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Introduction. The theory of Cartan connections was introduced and developed
by C. Ehresmann in his famous paper on “Connexions infinitésimales” [E]. See also
Kobayashi [Ko].

A Cartan connection gives rise to a special parallelism. We summarize a part of the
results of a previous paper [L1] concerning this subject. We formulate in terms of jets
and groupoids certain ideas of M. Lazard [La].

We explain links between parallelisms and momentum maps. We refer to [L.M] and
[M2] for momentum maps. We recall some results concerning momentum maps relative
to principal bundles, as developed in a recent paper [L4].

As was proved in [E], with a Cartan connection is associated a vector bundle E → TM

which is isomorphic to the tangent bundle TM . This isomorphism permits a generaliza-
tion of the notion of Lagrangian differential introduced by W. Tulczyjew [W].

1. Definitions. All manifolds and maps are supposed to be C∞. The projections
TN → N , T ∗N → N , TT ∗N → TN will be denoted by p, q, Tq for any manifold N .

Let π : E → M be a locally trivial fibration, V E = kerTπ be the vertical bundle.
From the inclusion i : V E → TE, we deduce the projection j : T ∗E → V ∗E whose
kernel is the annihilator (V E)0 of V E; this kernel may be identified with the subbundle
π∗T ∗M = E ×M T ∗M of T ∗E.

A section η : E → E×M T ∗M is called a semi-basic form on E. This section induces a
morphism f = pr2 ◦η from E to T ∗M (where pr2 is the projection E×M T ∗M → T ∗M).
In particular for the fibration q : T ∗M → M , the natural Liouville form θM on T ∗M
corresponds to the identity mapping of T ∗M . The form η on E is the pull-back f∗θM .
Conversely for any morphism f : E → T ∗M , the pull-back f∗θM is semi-basic.
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By means of adapted coordinates (x1, . . . , xn, y1, . . . , yk) in π−1(U) and (x1, . . . , xn,

p1, . . . , pn) in q−1(U), the forms η and θM are written

η =
n∑

i=1

ai(x1, . . . , xn, y1, . . . , yk) dxi , θM =
n∑

i=1

pi dx
i ,

with n = dimM and n+ k = dimE, and f is represented by pi = ai (i = 1, . . . , n).
A section µ : E → V ∗E is called a vertical form; it acts only on vertical vectors. This

vertical form may be represented in π−1(U) by

µ =
k∑

j=1

bj(x1, . . . , xn, y1, . . . , yk) dyj .

If λ is any form on E, λ is written

λ =
n∑

i=1

Ai dx
i +

k∑

j=1

Bj dy
j ,

then

jλ =
k∑

j=1

Bj dy
j .

A foliation F on a symplectic manifold is said to be symplectically complete [L2] if for any
pair of first integrals, the Poisson bracket is also a first integral. A foliation F is symplec-
tically complete if and only if the orthogonal distribution F⊥ is completely integrable,
defining on F⊥ a symplectically complete foliation.

2. Connections and parallelism [L1]. Let π : E →M be a locally trivial fibration,
J1E be the set of all 1-jets of local sections with the projection δ1 : J1E → E.

A connection C on E is a lifting

C : E → J1E .

It is a first order differential system. A solution of C is a section σ : U ⊂ M → E such
that for any x ∈ U the jet j1

xσ belongs to C(E). The connection is said to be integrable if
for any y ∈ E, there exists a solution σ such that σ(π(y)) = y. According to the Frobenius
theorem, C is integrable if and only if the composed map J1C ◦C from E to J1J1E takes
its values in J2E (set of 2-jets of local sections). The obstruction to integrability is the
curvature. It is a lifting ρ : E → L2

E,a(π∗TM ;V E), the set of alternate bilinear maps
from π∗TM × π∗TM to V E.

As any z ∈ J1E may be considered as an injective linear map from Tπ(y)M to TyE
(with y = δ1(z)), the connection induces a splitting

TE = V E ⊕H
and conversely. According to a second version of the Frobenius theorem, the connection
is integrable if and only if the distribution H is completely integrable.

A manifold M is said to be parallelizable if there exists a mapping

ω : TM → A
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(where A is a vector space) such that for any x ∈ M , the restriction ωx of ω to TxM is
an isomorphism onto A.

This yields a trivialization
φ : TM →M × A

defined for any x ∈M and any v ∈ TxM by

φ(v) = (x, ωxv) .

With each mapping f : U ⊂M →M we associate its reduced differential

Dredf : U → L(A,A)

defined by
Dredf(x) = ωf(x) ◦ Txf ◦ ω−1

x .

The reduced expression of the vector field X : M → TM is the map ω ◦X : M → A. The
vector field X is said to be invariant if ω ◦X is constant.

For any pair (x, x′) ∈M×M , the isomorphism ω−1
x′ ◦ωx is an isomorphism from TxM

onto Tx′M ; it may be considered as the 1-jet j1
xf of a diffeomorphism f : U 3 x → M

such that x′ = f(x). So the parallelism ω induces a lifting

C : M ×M → Γ1(M) ,

where Γ1(M) is the groupoid of all 1-jets of local diffeomorphisms on M .
As a diffeomorphism f : U ⊂M →M induces a section x 7→ (x, f(x)) of the fibration

pr1 : M ×M →M , the lifting C is a connection.
A solution of the differential system C is a diffeomorphism f : U ⊂M →M such that

for any x ∈ U , the jet j1
xf is equal to C(x, f(x)). Such a solution is called a translation;

identifying j1
xf and Txf , we check that Dredf(x) is the identity map of A.

The connection C lifts every vector field X tangent to M into a horizontal vector field
on M ×M ; it is the vector field Y (x, x′) = (X(x), ω−1

x′ ◦ωxX(x)). A vector field X on M
is invariant if and only if its natural lift to M ×M defined by (x, x′) 7→ (X(x), X(x′)) is
horizontal.

We deduce that the parallelism (considered as a connection C) is integrable if and
only if the bracket of two invariant vector fields is an invariant vector field . This yields
a Lie algebra structure on A.

Examples.

(i) A Lie group admits integrable parallelisms. The left and right translations as well
as the left and right invariant vector fields are translations and invariant vector fields in
our sense.

(ii) Let M be a simply connected manifold endowed with an integrable parallelism
such that all translations are defined on the whole of M . If we fix a point on M , we get
a Lie group structure on M .

(iii) The sphere S7 admits a parallelism defined by means of the Cayley numbers.
This parallelism is not integrable.

Remark. The usual point of view for introducing connections linked with a paral-
lelism (not necessarily integrable) is the following. The choice of a basis of the tangent
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space Tx0M at a point x0 determines n linearly independent invariant vector fields, hence
a section of the frame bundle H(M) (or {e}-structure); this yields a principal connec-
tion on H(M) with null curvature. The trajectories of the invariant vector fields are the
geodesics of this connection.

3. Parallelism and momentum maps. For any manifold M , the natural Liouville
form θM is the form on T ∗M which associates with any v ∈ TT ∗M the scalar

〈
p(v), T q(v)

〉
.

It is known (see [L4]) that any vector field X on M is lifted on T ∗M to an infinitesimal
automorphism X̃ of the form θM ; it is the Hamiltonian vector field defined as follows.
The vector field X induces a section X of the bundle T ∗M ×M TM → T ∗M ; as θM is
a section of T ∗M ×M T ∗M → T ∗M , we may define h = 〈θM , X〉 by h = 〈θM , X〉. Then
X̃ is the Hamiltonian vector field such that i(X̃)dθM = −dh. It can be checked that
h = 〈θM , X̃〉.

Suppose now that M is parallelizable. From the map ω : TM → A, we obtain by
duality the mapping

µ : T ∗M → A∗

such that for any x ∈M , the mapping µx : T ∗M → A is the contragredient of ωx.
This yields a trivialization

ψ : T ∗M →M × A∗

such that for any x ∈M and any η ∈ T ∗xM , we have

ψ(η) = (x, µxη) .

Any morphism f from E →M to T ∗M →M induces a map E → A∗ and conversely.
We have the notion of invariant 1-form; a form η on M is said to be invariant if µ ◦ η

is constant. This condition is equivalent to the following

(ω−1
x )∗η(x) = (ω−1

x′ )∗η(x′) for any pair (x, x′) ∈M ×M .

The Liouville form θM may be defined as the form associating with v ∈ TT ∗M the scalar
〈
µ ◦ p(v), ω ◦ Tq(v)

〉
.

Let Xa be the invariant vector field on M whose reduced expression is a. Then its lift
X̃a to T ∗M is the vector field defined by the condition: for any y ∈ T ∗M ,

i(X̃a)dθM |y = −
〈
µ(y), a

〉
.

The bracket [X,Y ] of two vector fields X and Y on M is lifted to the bracket [X̃, Ỹ ]. So
when the parallelism is integrable, the lifts of the invariant vector fields constitute a Lie
algebra. We have the Hamiltonian action of a Lie algebra on T ∗M in the sense of [L.M,
chapter 4]. These considerations do not imply that the vector fields are complete.

The Hamiltonian action of a Lie group G on its cotangent bundle T ∗G is studied in
[L.M] and [M2].
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Let Lg (resp. Rg) be the left (resp. the right) translation s 7→ gs (resp. s 7→ sg). The
left parallelism on G corresponds to the maps

ωL : TG→ G , µL : T ∗G→ G∗

such that for any g ∈ G
ωLg = TgLg−1 , µLg = t(ωLg )−1 = t(TeLg) .

We define ωR and µR similarly.
We recall that a symplectic action of a Lie group G on a symplectic manifold M is

said to be Hamiltonian if there exists a map J : M → G∗ (called momentum map) such
that for any c ∈ G the associated fundamental vector field Y c is Hamiltonian and admits
as Hamiltonian the function f defined by f(x) =

〈
J(x), c

〉
.

This is the case of the left action or the right action of G on T ∗G, with momentum
maps

JL = µR , JR = µL .

The exchange between R and L comes from the fact that the fundamental vector field
Y c corresponding to a left action of G is a right invariant vector field.

It is also proved that the left (resp. right) orbits of the left (resp. right) action of G are
the level sets of JR (resp. JL). These orbits are orthogonal with respect to the symplectic
form dθG. The connected components of these orbits constitute symplectically complete
foliations in the sense of section 1. When G is connected, it follows from the theory of
symplectically complete foliations (see [L2]) that there exists on G∗ a unique Poisson
structure such that JR is a Poisson map. The map JL is a Poisson map for the opposite
Poisson structure on G∗. We recover the “Kirillov-Kostant-Souriau” Poisson structures
on G∗ (see [M2]).

These properties have led M. Condevaux, P. Dazord and P. Molino to introduce the
notion of “generalized momentum map” [C.D.M]. The authors consider a symplectically
complete foliation; an atlas of “local slidings” along the leaves of the orthogonal foliation
constitutes the generalized momentum map.

Remark. C. Albert and P. Dazord [A.D] have exhibited a symplectic groupoid
structure on T ∗G as follows. The set of unities is T ∗eG = G∗ with projections µL and µR

from T ∗G onto G∗ (in our notations). The product u ◦ v of u ∈ T ∗gG and v ∈ T ∗sG is
defined if and only if

µLg (u) = µRs (v) = b .

Then
u ◦ v = (µLg )−1(µRs )−1b = (µLg )−1v .

By means of the left trivialization ψL : T ∗G → G × G∗ (with ψL(η) = (g, µLg η) for any
g ∈ G and η ∈ T ∗G), u and v may be written respectively u = (g, ξ), v = (s, λ). Then
(g, ξ) ◦ (s, λ) = (gs, λ) if ξ = Ad∗s λ.

4. Principal connections and momentum maps. In this section, as we shall have
to consider the left parallelism on a Lie group and a parallelism on a principal bundle
P , we shall denote by α the left invariant form ωL : TG → G. This form α (called the
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Maurer-Cartan form of G) satisfies the relations

L∗gα = α , R∗gα = Ad(g−1)α , dα+
1
2

[α, α] = 0 .

Let π : P → M be a principal G-bundle (where M is not assumed to be parallelizable).
The action of G on P by right translations z 7→ zg being free and regular, any z ∈ P
determines a diffeomorphism from Pπ(z) onto G which maps z on e. Hence we get an
isomorphism $z from TzPπ(z) onto G. We deduce a map

$ : V P → G
called the vertical parallelism in the sense of [L1]. We have

$zg = Ad(g−1)$z for g ∈ G .
Considering the contragredient t$−1

z of $z, we obtain a map

κ : V ∗P → G∗ .
The right action of G on P (whose orbits are the fibers) lifts to a Hamiltonian action on
T ∗P . It is proved in [L4] that the corresponding momentum map is

J = κ ◦ j : T ∗P → G∗

where j is the natural projection T ∗P → V ∗P .
So J−1(0), kernel of J , is the kernel of the projection j; according to the first section,

J−1(0) is the set P̃ = P ×M T ∗M of semi-basic forms on P .
Let β : TP → G be a connection form on P inducing a principal connection. We recall

that βzg = Ad(g−1)βz for z ∈ P , g ∈ G. The restriction of β to V P is the form $ defined
above.

In the splitting (cf. section 2)

TP = V P ⊕H ,
the horizontal bundle H = kerβ is G-invariant.

By duality we get
T ∗P = V ∗P ⊕H∗ = H0 ⊕ P̃ ,

identifying H∗ with the annihilator (V P )0 of V P in TP i.e. with P̃ and identifying V ∗P
with H0.

We have proved in [L4] that any ϕ ∈ T ∗z P may be written ϕ = ϕ1 + ϕ2 with
ϕ1 = ϕ− β∗zJ(ϕ) belonging to P̃ and ϕ2 = β∗zJ(ϕ) vanishing on kerβ.

5. Cartan connections. Let Ĝ be a Lie group (with Lie algebra Ĝ) such that G is
a closed subgroup of Ĝ and P be a G-principal bundle.

A Cartan connection on P is a form

ω : TP → Ĝ
satisfying the conditions

1) The restriction of ω to V P is the form $ : V P → G defined above.
2) ωzg = Ad(g−1)ωz for g ∈ G.
3) ω defines a parallelism on P .
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It follows that dim Ĝ = dimG+ dimM . A Cartan connection is not a connection in
the usual sense because ω takes its values in Ĝ. But it induces a principal connection on a
principal Ĝ-bundle P̂ obtained by enlarging the structure group of G to Ĝ. This bundle is

P̂ = P ×G Ĝ ,
quotient of P × Ĝ by the equivalence relation (z, s) ∼ (zg, g−1s) for any z ∈ P , s ∈ Ĝ,
g ∈ G. Let Λ be the projection P × Ĝ→ P̂ .

Let us consider the form ω−α on P×Ĝ (where α is the Maurer-Cartan form on Ĝ). As

ωzg = Ad(g−1)ωz , αsg = Ad(g−1)αs

we have
ωzg − αsg = Ad(g−1)(ωz − αs)

and the form ω − α is the pullback Λ∗β̂ of a connection form β̂ on P̂ . The restriction to
P of the form β̂ is the form ω.

It can be checked (see [E], [L1]) that if X and Y are vector fields on P and Ĝ whose
reduced expression is the same (i.e. there exists a ∈ Ĝ such that ω(Xz) = α(Ys) = a for
any pair (z, s) ∈ P × Ĝ), then the pair (X,Y ) is projectable by Λ onto a vector field Z

tangent to the horizontal distribution Ĥ = ker β̂. We shall say that the Cartan connection
ω is integrable if the corresponding parallelism is integrable in the sense of section 2. As
the parallelism on Ĝ is integrable, the Cartan connection ω is integrable if and only if
the connection β̂ on P̂ is integrable.

The obstruction to the integrability is the curvature Ω defined by

Ω = dω +
1
2

[ω, ω] .

Let TP P̂ , VP P̂ , T ∗P P̂ , V ∗P P̂ be the restriction of T P̂ , V P̂ , T ∗P̂ , V ∗P̂ to P The vertical
parallelism $̂ : V P̂ → Ĝ and the Cartan connection ω : TP → Ĝ induce an isomorphism
ϕ from VP P̂ onto TP ; for z ∈ P , the restriction ϕz of ϕ is the isomorphism ω−1

z ◦ $̂z

from VzP̂ onto TzP .
Let us define κ̂ : V ∗P̂ → Ĝ∗ and ĵ : T ∗P̂ → V ∗P̂ as were defined κ and j for T ∗P

and V ∗P . The momentum map Ĵ of the symplectic action of Ĝ on T ∗P̂ is

Ĵ = κ̂ ◦ ĵ : T ∗P̂ → Ĝ∗ .
Then the restriction ĴP of Ĵ to T ∗P P̂ may be written

ĴP = µ ◦ P ,
where P is the projection T ∗P P̂ → T ∗P and

µ : T ∗P → Ĝ∗

is defined by the trivialization T ∗P ≈ P × Ĝ∗ associated with the parallelism ω (see
section 3).

The momentum map J : T ∗P → G∗ may be written

J = γ ◦ µ
where γ is the projection Ĝ∗ → G∗.
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While µ depends on the choice of ω, the map J , by its very definition, is independent
of ω.

Remarks.

(i) The restriction ĤP to P of the horizontal distribution Ĥ = ker β̂ is transversal
to both vector bundles VP P̃ and TP . So if the Cartan connection (and hence Ĥ) is inte-
grable, then any z ∈ P admits a neighborhood U in P̂ such that the trace on U of every
horizontal leaf (if not empty) intersects P and the fiber P̂π̂(z) in one point. This yields a
local diffeomorphism of P onto P̂π̂(z) (hence on Ĝ).

(ii) According to section 2, the parallelism on P induces a lifting C : P ×P → Γ1(P )
(groupoid of the 1-jets of all local diffeomorphisms on P ). In the case of a Cartan con-
nection the result may be improved. We shall sum up the investigations of [L1].

The lifting C takes its values in the groupoid Θ1 ⊂ Γ1(P ), the set of the 1-jets of all
local automorphisms of P ; such a local automorphism ϕ is defined in an open set π−1(U)
(where U is an open subset of M) and satisfies the relation ϕ(zg) = ϕ(z)g for any g ∈ G.

Let us consider the gauge groupoid Φ of P , i.e. the quotient of P ×P by the diagonal
right action of G. Let π1 and π2 be the projections of Φ onto M . An invertible π1-section
σ1 : U → Φ (with π1 ◦ σ1 = idU ) satisfies the condition: the map π2 ◦ σ1 is a diffeo-
morphism f inducing the π2-section σ2 = σ1 ◦ f−1. There exists a (1-1) correspondence
between the set of all local automorphisms of P and the set of all invertible π1-sections
of Φ. The set Φ(1) of 1-jets of all invertible π1-sections is a groupoid and the groupoid Θ1

may be identified with the fibered product P ×M Φ(1); then the lifting C induces a lifting

C ′ : Φ→ Φ(1) ,

which is a groupoid morphism. Conversely such a lifting C ′ induces a Cartan connection
on P .

(iii) Let π : P →M be a principal G-bundle which is not necessarily endowed with
a Cartan connection. The groupoid Θ1, with base P , defined in remark (ii) acts on the
manifold T P of transverse frames defined in the following way. An element u of T P is
a 1-jet j1

0f (identified with the linear map T0f), where f is a map from Rn to P whose
source contains 0 ∈ Rn, such that Tzπ ◦ T0f is an isomorphism from T0Rn to TxM , i.e.
an element of the frame bundle H(M). We have set z = f(0) and x = π(z). The image
of u is transverse to the vertical bundle.

In [L1] we have proved that the projection T P →M is a principal bundle map whose
gauge groupoid is the groupoid Φ(1) defined in remark (ii).

Suppose now that P is endowed with a Cartan connection ω. Then if we specify an
element u of T P , the lifting C ′ : Φ → Φ(1) induces a lifting s : P → T P . As we have a
natural projection T P → H(M), we obtain a mapping P → H(M) which is a principal
bundle morphism, as proved in [E].

The manifold T P is a submanifold of the frame bundle H(P ). Indeed with any u ∈ T P
(with target z ∈ P ), we associate the isomorphism ($−1

z , u), from G×T0Rn to TzP which
belongs to H(P ), the mapping $ defining the vertical parallelism as in section 4.

We have here a special case of the situation examined in the remark of section 2.



CARTAN CONNECTIONS AND MOMENTUM MAPS 219

6. Cartan connections on homogeneous spaces. Let Ĝ be a Lie group and G a
closed subgroup. The right action of G on Ĝ defines a principal G-bundle structure on Ĝ,
whose base M is the homogeneous space F = Ĝ/G. We shall set P = Ĝ when considering
Ĝ as a principal G-bundle.

The Maurer-Cartan form α on Ĝ is an integrable Cartan connection form. It induces
a principal connection on the Ĝ-bundle P̂ = P ×G Ĝ, as we have seen in section 5. This
bundle P̂ can be identified with the trivial principal bundle Ĝ × Ĝ/G, with horizontal
leaves {s}×Ĝ/G. The manifold Ĝ×Ĝ/G is also diffeomorphic to the gauge groupoid of P ,
quotient of P × Ĝ by the equivalence relation (s1, s2) ∼ (s1g, s2g) with s1, s2 ∈ Ĝ, g ∈ G.

Remark. Let JL be the momentum map of the left action of Ĝ on T ∗Ĝ. If b ∈ Ĝ∗ is
invariant for the coadjoint action of G on Ĝ∗, then the submanifold J −1

L (b) is invariant
under the left action of G on T ∗G as it is shown in [M2] and the quotient manifold
J−1
L (b)/G (i.e. the set of orbits of the left action of G on J −1

L (b)) has a reduced symplectic
structure.

We are in a special case of the situation studied in [Ku] as follows: π : P → M is a
principal G-bundle and the Lie group G is a subgroup of a Lie group Ĝ acting on P .

7. Connections on frame bundles. Among the homogeneous spaces let us consider
G = Ln = GL(n,R) and Ĝ = Ln×Rn (semi-direct product); then Ĝ/G = Rn; the group
Ĝ is the affine group A(n,R).

If we restrain Ln to the orthogonal group SO(n), then Ĝ is the group of euclidian
displacements and Ĝ/G is endowed with a euclidian structure. For n = 3, C. Marle [M2]
has considered this situation when studying the motion of the rigid body.

For a n-dimensional manifold M , the frame bundle π : H(M) → M is a principal
Ln-bundle. An Ln-connection on H(M) is called a linear connection. It is known that
there exists on H(M) an equivariant form η with values in Rn. It is the form defined by

η(v) = h−1(π(v)) for v ∈ ThH(M) .

As ker η = V H, with any Ln-connection form β on H(M) is associated a form ω = β+ η

which is a Cartan connection. So every frame bundle is parallelizable. The form ω is the
restriction of a A(n)-connection form on the bundle of affine frames. The parallelism as-
sociated with ω is integrable if the corresponding A(n)-connection has a null curvature.
This is equivalent to the nullity of the curvature and torsion of the linear connection β.

Every subbundle of the frame bundle is also parallelizable. This is in particular true
for Riemannian structures.

Instead of Ln, we could consider the group Lrn (whose elements are r-jets of local
diffeomorphisms of Rn with source and target 0). Then Hr(M) is the set of frames of
order r. In particular the projective and conformal structures are structures of order 2.
See [E] and [Ko].

In [A.G.M] are considered principal bundles for which there exists a form η with values
in Rn such that η is equivariant.

Other examples of parallelizable principal bundles are the SU2-bundle S7 → S4 and
the S1-bundle S7 → P3(C).
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8. Cartan connections and generalized Lagrangian differentials. We keep the
notations of section 5. Let π̂ : P̂ →M , π : P →M the projections. We consider a Cartan
connection ω on a principal G-bundle, with values in the Lie algebra Ĝ of Ĝ. We shall
sketch some results due to C. Ehresmann [E].

As Ĝ acts on the left on the homogeneous F = Ĝ/G, we may define the bundle F
associated with P̂ , with standard fiber F . It is the manifold P̂ ×Ĝ F , quotient of P̂ × F
by the equivalence relation (z, y) ∼ (zg, g−1y) for any g ∈ Ĝ.

The bundle F → M admits a natural section σ : M → F defined as follows. The
subgroup G of Ĝ is the set of all g ∈ Ĝ leaving invariant a0 ∈ F , where a0 is the image
of e by the projection Φ : Ĝ→ Ĝ/G. Any z ∈ P̂x can be considered as a diffeomorphism
from F to the fiber Fx. If z belongs to Px, this fiber Px may be written zG. So the
image ax of a0 by an element of Px is independent of the choice of that element. We set
σ(x) = ax. We shall identify the base M with its image by σ.

Let E =
⋃
x∈M TxFx. We thus define a vector bundle associated with P whose stan-

dard fiber is Ĝ/G. Indeed each z ∈ Px induces an isomorphism from Ta0F to TxFx.
Consider the map TeΦ : TeĜ → Ta0Ĝ/G; its kernel is TeG. So Ta0F can be identified
with the vector space Ĝ/G. For any z ∈ P , the map Tzπ ◦ ω−1

z from Ĝ to TxM (with
x = π(z)) vanishes on G, inducing an isomorphism fx : Ex → TxM . This gives a vector
bundle isomorphism f : E → TM . With the terminology of [E], we say that the Cartan
parallelism induces a soldering of the fiber bundles F and E to their base M .

We recall the notion of Lagrangian differential introduced by W. Tulczyjew [T] as
explained in [L3]. See also [M1].

The set T 2M of 2-velocities on M is the subbundle of TTM defined by T 2M = { v2 ∈
TTM ; Tp(v2) = p(v2) }. An element of TTM belonging to T 2M is said to be holonomic.
The difference v2−w2 of holonomic tangent vectors with the same origin in TM is a ver-
tical vector. Let L be a hyperregular function on TM defining a Legendre transformation
L : TM → T ∗M ; then TM is endowed with a symplectic structure and the fibers of the
projection TM →M constitute a Lagrangian foliation. Let A = i(Z)dL−L (where Z is
the Liouville vector field on TM). The hamiltonian vector field XA on TM is holonomic.
For any other holonomic vector field X, the vector field X −XA is vertical; its image by
the symplectic duality is a semi-basic form, hence defines a morphism from TM to T ∗M .
So we obtain a morphism ∆(L) : T 2M → T ∗M which is the Lagrangian differential.

Consider now the vector bundle E → M . The isomorphism Tf−1 : TTM → TE
maps T 2M onto a subbundle TE which may be called the set of pseudoholomorphic
tangent vectors to E ; this subbundle TE is {w ∈ TE ; Tp(w) = f ◦ p(w)}. Utilizing the
isomorphism f and its contragredient tf∗ : E∗ → T ∗M , we may show as above that a
hyperregular function S on E generates a symplectic structure on E and a Hamiltonian
vector field XS−i(Z′)dS . Hence we deduce a morphism TE → T ∗M which can be called
the generalized Lagrangian differential of S.

Remark. In particular cases of Cartan connections, we may define a morphism TE →
T ∗M without using a Lagrangian function.

According to [K.N] the homogeneous space F = Ĝ/G is said to be reductive if there
exists a splitting Ĝ = G ⊕M where M is an Ad(G)-invariant subspace of Ĝ. Let P be



CARTAN CONNECTIONS AND MOMENTUM MAPS 221

endowed with a Cartan connection ω. It is proved in [L1] that the subspace M defines a
principal connection on P whose horizontal distribution is invariant under the parallelism
induced by ω. The horizontal subspaces are the images of M by the isomorphisms ω−1

z

when z generates P .
It is proved also that the morphism P → H(M) introduced in remark (iii) of sec-

tion 5 induces a principal connection on H(M), hence a spray TM → T 2M . Using the
morphism f : E → TM , we obtain a lifting E → TE ; hence with any element of TE we
associate a vertical tangent vector to E . Given a Liouville form θ on E (i.e. according to
[A.G.M] a semi-basic form such that dθ is symplectic), the symplectic duality on E maps
each vertical vector field to a semi-basic form. Hence we obtain a morphism TE → T ∗M .
The examples investigated in section 7 correspond to the reductive case.
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Œuvres complètes, Partie I 2, 179–205.

[Ko] S. Kobayashi, Transformation Groups in Differential Geometry , Springer, Berlin,
1972.

[K.N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry , vol. II, Inter-
science Publ., New York, 1969.

[Ku] M. Kummer, On the construction of the reduced phase of a Hamiltonian system with
symmetry , Indiana Univ. Math. J. 30 (1981), 281–291.
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