates (xµ, yi, za) on Z such that (xµ, yi) are fibered coor-
dinates on Y . The Christoffel components of Γ are obtained by computing the horizontal
lift (

∂

∂xµ

)h
=

∂

∂xµ
+ Γiµ(x, y, z)

∂

∂yi
+ Γaµ(x, y, z)

∂

∂za
.

A simple computation shows that Γ is projectable if and only if the Christoffel components
Γiµ are constant along the fibers of Φ, say Γiµ = Γiµ(x, y). In this case, the horizontal lift
of ∂/∂xµ with respect to Γ′ is just

(
∂

∂xµ

)h
=

∂

∂xµ
+ Γiµ(x, y)

∂

∂yi
.

As an exercise, the reader can easily check that, conversely, given a connection Γ′

in the fibration πXY : Y → X and a surjective submersion Φ : Z → Y preserving the
fibrations, one can construct a connection Γ in the fibration πXZ : Z → X which projects
onto Γ′.
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B. Semiholonomic connections. Let πXY : Y → X be a fibration and πXZ : Z →
X its 1-jet prolongation, that is, Z = J1πXY . Assume that X is orientable with volume
form η.

Definition B.2. A connection Γ in the fibration πXZ : Z → X is said to be semi-
holonomic if

Sη(h, . . . ,h) = 0,(23)

where h is the horizontal projector of Γ. If (23) holds at a point z ∈ Z, then Γ is said to
be semiholonomic at z.

Assume that

h
(

∂

∂xµ

)
=

∂

∂xµ
+ Γiµ

∂

∂yi
+ Γiµν

∂

∂ziν

in fibered induced coordinates. Then Γ is semiholonomic if and only if Γiµ = ziµ.

C. Connections on submanifolds. The notion of connection in a fibration admits
a useful generalization to submanifolds of the total space.

Let πXY : Y → X be a fibration and P a submanifold of Y .

Definition C.1. A connection in πXY : Y → X along the submanifold P consists of
a family of linear mappings

hy : TyY → TyP

for all y ∈ P , satisfying

h2
y = hy, ker hy = (V πXY )y,

for all y ∈ P . The connection is said to be differentiable (flat) if the n-dimensional
distribution Im h ⊂ TP is smooth (integrable), where n = dimX.

We have the following.

Proposition C.2. Let h be a connection in πXY : Y → Xalong a submanifold P of
Y . Then:

(1) πXY (P ) is an open subset of X.
(2) (πXY )|P : P → πXY (P ) is a fibration.
(3) The 1-jet prolongation J1(πXY )|P is a submanifold of Z.
(4) There exists an induced true connection ΓP in the fibration (πXY )|P : P → πXY (P )

with the same horizontal subspaces.
(5) ΓP is flat if and only if h is flat.

Proof. (1) and (2). First of all, we shall prove that (πXY )|P : P → X is a submersion.
Let y ∈ P such that πXY (y) = x ∈ X. We define a linear mapping

A(y) : TxX → TyP

as follows:

A(y)(U) = hy(Ū),
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where Ū ∈ TyY and TπXY (Ū) = U . The mapping A(y) is well-defined since if Ū ′ is
another tangent vector in TyY satisfying TπXY (Ū ′) = U , then Ū − Ū ′ ∈ (V πXY )y, and
therefore hy(Ū ′) = hy(Ū).

In addition, A(y) is injective. In fact, if U ∈ TxX is such that A(y)(U) = 0, then
hy(Ū) = 0, that implies Ū ∈ (V πXY )y, and therefore U = TπXY (Ū) = 0.

Finally, A(y) is a section of TπXY (y) : TyP → TxX. Indeed, take U ∈ TxX; we have
A(y)(TπXY (A(y)(U))) = hy(A(y)(U)) = h2

y(Ū) = hy(Ū) = A(y)(U). Thus, we have
proved that TπXY ◦ A(y) = IdTxX . This shows that (πXY )|P : P → X is a submersion.

Therefore, πXY (P ) is an open submanifold of X, and (πXY )|P : P → πXY (P ) is a
fibration.

(3) is obvious.
(4) The induced connection ΓP is defined by restricting the horizontal subspaces of

h, that is,
h′y = (hy)|TyP , for all y ∈ P.

Since Im h′ = Im h then (5) follows.
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