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1. Introduction. In classical Lagrangian or Hamiltonian systems, constants of mo-
tion are closely related to symmetries, as shown by Noether’s theorem. For a Hamiltonian
system on a symplectic manifold, the well known reduction theorem due to Marsden and
Weinstein [38] uses both the symmetries and the constants of motion to produce a reduced
Hamiltonian system on a lower dimensional symplectic manifold.

For mechanical systems with a nonholonomic constraint, constants of motion are still
related to symmetries of the system, but in a subtler way. In section 2, we present the
mathematical tools used in the description of mechanical systems with nonholonomic
constraints, both in the Lagrangian and in the Hamiltonian formalisms. We will distin-
guish ideal constraints and constraints of Chetaev type (which, in our opinion, should not
be considered as ideal), as well as constraints of a more general type. Then, in section
3, we will show that for these systems, two different types of Lie group actions should
be distinguished, the first type allowing the reduction of the system, and the second giv-
ing rise to constants of motion. These results will be illustrated in section 4, where we
consider what may be called a completely integrable nonholonomic system: a ball which
rolls on the inner surface of a circular cylinder with vertical axis.

Bates, Graumann and MacDonnell [7] already observed that constants of motion
in nonholonomic mechanical systems are related to symmetries, and discussed several
examples (including that of the ball rolling on the inner surface of a cylinder). Our
treatment rests on the same idea, and differs from theirs by the use of Poisson structures
in the reduction procedure.
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2. Classical mechanical systems with a kinematic constraint

2.1. General assumptions. We consider a mechanical system whose configuration space
(i.e. the set of possible positions of the various parts of the system at a given time) is
a smooth n-dimensional manifold Q, which does not depend on time. A motion of the
system is a parametrized curve t 7→ x(t) in Q, where the real parameter t (the time)
runs over some open interval I. Assuming that the motion is smooth, for each t ∈ I,
the vector dx/dt ∈ Tx(t)Q is called the kinematic state of the system at time t, for the
motion under consideration. The system is said to be subject to a kinematic constraint
when not all vectors in TQ are possible kinematic states of the system. This occurs, for
example, when two different parts of the system are rolling on each other without sliding,
or when some part of the system rolls without sliding on an external object which is not
a part of the system. We will assume that the kinematic constraint imposed upon the
system is such that the set of possible kinematic states is a smooth submanifold C of
TQ, which does not depend on time. The submanifold C will be called the kinematic
constraint submanifold .

Remark 1. In many examples, the submanifold C is a vector subbundle of TQ; this
happens in particular when the kinematic constraint is obtained by imposing to parts
of the system to roll on each other without sliding, or to roll without sliding on an
external object, that external object being at rest. In other examples, the submanifold C
is an affine subbundle of TQ; this happens when some part of the system rolls without
sliding on a moving external object, the motin of that external object being stationary.
A ball which rolls without sliding on a horizontal disk rotating around a vertical axis at
a constant velocity (as in a microwave oven) is an example of such a system.

Remark 2. Constraints obtained by means of servomechanisms may lead to kinematic
submanifolds C much more general than vector or affine subbundles of TQ (see for
example [34]). Even more generally, one may encounter systems in which the set of
possible kinematic states depends on time, therefore can no longer be described by a fixed
submanifold of TQ. A. Lewis [28] has proposed a general formalism for such systems.

2.2. Dynamical properties of the system. We will assume that a smooth Lagrangian
L : TQ → R accounts for the inertial properties of the system and for all forces acting
upon it, other than the constraint force. As we will see in the next subsection, various
assumptions can be made about that constraint force.

We denote by J2((R, 0), Q) the space of jets of order 2, at the origin 0 of R, of
smooth parametrized curves s 7→ x(s) in Q (where the parameter s runs over some
open interval which contains the origin 0). Let us recall that when a smooth Lagrangian
L : TQ→ R is given, there is a map ∆(L), called the Lagrange differential of L, defined
on J2((R, 0), Q), with values in the cotangent bundle T ∗Q, fibered over Q. The Lagrange
differential is part of a complex, called the Lagrange complex , thoroughly studied by
W. Tulczyjew [49]. Let us recall its expression in local coordinates. With a chart of Q,
whose local coordinates are denoted by (x1, . . . , xn), there are naturally associated charts
of the tangent bundle TQ, the cotangent bundle T ∗Q and the space of jets J2((R, 0), Q),
whose local coordinates are denoted by (x1, . . . , xn, v1, . . . , vn), (x1, . . . , xn, p1, . . . pn) and
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(x1, . . . , xn, ẋ1, . . . , ẋn, ẍ1, . . . , ẍn), respectively. Let a be an element in J2((R, 0), Q),
and (a1, . . . , an, ȧ1, . . . , ȧn, ä1, . . . , än) its coordinates. Let c : s 7→ c(s) be a smooth
parametrized curve in Q whose jet of order 2 at the origin is a, i.e. such that, for each i

(1 ≤ i ≤ n),

xi(c(s))|s=0 = ai,
d

ds
xi(c(s))

∣∣∣∣
s=0

= ȧi,
d2

ds2 x
i(c(s))

∣∣∣∣
s=0

= äi.

We set

xi(s) = xi(c(s)), vi(s) =
d

ds
xi(c(s)).

The same letter L which denotes the Lagrangian will be used to denote the function of
2n real variables (x1, . . . , xn, v1, . . . , vn) which is the expression of the Lagrangian in the
chart of TQ under consideration.

With these notations, the coordinates (x1, . . . , xn, p1, . . . , pn) of ∆(L)(a) are




xi = ai,

pi =
(
d

ds

(
∂L

∂vi
(x(s), v(s))

)
− ∂L

∂xi
(x(s), v(s))

)∣∣∣∣
s=0

.

When no kinematic constraint is imposed on the system, every motion c : t 7→ c(t)
must satisfy the well known Lagrange equation of motion

∆(L)(j2c(t)) = 0,

where, for each time t in the interval of definition of c, j2c(t) denotes the jet of order 2 ,
at the origin s = 0, of the map s 7→ c(t+ s).

With the kinematic constraint, the equations of motion become




∆(L)(j2c(t)) = fc(t),

dc(t)
dt
∈ C,

where the map fc : t 7→ fc(t) is the constraint force. That map, which is in general
unknown, must be such that for each time t, fc(t) ∈ T ∗c(t)Q and that dc(t)/dt ∈ C.

That system of equations is in general underdetermined. In order to get a well posed
system of equations, additional assumptions about the constraint force are made, which
should express the physical properties of the constraint. Among these assumptions, one
of the most frequently made is that the constraint is ideal . That assumption is discussed
in the next subsection.

2.3. Ideal constraints and d’Alembert’s principle. In classical treatises of mechanics
such as [11, 32, 45, 54], a constraint is said to be ideal if, for each time t, the virtual work
of the constraint force vanishes, for any infinitesimal virtual displacement compatible
with the constraint frozen at time t. In what follows, we will use that definition, and we
will try to translate it in more precise, geometrical terms, without altering its physical
meaning.

Several authors, following Arnol’d [3, chapter IV, § 21, p. 91], say that a constraint
satisfies d’Alembert’s principle when that constraint is ideal. But according to the cele-
brated treatise of Lagrange [27, Seconde partie, Section première, page 182], to [45, p. 88]
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or to [32], d’Alembert’s principle has a much more general meaning: it states that the
sum of all the forces acting on a system are, at any time, exactly balanced by the inertial
forces of that system.

Some authors use the terms ideal constraint with a different meaning; for example,
in [20], it is said that a constraint is ideal when the virtual work of the constraint force
vanishes for any infinitesimal virtual displacement compatible with the constraint, with-
out imposing to that constraint to be frozen at time t. Such a definition may of course
be used as long as it is not self-contradictory, but we think that it is not in agreement
with the physical meaning of the word ideal , nor with the meaning given to the terms
ideal constraint in classical treatises.

In order to translate the meaning of the terms ideal constraint into precise geometrical
properties, we must say what is an infinitesimal virtual displacement at time t, when such
an infinitesimal virtual displacement is said to be compatible with the constraint frozen
at time t, and what is the virtual work of the constraint force in such an infinitesimal
virtual displacement.

Let us assume that the system has a motion t 7→ c(t).

For us, an infinitesimal virtual displacement at time t is simply a vector w ∈ Tc(t)Q.
We must stress the fact that an infinitesimal virtual displacement at time t is not a
velocity: the principle of virtual work has its origin in statics (see the beautiful book of
Tulczyjew [51]), in which the time plays no part.

When should we say that a virtual displacement w is compatible with the constraint
frozen at time t? Let us first assume that C is an affine subbundle of TQ or, more
generally, an affine subbundle of TQ1, where Q1 is a submanifold of Q. In that case, the
answer to that question is clear. As seen in Section 2.1, the constraint submanifold is an
affine subbundle of TQ when the constraint is obtained by imposing that a component
of the system rolls without sliding on a moving external object, the motion of that
external object being stationary (the reader may think of a ball rolling on a rotating
horizontal disk, the angular velocity of the disk being constant). To freeze the constraint
at time t means clearly to consider that the motion of the external moving part is stopped
(or, rather, that the time is stopped, the parameter of which the infinitesimal virtual
displacement depends being an abstract parameter other than the time). Therefore, an
infinitesimal virtual displacement w ∈ Tc(t)Q will be said to be compatible with the
constraint frozen at time t if w lies in the vector subbundle

−→
C associated to the affine

subbundle C. Observe that w is not , in general, an element of the constraint submanifold
C! Observe also that the set of infinitesimal virtual displacements compatible with the
constraint frozen at time t is a vector subspace

−→
C c(t) of Tc(t)Q which does not depend

on the motion c under consideration, nor on the kinematic state dc(t)/dt of the system
at time t; it depends only on the configuration c(t) of the system at time t. When the
motion under consideration c runs over all possible motions, and when the time t takes
all possible values, we obtain, as set of all possible infinitesimal virtual displacements
compatible with the constraint frozen at a fixed time the vector subbundle

−→
C of TQ

(or of TQ1, if C is an affine subbundle not of TQ, but of the tangent bundle to some
submanifold Q1 of Q).
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When C is an arbitrary submanifold of TQ, what one should call an infinitesimal vir-
tual displacement compatible with the constraint frozen at time t is not so clear. Appell
[1, 2] and Delassus [19] have used (more or less implicitly) the following definition, made
precise more recently by Chetaev [16] and widely used in many recent works [9, 18, 20, 39,
40, 53]. That definition amounts to “linearizing” C around the point dc(t)/dt. Let Cc(t) =
Tc(t)Q∩C. It is a subset of the vector space Tc(t)Q, and it contains the point dc(t)/dt. Let
us assume that it is a submanifold of Tc(t)Q. Since Tc(t)Q is a vector space, the tangent
space to that submanifold at dc(t)/dt, denoted by Tdc(t)/dtCc(t), is a vector subspace of
Tc(t)Q. For Chetaev, the virtual displacement w is said to be compatible with the constraint
frozen at time t if w ∈ Tdc(t)/dtCc(t). We will say that these virtual infinitesimal displace-
ments are compatible with the constraint in the sense of Chetaev . Observe that now the
set of virtual infinitesimal displacements compatible with the constraint in the sense of
Chetaev at time t is a vector subspace of Tc(t)Q which depends not only on the configu-
ration c(t) of the system, but also on the kinematic state dc(t)/dt of the system at time t.
Therefore, the set of all possible virtual infinitesimal displacements compatible with the
constraint in the sense of Chetaev, for all possible motions and all values of the time, is
no more a vector subbundle of TQ, nor of TQ1 where Q1 is a submanifold of Q. Rather,
it is a vector bundle over the base C, called by some authors [5, 28] the Chetaev bundle.

Now what is the virtual work of the constraint force fc(t) for a virtual infinitesimal
displacement w at time t? The answer is clear, since fc(t) ∈ T ∗c(t)Q and w ∈ Tc(t)Q: it is
simply the pairing

〈
fc(t), w

〉
. Clearly, that virtual work vanishes for any w in some vector

subspace of Tc(t)Q if and only if fc(t) lies in the annihilator of that vector subspace.
Finally, we may state the following definition.

Definition 1. We consider a mechanical system whose configuration space is a
smooth n-dimensional manifold Q, with a kinematic constraint for which the set of ad-
missible kinematic states is a smooth submanifold C of TQ.

1. The constraint is said to be linear (resp. affine) in the velocities if C is a vector
subbundle (resp. an affine subbundle) of a tangent bundle TQ1, where Q1 is a submanifold
of Q (which may be equal to Q).

2. The constraint is said to be ideal if it is affine in the velocities and such that the
constraint force takes its values in the annihilator

−→
C

0
(in T ∗Q1

Q) of the vector subbundle
−→
C of TQ1 associated with the affine subbundle C.

3. The constraint is said to be of Chetaev type if for each x ∈ TQ, Cx = TxQ ∩ C
is a submanifold of TxQ and if for each v ∈ Cx, the constraint force when the system’s
kinematic state is v takes its value in the annihilator (TvCx)0 (in T ∗xQ) of the vector
subspace TvCx of TxQ.

Remark 3. A particular type of kinematic constraint linear in the velocities is when
C = TQ1, where Q1 is a submanifold of Q. If in addition the constraint is ideal, the
constraint force takes its values in the annihilator of TQ1 (in the cotangent bundle T ∗Q1

Q

restricted to the submanifold Q1). By replacing by Q1 the original configuration space
Q, one obtains an ordinary Lagrangian system without kinematic constraint, whose La-
grangian is the restriction of L to TQ1 (considered as a subset of TQ).
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Remark 4. We have avoided calling ideal a constraint of Chetaev type, because one
may wonder whether constraints of that type are encountered in real mechanical sys-
tems, even with some idealization. P. Appell [2] has described a mechanical system with
a kinematic constraint not linear, nor affine in the velocities, obtained by a combina-
tion of a wheel rolling without sliding on a horizontal plane, of a thread wound around
that wheel with a heavy material point tied at one of its ends, and several other com-
ponents. It is known that if one assumes that this constraint is of Chetaev type, one
does not obtain the correct equations of motion for the system [19, 46]. As for kinematic
constraints obtained by means of servomechanisms, they are generally not of Chetaev
type [34].

2.4. The equations of motion in the Lagrangian formalism. We will use in what follows
a description of the kinematic constraint which contains, as particular cases, both ideal
constraints and constraints of Chetaev type. Our description may also be suitable for
more general constraints, such as some of those obtained by means of servomechanisms.
As shown by P. Dazord [18] and the author [34], one should use, for the description of
such constraints, two separate ingredients:

(i) the set C of admissible kinematic states (which may be assumed to be a smooth
submanifold of TQ, at least when the constraint does not depend on time),

(ii) for each v ∈ C, whose projection on Q is denoted by x, a subset Uv of T ∗xQ, which
will be the set of possible values of the constraint force when the kinematic state of
the system is v. In what follows, that subset will be assumed to be a vector subspace
of T ∗xQ. We will denote by Av ⊂ TxQ its kernel, i.e. the set of all w ∈ TxQ such that
〈ξ, v〉 = 0 for all ξ ∈ Uv. In other words, Uv is the annihilator A0

v of Av.

Let v ∈ C be an admissible kinematic state, and x = τQ(v) ∈ Q the corresponding
configuration of the system (we have denoted by τQ : TQ→ Q the canonical projection).
For an ideal constraint, Av = −→C x, the vector subspace of TxQ, associated to the affine
subspace Cx, and Uv =

−→
C

0
x is its annihilator. For a constraint of Chetaev type, Av =

TvCx, considered as a vector subspace of TxQ, where Cx = TxQ ∩ C is assumed to be a
submanifold of the vector space TxQ, and Uv is its annihilator (TvCx)0. We see that in
both these cases, Uv is determined by C; therefore all the properties of the constraint are
known when C is known.

For more general types of constraints encountered in real mechanical systems, the set
C of admissible kinematic states and the set Uv of possible values of the constraint force
when the system’s kinematic state is v, are given independently of each other.

With such a description, the equations of motion of the system are:

(1)





∆(L)(j2c(t)) = fc(t),

dc(t)
dt
∈ C,

fc(t) ∈ Udc(t)/dt.
The reader will easily see that for an ideal constraint, these equations become the well
known Lagrange equations with multipliers [15].
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2.5. Another interpretation of the equations of motion. The space J 2((R, 0), Q) of jets
of order 2, at the origin 0 of R, of smooth parametrized curves in Q can be canonically
identified with the subset of the second tangent bundle T (TQ) formed by elements ξ ∈
T (TQ) which satisfy

τTQ(ξ) = TτQ(ξ),

where we have denoted by τTQ : T (TQ)→ TQ and τQ : TQ→ Q the canonical tangent
bundle projections, and by TτQ : T (TQ) → TQ the canonical lift to vectors of the
map τQ.

On the other hand, for any v ∈ TQ, with τQ(v) = x ∈ Q, the cotangent space T ∗xQ
can be canonically identified with the subspace of T ∗v (TQ) made by semi-basic covectors,
i.e. covectors η ∈ T ∗v (TQ) which vanish on the kernel of the map TvτQ : Tv(TQ)→ TxQ.

By using these two canonical identifications, we can consider the Lagrange differential
as a map, defined on the affine subbundle of T (TQ):

{
ξ ∈ T (TQ)

∣∣ τTQ(ξ) = TτQ(ξ)
}
,

with values to the set of semi-basic elements in T ∗(TQ), and fibered over TQ, i.e. which
maps each ξ ∈ T (TQ) satisfying τTQ(ξ) = TτQ(ξ) = v, in the set of semi-basic covectors
in T ∗v (TQ).

When the Lagrange differential is considered in that way, the constraint force fc(t) at
time t, which appears in the equations of motion (1) must be considered as a semi-basic
covector in T ∗dc(t)/dt(TQ).

In what follows, we will assume that for each v ∈ C, Uv is the fibre at v of a vector
subbundle U of T ∗C(TQ), contained in the subbundle of semi-basic covectors.

Moreover, we observe that the dual of the subbundle of semi-basic covectors of T ∗(TQ)
is the quotient bundle T (TQ)/ kerTτQ. Therefore, the vector bundle U of possible values
of the constraint force is the annihilator of a vector subbundle A of the restriction to C
of the quotient bundle T (TQ)/ kerTτQ.

2.6. The Legendre transformation. The Lagrangian L : TQ→ R determines a smooth
map L : TQ→ T ∗Q called the Legendre transformation. Let us recall that in a chart of Q
with local coordinates (x1, . . . , xn) and the associated charts of TQ and T ∗Q, whose co-
ordinates are denoted by (x1, . . . , xn, v1, . . . , vn) and (x1, . . . , xn, p1, . . . , pn), respectively,
the Legendre transformation is given by

L : (x1, . . . , xn, v1, . . . , vn) 7→
(
x1, . . . , xn, p1 =

∂L(x, v)
∂v1 , . . . , pn =

∂L(x, v)
∂vn

)
.

The Lagrangian is said to be regular (or hyper-regular in the terminology of C. Godbillon
[21]) when the Legendre transformation is a smooth diffeomorphism of TQ onto T ∗Q (or,
more generally, onto an open subset of T ∗Q).

W. Tulczyjew and his co-workers [50, 37] have made a thorough study of the Legendre
transformation for nonregular Lagrangians, and shown that in the Hamiltonian formal-
ism, the motion of the mechanical system is then described by an implicit differential
equation. Inspired by his work, Barone, Grassini and Mendella [4, 5] have proposed a
very general setting for mechanical systems with a nonregular Lagrangian and a kine-
matic constraint of very general type.



230 C.-M. MARLE

When the Lagrangian L is regular, there exists a smooth function H : T ∗Q → R,
called the Hamiltonian of the system, given, in the above defined local coordinates, by

H(x, p) =
n∑

i=1

piv
i − L(x, v),

where (x, p) = (x1, . . . , xn, p1, . . . , pn) and (x, v) = (x1, . . . , xn, v1, . . . , vn) = L−1(x, p).
Let us recall that on the cotangent bundle T ∗Q, there is a canonical 1-form θ, called

the Liouville 1-form, whose expression in local coordinates is

θ =
n∑

i=1

pi dx
i.

Its differential,

dθ =
n∑

i=1

dpi ∧ dxi

is the canonical symplectic form of the cotangent bundle. We will denote by ΛT∗Q the
corresponding Poisson tensor, given in local coordinates by

ΛT∗Q =
n∑

i=1

∂

∂pi
∧ ∂

∂xi
.

The transition from the Lagrangian formalism to the Hamiltonian formalism rests on the
following well known properties.

Proposition 1. Let L : TQ → R be a smooth Lagrangian, L : TQ → T ∗Q be the
corresponding Legendre transformation, and E : TQ→ R be the function

E(v) =
〈
L(v), v

〉
− L(v).

We denote by θ the Liouville 1-form on T ∗Q, by τQ : TQ → Q and πQ : T ∗Q → Q

the canonical projections of the tangent and cotangent bundles, respectively. Let x ∈ Q,
v ∈ TxQ, p = L(v) ∈ T ∗xQ. Then:

(i). For each ξ ∈ Tv(TQ) which satisfies TτQ(ξ) = τTQ(ξ) = v, we have

∆(L)(ξ) = (i(ξ)(L∗ dθ) + dE)(v).

(ii). Let f ∈ T ∗v (TQ) be a semi-basic covector, also considered as an element in T ∗xQ.
We denote by λ(p, f) the vector tangent at p to the fibre T ∗xQ, and equal to f (since T ∗xQ
is a vector space, a vector tangent to that space at any point can be considered as an
element of that space). Then

L∗(i(λ(p, f))dθ) = f.

(iii). The tangent linear map TvL maps the set of elements ξ ∈ Tv(TQ) which satisfy
TτQ(ξ) = v into the set of elements η ∈ Tp(T ∗Q) which satisfy TπQ(η) = v. If in addition
L is regular, that map is a bijection.

(iv). We assume now that L is regular. Let H : T ∗Q → R be the corresponding
Hamiltonian (one has then E = H ◦L). Let v ∈ TQ, x = τQ(v) ∈ Q and p = L(v) ∈ T ∗Q.
The differential at p of the Hamiltonian H restricted to the fibre π−1

Q (x) is v.
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2.7. The constraint submanifold and the projection bundle. Since in the present paper
we are interested mostly in symmetries, we will, for simplicity, assume in what follows that
the Lagrangian L is regular, i.e. that the Legendre transformation L is a diffeomorphism.
The image D = L(C) is then a submanifold of T ∗Q, called the constraint submanifold
(in the Lagrangian formalism).

We define the projection bundle W as the vector subbundle of TD(T ∗Q) whose fibre
at each point p ∈ D is

Wp =
{
λ(p, f)

∣∣ f ∈ UL−1(p)
}
,

where λ : T ∗Q ×Q T ∗Q → T (T ∗Q) is the map defined in part (ii) of Proposition 1,
section 2.6.

We see that the projection bundle is contained in the vertical subbundle of TD(T ∗Q),
i.e. in the kernel of TDπQ.

The projection bundle can be defined in another, equivalent way, given in the following
proposition.

Proposition 2. Let p ∈ D, x = πQ(p) ∈ Q, v = L−1(p) ∈ TxQ. Let

Av =
{
w ∈ TxQ

∣∣ 〈f, w〉 = 0 for all f ∈ Uv
}
.

In other words, Av is the vector subspace of TxQ whose annihilator is Uv defined in
section 2.4. Then the fibre Wp of the projection bundle at p is

Wp = orth((TpπQ)−1(Av)),

where orth denotes the orthogonal complement with respect to the symplectic form dθ.
When the kinematic constraint is ideal, Av = −→C x, and

Wp = orth((TpπQ)−1(
−→
C x)).

Proof. Let ζ ∈ Tp(T ∗Q). Any η ∈ Wp can be written as η = λ(p, f), with f ∈ Uv.
Using property (ii) of Proposition 1, section 2.6, we have

dθ(η, ζ) = dθ(λ(p, f), ζ) =
〈
f, TL−1(ζ)

〉
.

On the right hand side, f is considered as a semi-basic covector at v. By looking at f as
a covector at x, we may also write

dθ(η, ζ) =
〈
f, T τQ ◦ TL−1(ζ)

〉
=
〈
f, TπQ(ζ)

〉
,

since τQ ◦ L−1 = πQ, therefore TτQ ◦ TL−1 = TπQ. The result follows.

2.8. The equations of motion in the Hamiltonian formalism. Let t 7→ c(t) be a smooth
curve in Q. Let

t 7→ ĉ(t) = L ◦ dc(t)
dt

be the corresponding parametrized curve in T ∗Q. Using Proposition 1 of Section 2.6, we
see that c satisfies the equations of motion in the Lagrangian formalism (1) if and only
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if ĉ satisfies the equations

(2)





i

(
dĉ(t)
dt

)
dθ + dH(ĉ(t)) = i(fD(t))dθ,

ĉ(t) ∈ D,
fD(t) ∈Wĉ(t).

In these equations, fD(t) is an element in Tĉ(t)(T ∗Q), called the constraint force in the
Hamiltonian formalism. It is related to the constraint force fc(t) in the Lagrangian for-
malism by

fD(t) = λ(ĉ(t), fc(t)).

Conversely, if t 7→ ĉ(t) is a smooth parametrized curve in T ∗Q which satisfies the equa-
tions of motion in the Hamiltonian formalism, there exists a unique smooth parametrized
curve t 7→ c(t) in Q such that ĉ(t) = L◦ dc(t)/dt; this results easily from property (iii) of
Proposition 1, section 2.6.

Let XH be the Hamiltonian vector field on T ∗Q associated with H, defined by

i(XH)dθ = −dH, or XH = Λ]T∗Q(dH).

We have denoted by Λ]T∗Q : T ∗Q → TQ the vector bundle morphism related to the

Poisson tensor ΛT∗Q by ΛT∗Q(α, β) =
〈
β,Λ]T∗Q(α)

〉
. Equations (2) are clearly equivalent

to the equations

(3)





dĉ(t)
dt

= XH(ĉ(t)) + fD(t),

ĉ(t) ∈ D,
fD(t) ∈Wĉ(t).

Equations (2) or (3) are the equations of motion in the Hamiltonian formalism.

Definition 2. The mechanical system is said to be regular if it satisfies the two
conditions:

(i) The intersection of the vector subbundles W and TD of the bundle TD(T ∗Q) is the
zero bundle,

(ii) The Hamiltonian vector field XH , restricted to the submanifold D, is a section of the
direct sum TD ⊕W .

When the system is regular, the equations of motion (2) or (3) are well behaved: the
Hamiltonian vector field XH , restricted to the submanifold D, splits, in a unique way,
into a sum

XH

∣∣
D

= XD +XW ,

where XD is a vector field on D, and XW a section of the projection bundle W . The
equations of motion (3) become

(4)





dĉ(t)
dt

= XD(ĉ(t)),

fD(t) = −XW (ĉ(t)).
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In that system, the first equation is a smooth, autonomous differential equation on the
manifold D, while the second equation gives, at each time t, the value of the constraint
force fD in the Hamiltonian formalism.

Under very mild assumptions about the Lagrangian, mechanical systems with an
ideal kinematic constraint, or with a constraint of Chetaev type, are regular (see for
example [34]).

Remark 5. For a regular Hamiltonian system with constraint, the Poisson tensor
ΛT∗Q can be projected onto D, and yields a pseudo-Poisson tensor ΛD on that subman-
ifold. Van der Schaft and Maschke [52] have shown that for an ideal constraint linear
in the velocities, ΛD is a Poisson tensor if and only if the constraint is holonomic. That
result is closely related to a property of distributions on a symplectic manifold due to
P. Libermann [29]. We have discussed the properties of ΛD in [35, 36]. In [35], we have
written, incorrectly, that the evolution vector field XD is simply equal to Λ]D(dH|D).
This is true when the Hamiltonian H is a constant of motion, but not in general, as
Robert McLachlan [41] pointed out to us. The additional terms which appear in XD are
discussed by Cantrijn and his coworkers in [12, 13].

3. Symmetries and constants of motion

3.1. Conservation of energy. When there is no kinematic constraint, the Hamiltonian
H is a constant of motion (i.e. for each motion t 7→ c(t) of the system, t 7→ H(ĉ(t)) is
a constant). This is no longer true when there is a kinematic constraint. The following
proposition indicates, for a system with a kinematic constraint, conditions under which
the Hamiltonian H is still a constant of motion.

Proposition 3. Under the assumptions of Section 2.7, the following two properties
are equivalent:

(i) for each p ∈ D, Wp ⊂ ker dH(p),
(ii) each v ∈ C is an element of the vector subspace Av of TxQ defined in Proposition 2,

where x = τQ(v).

When these two equivalent properties are satisfied, the Hamiltonian H is a constant
of motion.

Proof. As seen in 2.7, for each p ∈ D, Wp is contained in kerTpπQ. But property (iv)
of Proposition 1 shows that dH(p), restricted to kerTpπQ, is equal to v. The equivalence
of properties (i) and (ii) follows immediately.

Using Equations (3) we obtain

d

dt
H(ĉ(t)) =

〈
dH(ĉ(t)), fD(t)

〉
,

since
〈
dH(ĉ(t)), XH(ĉ(t))

〉
= 0. Since fD(t) ∈ Wĉ(t), we see that when the equivalent

properties (i) and (ii) are satisfied, H is a constant of motion.

Remark 6. When the kinematic constraint is affine in the velocities and ideal, the
equivalent conditions (i) and (ii) of Proposition 2 are satisfied if and only if the constraint
is linear in the velocities.



234 C.-M. MARLE

Remark 7. When the kinematic constraint is of Chetaev type, these two equivalent
conditions are satisfied if and only if the constraint submanifold C is, at each of its points,
tangent to the Liouville vector field of TQ. We recall that the Liouville vector field of
TQ is the vector field whose value, at each v ∈ TQ, is the vector tangent at v to the fibre
TxQ (with x = τQ(v)), and equal to v.

3.2. Symmetries and reduction. We assume that a Lie group G acts on the left, by a
Hamiltonian action Φ, on the symplectic phase space (T ∗Q, dθ). We denote by G the Lie
algebra of G, by G∗ its dual and by J : T ∗Q→ G∗ the momentum map of that action.

When the Hamiltonian H is invariant under the action Φ, and when there is no
kinematic constraint, the well known reduction theorem due to Marsden and Weinstein
[38], together with Noether’s theorem [43], allows us to reduce the system. Noether’s
theorem tells us first that the momentum map J is a constant of motion. Then, if µ ∈ G∗ is
a regular value (or, more generally, a weakly regular value) of J , J−1(µ) is a submanifold of
T ∗Q, invariant under the restriction of the action Φ to a subgroup Gµ of G. The subgroup
Gµ is the stabilizer of µ, for the affine action of G on G∗ for which the momentum map J
is equivariant. Under some regularity assumptions, the set of orbits Pµ = J−1(µ)/Gµ is
endowed with a reduced symplectic 2-form Ωµ. The Hamiltonian H, restricted to J−1(µ),
induces a reduced Hamiltonian Hµ on Pµ. A first step in the study of solutions of the
Hamiltonian system (T ∗Q, dθ,H) contained in J−1(µ) is the study of their projections on
the reduced phase space Pµ, which are simply the solutions of the reduced Hamiltonian
system (Pµ,Ωµ, Hµ).

For systems with a kinematic constraint, the momentum map is no more a constant of
motion. Therefore it is no more possible to restrict to a level set of the momentum map,
as in the reduction theorem of Marsden and Weinstein. Many authors have used direct
Poisson reduction of the phase space and derived evolution equations for the momentum
map, to obtain generalizations of Noether’s theorem [10, 12, 25, 26, 44, 47]. Since Poisson
reduction may produce singularities, several authors have used singular reduction [8, 17],
or used a different kind of reduction founded on differential forms defined on subbundles
of the tangent bundle [6, 7, 48]. For properties of Poisson manifolds, we refer to [31].

We would like to present here an idea which seems to us new (although a very similar
idea is present in the work of Bates, Grauman and MacDonnell [7]; however these authors
do not use Poisson structures in their reduction procedure, which differs slightly from
ours). That idea is that when there is a kinematic constraint, two different types of group
actions should be considered, because the conditions under which the momentum map
is a constant of motion, and those under which the phase space can be reduced by using
the symmetries, are not the same. Moreover, an action of the first type may sometimes
be deformed into an action of the second type, maybe after restriction to a subgroup.

We must first extend slightly the framework of Hamiltonian systems with a constraint,
so that it will allow reduction by symmetries [33].

Definition 3. We will say that (P,Λ, H,D,W ) is a Hamiltonian system with con-
straint when (P,Λ) is a Poisson manifold called the phase space of the system, H : P → R
is a smooth function called the Hamiltonian, D is a submanifold of P called the con-
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straint submanifold and W a vector subbundle of TDP . We will say that (P,Λ, H,D,W )
is regular when the two subbundles TD and W of TDP are such that

(i) TD ∩W = {0},
(ii) the Hamiltonian vector field Λ](dH), with the notations of section 2.8, restricted to

the submanifold D, is a section of TD ⊕W .

When these conditions are satisfied, the vector field XH |D splits into a sum

XH |D = XD +XW ,

where XD is a vector field on D called the evolution vector field of the system, and XW

is a section of W ; its opposite, −XW , is called the constraint force.

Proposition 4. Let (P,Λ, H,D,W ) be a regular Hamiltonian system with constraint,
and Φ : G × P → P an action of a Lie group G on the manifold P , which satisfies the
following conditions:

(i) the action Φ is a Poisson action, i.e. it preserves the Poisson tensor Λ,
(ii) the action Φ leaves the Hamiltonian H invariant,
(iii) the constraint submanifold D and the vector subbundle W remain invariant under

the action Φ, i.e. for each p ∈ D and g ∈ G, Φg(p) ∈ D and TpΦg(Wp) = WΦg(p).

Moreover, we assume that the set P̂ = P/G of orbits of the action Φ is a smooth
manifold and that the projection π : P → P̂ is a submersion. Then there exists on P̂ a
unique Poisson tensor Λ such that π : P → P̂ is a Poisson map. Let Ĥ : P̂ → R be such
that H = Ĥ ◦ π. Let D̂ = π(D) and, for each p ∈ D, let p̂ = π(p), Ŵp̂ = Tpπ(Wp). Then
D̂ is a submanifold (maybe with multiple points) of P̂ , and (P̂ , Λ̂, Ĥ, D̂, Ŵ ) is a regular
Hamiltonian system with constraint, called the reduced system. The projection π maps
each integral curve t 7→ p(t) of the evolution vector field XD of the initial system, onto an
integral curve t 7→ p̂(t) = π(p(t)) of the evolution vector field XD̂ of the reduced system.

The proof is similar to that given in [33] for systems with a constraint of Chetaev
type.

The above proposition allows the reduction by symmetries of a Hamiltonian system
with constraint. But contrary to what occurs in the reduction theorem of Marsden and
Weinstein, the momentum map J cannot be used to reduce further to submanifolds on
which J keeps a constant value, since it is not a constant of motion. The next proposition
indicates conditions in which a group action produces an integral of motion.

Proposition 5. Let (P,Λ, H,D,W ) be a regular Hamiltonian system with constraint,
and Φ : G × P → P an action of a Lie group G on the manifold P , which satisfies the
following conditions:

(i) the action Φ is a Hamiltonian action, i.e. it admits a momentum map J : P → G∗
such that, for each X ∈ G, the fundamental vector field on P associated with X is the
Hamiltonian vector field Λ](d〈J,X〉),

(ii) the action Φ leaves the Hamiltonian H invariant,
(iii) for each p ∈ D, the vector subspace Wp of TpP is contained in the kernel of TpJ .
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Then the momentum map J , restricted to the submanifold D, is constant on each
integral curve of the evolution vector field XD.

Proof. By Noether’s theorem, the value XH(p) of the Hamiltonian vector field XH ,
at each point p ∈ D, is in the kernel of TpJ . Since XH(p) = XD(p) + XW (p), and since
XW (p) ∈Wp, we see that XD(p) is in the kernel of TxJ . The result follows immediately.

Remark 8. In Proposition 5, we do not need to assume that the submanifold D and
the projection bundle W are invariant under the action Φ.

Remark 9. The assumptions being those of Proposition 5, we assume in addition that
the Poisson structure of the phase space P is associated to a symplectic structure (this
happens, for example, when P is a cotangent bundle T ∗Q equipped with its canonical
symplectic 2-form dθ). Then condition (iii) of Proposition 5 is equivalent to the following
condition:

(iii bis) For each p ∈ D, the tangent space at p to the G-orbit Φ(G, p) is contained in
orthWp.

That follows easily from the fact that the kernel of TpJ is the symplectic orthogonal
of the tangent space at p to the G-orbit Φ(G, p) (see for example [30], proposition 5.5
page 215).

Let us assume in addition that P is a cotangent bundle T ∗Q equipped with its canon-
ical symplectic 2-form dθ, that the Hamiltonian H on T ∗Q comes from a regular La-
grangian L on TQ, that D = L(C) (as in sections 1 and 2) and that the action Φ is
the canonical lift to the cotangent bundle of an action ΦQ of the Lie group G on the
configuration space Q. Proposition 2 shows that

Wp = orth((TpπQ)−1(Av)),

where v = L−1(p) ∈ TQ. Since the projection on Q of the tangent space at p to the
G-orbit Φ(G, p) is the tangent space at x = πQ(p) to the G-orbit ΦQ(G, x), we see that
condition (iii) of Proposition 5 is equivalent to the following condition:

(iii ter) For each v ∈ C, the tangent space at x = τQ(v) to the G-orbit ΦQ(G, x) is
contained in the vector subspace Av of TxQ defined in Proposition 2.

Under that form, condition (iii) has a clear meaning: any possible values of the con-
straint force must vanish when coupled with any vector tangent to a G-orbit ΦQ(G, x).

As observed by Bates, Grauman and MacDonnell [7], in several examples, a group
action satisfying the assumptions of Proposition 4 can be deformed to produce, maybe
after reduction to a subgroup, another group action which satisfies the assumptions of
Proposition 5. This fact will be illustrated in the next section.

4. Example

4.1. The configuration space, the phase space and the Hamiltonian. We consider a
spherical ball of radius r which rolls without sliding on the inner surface of a circular
cylinder of radius R. The symmetry axis of that cylinder is vertical. We denote by m the
mass of the ball, by I its moment of inertia with respect to an axis through its centre.
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The configuration space of the system is R×S1×G, with G = SO(E), where E is the
Euclidean three-dimensional space. A point in the configuration space is a triple (z, θ, g),
where z is the height of the centre of the ball over some reference horizontal plane, θ is
the angle made by a fixed horizontal oriented line chosen as reference with the horizontal
oriented line which joins the centre of the ball to its point of contact with the cylinder,
and g is the element in the rotation group SO(E) which maps a given orientation of the
ball, chosen as reference, onto its actual orientation.

In the Hamiltonian formalism, the phase space is R×R∗×S1×R∗×T ∗G, where R∗

denotes the dual of the real line R (which may be identified with R). A point in phase
space will be a multiplet (z, pz, θ, pθ, (g, pg)), where g ∈ G = SO(E) and pg ∈ T ∗gG.

The Hamiltonian of the system is

H =
1

2m

(
1

(R− r)2 p
2
θ + p2

z

)
+

1
2I
|pg|2 +mγz,

where γ is the gravity acceleration. We have denoted by |pg| the length of the covector
pg ∈ T ∗gG for the canonical Euclidean structure of that vector space.

4.2. The constraint submanifold. The constraint submanifold in the Hamiltonian for-
malism is the submanifold D of the phase space made by elements (z, pz, θ, pθ, g, pg)
which satisfy the two equations





1
m(R− r) pθ +

r

I
Mz = 0,

1
m
pz −

r

I
Mθ = 0.

In these equations, we have set M = R̂g−1pg, where R̂g−1 : T ∗G → T ∗G denotes the
canonical lift to the cotangent bundle of the right translation Rg−1 : G→ G which maps
h ∈ G onto hg−1. Observe that M is an element of the cotangent space T ∗eG at the unit
element e of G; that space will be identified with the dual of the Lie algebra G of G.

Let us now explain the meaning of Mθ and Mz which appear in these equations. Once
an orientation and a fixed orthonormal basis of positive orientation (e1, e2, e3) of E are
chosen, an element in G can be considered as a 3 × 3 skew-symmetric matrix, and may
be identified with a vector in E, according to




0 −M3 M2

M3 0 −M1

−M2 M1 0


 identified with M1e1 +M2e2 +M3e3.

That identification does not depend on the choice of the orthonormal basis (e1, e2, e3), as
long as that basis is of positive orientation. Therefore, instead of the fixed orthonormal
basis (e1, e2, e3) of E, we may use a moving orthonormal basis (en, eθ, ez), where en and
eθ are horizontal, en being normal to the cylinder at the contact point of the ball and
directed outwards, and eθ being tangent to the cylinder and directed towards the positive
trigonometric sense of rotation around the cylinder. The unit vector ez is vertical and
directed upwards. We will denote by Mn, Mθ and Mz the components of M in the basis
(en, eθ, ez).
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4.3. The projection bundle. The projection bundle W is the image, by the map λ

defined in Proposition 1, of pairs of covectors (z, pz, θ, pθ, g, pg) and (z, p′z, θ, p
′
θ, g, p

′
g),

attached to the same point (z, θ, g) of the configuration space, which satisfy the following
conditions:

(i) the first covector (z, pz, θ, pθ, g, pg) is in D,
(ii) the second covector (z, p′z, θ, p

′
θ, g, p

′
g) satisfies

M ′θ + rp′z = 0 and M ′z −
r

R − r p
′
θ = 0,

where M ′n, M ′θ and M ′z are the components of M ′ = R̂g−1p′g in the basis (en, eθ, ez), with
the same identifications as those made for M .

4.4. Two Lie group actions of the first type. There are two Lie group actions which
leave invariant the symplectic 2-form of the phase space, the Hamiltonian, the constraint
submanifold D and the projection bundle W . These two actions commute and may be
used, in any order, to reduce the phase space of the system. The first of these actions is
an action of the group G = SO(E), given by

(h, (z, pz, θ, pθ, g, pg)) 7→ (z, pz, θ, pθ, gh, R̂hpg).

The second is an action of the group S1, given by

(β, (z, pz, θ, pθ, g, pg)) 7→ (z, pz, θ + β, pθ, gβg, L̂gβpg),

where gβ ∈ G = SO(E) is the rotation of angle β around the vertical axis, and L̂gβ is the
canonical lift to the cotangent bundle of the left translation Lgβ : G → G which maps
h ∈ G onto gβh.

These two actions are Hamiltonian, but they do not satisfy condition (iii) of Proposi-
tion 5. Therefore, we cannot say whether their momentum maps are constants of motion.

After reduction by these two actions, the reduced phase space is R×R∗ ×R∗ × G∗,
with the coordinates (z, pz, pθ,M0). The canonical projection of the inital phase space
onto the reduced phase space is the map

(z, pz, θ, pθ, g, pg) 7→ (z, pz, pθ,M0 = Ad∗
g−1
θ
◦R̂g−1pg).

The reduced constraint submanifold D̂ is the set of elements (z, pz, pθ,M0) in the reduced
phase space which satisfy the two equations

1
m(R− r) pθ +

r

I
M0z = 0,

1
m
pz −

r

I
M0y = 0,

where M0x, M0y and M0z are the components of M0 in a fixed, orthonormal, positively
oriented basis (ex, ey, ez) of E, with ex and ey horizontal and ez vertical directed upwards.

The reduced projection bundle Ŵ is generated by the two vector fields along D̂:

Ŵ1 =
r

R− r
∂

∂M0z
+

∂

∂pθ
, Ŵ2 = −r ∂

∂M0y
+

∂

∂pz
.

4.5. A group action of the second type. Let us consider the action of R on the phase
space, given by

(δ, (z, pz, θ, pθ, g, pg)) 7→
(
z, pz, θ −

r

R− r δ, pθ, gδg, L̂gδpg
)
.
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We have denoted by gδ ∈ G = SO(E) the rotation around the vertical axis of angle δ.
Observe that δ ∈ R is considered as an angle by taking its value modulo 2π.

That action is Hamiltonian, and has as a momentum map

J : (z, pz, θ, pθ, g, pg) 7→ −
r

R − r pθ +M0z ,

where M0z is the component on ez of M0 = Ad∗
g−1
θ
◦R̂g−1pg.

This R-action does not preserve the constraint submanifold D, nor the projection
bundle W , but it satisfies the conditions for application of Proposition 5. Therefore its
momentum map J is a constant of motion.

That R-action has a clear physical meaning, in agreement with Remark 9: under that
action, the ball rolls on the cylinder without sliding, around a horizontal circle of that
cylinder.

So− r

R− r pθ+M0z is a constant of motion. But on D̂, we have
1

m(R− r) pθ+
r

I
M0z =

0. Therefore, we see that pθ and M0z are both constants of motion.

4.6. The equations of motion in the reduced phase space. Keeping in mind that pθ
and M0z are constants of motion, the equations of motion for the other coordinates z, pz
M0x and M0y are





dz

dt
=

1
m
pz,

dpz
dt

=
mr

I

dM0y

dt
,

dM0x

dt
=

1
m(R− r)2

Ipθ
mr

pz,

dM0y

dt
= − I

m(R− r)2(I +mr2)
pθM0x −

rI

I +mr2 mγ.

That system reduces to 



dpz
dt

= A+BM0x,

dM0x

dt
= Cpz,

where A, B and C are the constants

A = − m2r2γ

I +mr2 , B = − rpθ
(I +mr2)(R− r)2 , C =

Ipθ
m2r(R− r)2 .

We observe that BC < 0. We obtain finally




z = z0 +
pz0

m
√
−BC

sin(
√
−BC(t− t0)),

θ = θ0 +
pθ

m(R− r)2 (t− t0).

Once the constant pθ is given and z ant θ are known, pz, M0x, M0y and the constant
M0z are given by
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pz = m
dz

dt
, M0x =

1
B

(
dpz
dt
−A

)
, M0y =

I

mr
pz, M0z = − Ipθ

mr(R− r) .

We obtain the well known result [42]: all the motions are quasi-periodic.
A similar treatment may be made for the problem, solved by J. Hermans [22, 23], of

a ball which rolls on a surface of revolution with a vertical axis; however in that problem
the constants of motion cannot be obtained explicitly (they are solutions of differential
equations).
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Éditions Jacques Gabay, Paris, 1989.

[28] A. D. Lewis, Towards F = ma in a general setting for Lagrangian mechanics, Annales
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(1983), 43–68.

[30] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel,
Dordrecht, 1987.

[31] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential
Geometry 12 (1977), 253–300.
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