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Abstract. An affine Cartan calculus is developed. The concepts of special affine bundles and
special affine duality are introduced. The canonical isomorphisms, fundamental for Lagrangian
and Hamiltonian formulations of the dynamics in the affine setting are proved.

1. Introduction. Gauge independence of the Langrangian formulation of dynamics of
charged particles can be achieved by increasing the dimension of the configuration space
of the particle ([8]). The four dimensional space-time of general relativity is replaced
by the five dimensional space-time-phase of Kaluza. The phase space of the particle
is the cotangent bundle of the Kaluza space and the gauge independent Lagrangian is
a function on the tangent bundle of the Kaluza space. A similar construction makes
possible a frame-independent formulation of the Newtonian analytical mechanics (see
[13] for details).

There is an alternate approach, based on ideas and results of Tulczyjew, in which
the four dimensional space-time is used as the configuration space of the charged par-
ticle ([14]). The phase space is no longer a cotangent bundle and not even a vector
bundle. It is an affine bundle modeled on the cotangent bundle T∗M of the space-time
manifold M . The dynamics is a generalized Hamiltonian system, but the Lagrangian
generating object is not a function. It is a section of an affine bundle modeled on
TM × R.

Also time-dependent mechanics in the inhomogeneous formulation requires affine ob-
jects. Here infinitesimal configurations are first jets of motions interpreted as sections of
the space-time fibered over time, and are elements of an affine bundle over the space-time.
The phase manifold is a vector bundle, however the Hamiltonian is not a function but a
section of a bundle over the phase manifold ([16]).
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We develop the geometric framework for these approaches. The standard geometric
constructions based on the algebra of functions on a manifold M are replaced by con-
structions based on the affine space of sections of an affine bundle ζ:Z → M , modeled
on the trivial bundle M × R.

In Section 2 we adapt the definition of a covector as an equivalence class of functions
to the affine case. The manifold PZ of affine covectors is an affine bundle modeled on
T∗M and carries a canonical symplectic structure. Sections of ζ generate Lagrangian
submanifolds of PZ.

In analytical mechanics of a particle the phase space is considered a vector bundle,
dual to the vector bundle of infinitesimal configurations (velocities). In the presented
approach vector bundles are replaced by affine bundles, vector spaces by affine spaces.
Affine functions on an affine space A are replaced by affine sections of a bundle ζA:A→ A

in the category of affine spaces, modeled on A×R. This means that A,A are affine spaces
and ζA is an affine surjective mapping. Such a bundle is uniquely determined be the affine
space A and a distinguished vector v1 in the model vector space V(A). We call it a special
affine space (Section 3).

The dual object to a special affine space A = (A, v1) is the set of affine sections
of ζA. It carries a natural structure of an affine space with the vector space of affine
functions on A as the model vector space. With the constant function 1 the dual affine
space becomes a special affine space. We introduce in an obvious way the concept of a
special affine bundle. Principal examples of special affine bundles are PZ × R→M , the
first jet (contact) bundle CZ →M , and their duals.

It is convenient to represent an element of the dual object as a morphism in the
category. For this purpose we identify a section σ of ζA with a morphism ϕ̃σ:A → I,
where I = (R, 1) and ϕ̃(a) = a− ϕ(ζA(a)). We must be aware of the fact that with this
representation the canonical pairing is not symmetric, but skew-symmetric.

The theory of special affine spaces (bundles) and duality is developed in Sections 3, 4
and 5. In Section 3 we present the main algebraic constructions in the category of special
affine spaces. In Section 4 we interpret the bundles dual to PZ × R and CZ in terms of
the tangent bundle TZ. In Section 5 we prove the existence of canonical isomorphisms
between CA and CA#, where A is a special affine bundle and A# is the special affine
dual bundle. This isomorphism corresponds to the canonical isomorphism between T∗E
and T∗E∗ for a vector bundle E, and makes possible the Legendre transformation.

The Lagrange formulation of the dynamics of a particle is possible because of the
canonical Tulczyjew isomorphism (symplectomorphism) of TT∗M and T∗TM . In Sec-
tion 5 we give a proof of an affine counterpart for this isomorphism. As a consequence we
obtain an affine setting for the Lagrangian formulation of the dynamics. As an example
we discuss the case of a relativistic charged particle (Section 6).

A similar approach to time-dependent non-relativistic mechanics has been recently
developed be E. Massa with collaborators ([6, 7, 17]), W. Sarlet, and E. Mart́ınez ([5,
10, 11]).

This work is a contribution to a programme of study of geometric foundations of phys-
ical theories conducted jointly with Professor Tulczyjew at the University of Camerino.
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2. Affine phase and contact spaces

2.1. Affine spaces and affine bundles. An affine space is a triple (A, V, α), where A is
a set, V is a real vector space of finite dimension and α is a mapping α:A×A→ V such
that

(1) α(a3, a2) + α(a2, a1) + α(a1, a3) = 0;
(2) the mapping α(·, a):A→ V is bijective for each a ∈ A.

We shall also write simply A to denote the affine space (A, V, α) and V(A) to denote V .
If (A, V, α) then also (A, V,−α) is an affine space. We will write for brevity A to denote
the affine space (A, V,−α). We will write also a2 − a1 instead of α(a2, a1) and we will
denote by a+ v the unique point a′ ∈ A such that a′ − a = v.

Let ξ:E → M be a vector bundle. An affine bundle modeled on ξ is a differential
fibration η:A→M and a differentiable mapping ρ:A×M A→ E such that

(1) ξ ◦ ρ = η ×M η,
(2) ρ(a3, a2) + ρ(a2, a1) = ρ(a3, a1) for each triple (a3, a2, a1) ∈ A×M A×M A,
(3) for each local section σ:U → A of η, the mapping σ0:→ E defined by σ0(m) =

ρ(σ(m), σ(m)) is the zero section of ξ over U ,
(4) for each local section σ:U → A of η, the mapping ρσ: η−1(U) → ξ−1(U) defined

by ρσ(a) = ρ(a, σ(η(a))) is a diffeomorphism.

We will write simply A to denote the affine bundle (A,E, ρ) and V(A) to denote E.

Remark. Any section σ ∈ Sec(η) of A induces an obvious isomorphism Iσ ∈
AffM (A,V(A)) of affine bundles:

Am 3 a 7→ Iσ(a) = a− σ(m) ∈ V(Am). (1)

Let τi:Ai → M be an affine bundle modeled on a vector bundle v(τi): V(Ai) → M ,
i = 1, 2, 3. Note that the space Ai of sections of τi is an affine space modeled on the
space V(Ai) of sections of v(τi). For an affine bundle morphism φ:A1 → A2 we denote
by φv: V(A1)→ V(A2) its linear part, i.e.

φv(v) = φ(a+ v)− φ(a) for a ∈ A, v ∈ V(A), τ1(a) = v(τ1)(v). (2)

We will denote by AffM (A1, A2) (resp. HomM (V1, V2)) the set of morphisms over the
identity on the base in the affine (resp. vector) case. We shall also write Aff(A,R) instead
of AffM (A,M × R) and Lin(V,R) instead of HomM (V,M × R). For a bi-affine mapping

F :A1 ×M A2 → A3

we denote by F v and vF , respectively, the mappings

F v:A1 ×M V(A2)→ V(A3), (a1, v2) 7→ (F (a1, ·))v(v2), (3)

and
vF : V(A1)×M A2 → V(A3), (v1, a2) 7→ (F (·, a2))v(v1). (4)

These mappings are, respectively, affine-linear and linear-affine in the obvious sense. By
Fv we denote the bilinear part of F , i.e.
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Fv: V(A1)×M V(A2)→ V(A3),

(v1, v2) 7→ (F v(·, v2))v(v1) = (vF (v1, ·))v(v2)

= F (a1 + v1, a2 + v2)− F (a1 + v2, a2) + F (a1, a2)− F (a1, a2 + v2). (5)

2.2. Affine Cartan calculus. The standard Cartan calculus of differential forms is
based on the algebra of differentiable functions on a manifold M . In the affine Cartan
calculus we replace functions by sections of an affine bundle ζ:Z → M modeled on the
trivial bundle M × R. We can consider Z a principal bundle with the structure group
(R,+) (15). The space of sections of ζ is an affine space modeled on the space of sections
of M × R and a section of M × R we identify with a function on M .

2.3. The phase and contact fibrations. Let ζ:Z → M be an affine fibration modeled
on the trivial fibration prM :M × R → M . We define an equivalence relation in the set
of all pairs (m,σ), where m is a point in M and σ is a section of ζ. Two pairs (m,σ)
and (m′, σ′) are equivalent if m′ = m and d(σ′ − σ)(m) = 0. We denote by PZ the set of
equivalence classes. The class of (m,σ) will be denoted by dσ(m) or by dmσ and will be
called the differential of σ at m. We define the canonical projection

Pζ: PZ →M, dσ(m) 7→ m. (6)

We define also a mapping

Pρ: PZ ×M PZ → T∗M, (dσ2(m), dσ1(m)) 7→ d(σ2 − σ1)(m). (7)

The pair (Pζ,Pρ) makes PZ an affine fibration modeled on the cotangent fibration
πM : T∗M → M . This fibration is called the phase fibration of ζ. A section of Pζ will be
called an affine 1-form.

Let α:M → PZ be an affine 1-form and let σ be a section of ζ. The differential
dm(α − dσ) does not depend on the choice of σ and will be called the differential of α
at m. We will denote it by dα(m) or by dmα. The differential of an affine 1-form is an
ordinary 2-form.

Remark. Let us consider a principal bundle Z with structure group (R,+). A section
of PZ defines a connection in Z and can be interpreted as an affine form of this connection.

We define another equivalence relation in the set of all pairs (m,σ). Two pairs (m,σ)
and (m′, σ′) are equivalent if m′ = m, σ(m) = σ′(m), and d(σ′ − σ)(m) = 0. We can
identify the equivalence class of (m,σ) with the first jet of the section σ with source point
m. We denote by CZ the set of equivalence classes. The class of (m,σ) will be denoted by
cσ(m) or by cmσ and will be called the contact element of σ at m. We define a mapping
Cζ: CZ →M by Cζ(cσ(m)) = m and a mapping

Cρ: CZ ×M CZ → T∗M × R
by

Cρ(dσ2(m), cσ1(m)) = (d(σ2 − σ1)(m), σ2(m)− σ1(m)).

The pair (Cζ,Cρ) makes CZ an affine fibration modeled on the fibration γM : T∗M×R→
M . This fibration is called the contact fibration of ζ. We have an obvious isomorphism of
affine bundles

CZ = PZ ×M Z.
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Let Z and Z ′ be special affine bundles modeled on M × R and M ′ × R respectively.
A morphism Φ:Z → Z ′ induces a mapping Φ∗: Sec(Z ′)→ Sec(Z). The mapping Φ∗ and
the relation Φ−1 project to relations PΦ: PZ ′ → PZ and CΦ: CZ ′ → CZ.

2.4. Canonical structures on PZ and CZ. We show first that PZ carries a canonical
symplectic structure. For a chosen section σ of ζ we have isomorphisms (see (34))

Iσ:Z →M × R, Idσ: PZ → T∗M (8)

and for two sections σ, σ′ the mapping

Idσ′ ◦ I−1
dσ : T∗M → T∗M, p 7→ p+ d(σ − σ′)(πM (p)), (9)

is a symplectomorphism. It follows that the 2-form I∗dσωM , where ωM is the canonical
symplectic form on T∗M , does not depend on the choice of σ. We will denote this form
by ωZ .

There is a canonical projection

µ: CZ → Z (10)

which is a morphism of affine bundles ζCZ : CZ → PZ and ζ:Z → M , so we have a pull-
back of sections of ζ to sections of ζCZ . Now we can define a section θZ of PζCZ : PCZ →
PZ by

θZ(p) = dpµ∗σp, (11)

where σp is a section of ζ which represents p ∈ PZ. It is easy to see that the canonical
symplectic form on PZ is equal to dθZ . The affine 1-form θZ is called the Liouville affine
form of CZ and defines the canonical contact structure of CZ.

2.5. Generating objects. As in the cotangent bundle, the image of an affine 1-form
α:M → PZ is a Lagrangian submanifold of (PZ, ωZ) if and only if it is closed, i.e. if
dα = 0. If α = dσ for a section σ of Z then we say that σ is a generating section of the
Lagrangian submanifold α(M).

Now, let C ⊂ M be a submanifold and σ:C → Z a section of ζ over C. We define a
submanifold L ⊂ PZ by

L = {p ∈ PZ: p = dmσ′ where m ∈ C and σ′|C = σ}. (12)

As in the trivial case, L is a Lagrangian submanifold of (PZ, ωZ). We say that L is
generated by the section σ over the constraints manifold C.

Let ς:Y → N be an affine bundle modeled on N × R and let η:Y → Z be an
epimorphism of affine bundles such that η(y+r) = η(y)+r (it is a morphism of principal
bundles). We denote by η the underlying epimorphism η:N → M . It follows that for
m ∈M the subbundle η−1(Zm) is trivial (has distinguished constant sections). Let σ be
a section of ς. We say that a point n ∈ N is critical for σ if

d(σ|Nm)(n) = dσ0(n) (13)

for a constant section σ0 of Y |Nm. Let S(σ) be the set of critical points of σ. The condition
(13) implies that there exists a section σ′ of ζ such that dn(σ − η∗σ′) = 0. We define a
mapping

χ:S → PZ, n 7→ dmσ′.
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Definition 1. A section σ of ς:Y → N is an affine Morse family if for a section σ′

of ζ:Z →M the function σ − η∗σ′ on N is a Morse family.

If σ is an affine Morse family then χ(S) is a Lagrangian submanifold of (PZ, ωZ).

3. Special affine spaces and duality. In the category of vector spaces, the dual
object is defined as the space of linear functions. In the approach presented here functions
are replaced by sections of a bundle. In particular, linear functions on a vector space V are
replaced by linear sections of a fibration ζ:V → V (modeled on V × R) in the category
of vector spaces. We observe that the space V ‡ of linear sections is affine, not linear.
Morever, an affine section can be uniquely represented by a linear section and a number,
i.e. an element of the trivial bundle V ‡ × R. This observation leads us to the concept of
special affine space (and its model special vector space) which puts a bundle ζ:V → V

and its dual V ‡ × R into one category.
A special vector space is a pair V = (V, v1), where V is a vector space and v1 ∈ V

is a distinguished, non-zero vector. A special affine space is an affine space modeled on
a special vector space. Let V = (V, v1) and V ′ = (V ′, v′1) be special vector spaces. A
linear mapping F :V → V ′ is called a morphism of special vector spaces if F (v1) = v′1.
A morphism of special affine spaces is an affine mapping such that its linear part is a
morphism of special vector spaces. Let A = (A, v1) be a special affine space with the
distinguished vector v1 ∈ V(A). There is a canonical action of (R,+) on A given by the
formula

A× R 3 (a, r)→ a+ rv1. (14)

The space of orbits is an affine space modeled on the quotient vector space V = V/{v1}.
We denote it by A and the canonical projection A→ A by ζA. With the action (14) the
fibration ζA:A→ A is an affine bundle modeled on A× R.

By A we denote the special affine space (A, v1). Let A = (A, v1) and B = (B,w1) be
special affine spaces. The product A×B is an affine space modeled on V(A)×V(B). Let
us denote by A � B the quotient affine space (A × B)/L, where L ⊂ V(A) × V(B) is a
one-dimensional vector subspace spanned by the vector (v1,−w1). We have V(A�B) =
(V(A)× V(B))/L with a distinguished vector v1 �w1 = [(v1, 0)] = [(0, w1)]. The product
of special affine spaces is the special affine space A�B = (A� B, v1 � w1) modeled on
the special vector space (V(A)�V(B), v1�w1), where V(A)×V(B) = (V(A)×V(B))/L.

We have obvious isomorphisms

A�B ' B �A, A� (B �C) ' (A�B)�C. (15)

Since A and A are affine spaces, we can distinguish the set of affine sections of ζA. It
is an affine space modeled on the vector space of affine functions on A:

σ(a) = (σ − σ′)(a) · v1 + σ′(a). (16)

We consider this space as the dual space to A.
In order to interpret the dual object in terms of morphisms, we introduce the distin-

guished special affine space I = (R, 1). There is one-to-one correspondence between affine
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sections of the fibration ζA:A→ A and morphisms from A to I given by the formula:

Sec(ζA) 3 ϕ→ ϕ̃: ϕ̃(a) = a− ϕ(ζA(a)). (17)

Let us denote by A# the set of morphisms ϕ:A → I. The affine structure on A#

induced from AffSecζA (see (16)) is modeled on the vector space of affine functions on A
and is given by

(ϕ− ϕ′)(a) = ϕ′(a)− ϕ(a), (18)

where a = ζA(a). It follows that the dimensions of V(A) and V(A#) are equal.
The special affine space A# = (A#,1A), where 1A denotes the constant function

equal to 1, will be called the special affine dual to the special affine space A.

Example 1. Let A be an affine space. We put A = A × R with V(A) = V(A) × R
and A = (A, (0, 1)). The dual space A# is identified with the vector space A† of affine

functions on A. With this identification we have A# = (A†,1A).

Remark. If we take A as in the example, then A = (A, (0, 1)) and A = (A)×R. Here
R denotes the affine space of real numbers with the affine structure dual to the canonical
one. The multiplication by −1 gives an isomorphism of R and R with the identity as the
linear part, so we can identify A with (A× R, (0,−1)).

Proposition 1. Let A = (A, v1) and B = (B,w1) be special affine spaces. There are
the following canonical isomorphisms:

A = A,

A�B = A�B,
A# = (A)#,

(A�B)# = A# �B#.
(19)

Proof. The left-hand identities are obvious. An affine section of ζA is also an affine
section of ζA but the affine structures are different. In terms of morphism, ϕ ∈ A# gives
the same section as −ϕ ∈ (A)#.

Now, for each pair ϕ ∈ A#, ψ ∈ B# we define a mapping

ϕ+ ψ:A×B → R, (a, b) 7→ ϕ(a) + ψ(b).

Since

ϕ(a+ rv) + ψ(b− rw) = ϕ(a) + ψ(b),

the mapping ϕ + ψ projects to a morphism of special affine spaces ϕ ⊕ ψ:A �B → I.
On the other hand, ϕ ⊕ ψ = ϕ′ ⊕ ψ′ if and only if ϕ(a) + ψ(b) = ϕ′(a) + ψ′(b) for each
a, b, i.e. if and only if ϕ − ϕ′ = ψ′ − ψ ∈ R. This is equivalent to saying that the pairs
(ϕ, ψ) and (ϕ′, ψ′) define the same element of A# �B#.

We have also canonical identifications I = I, I � I = I and I# = I given by the
mappings

R→ R, r 7→ −r,
R� R→ R, [(r, s)] 7→ r + s,

R# → R, ϕ 7→ −ϕ(0). (20)
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Let Ψ:A → B be a morphism of special affine spaces A = (A, v) and B = (B,w).
The set

G = {A×B 3 (a, b): b = Ψ(b)} (21)

is invariant with respect to the R-action ((a, b), r) 7→ (a+ rv, a+ rw) and consequently,
it is uniquely determined by its image in A � B, which is the image of a section of
A�B → A×B, defined on the graph gr(Ψ) of Ψ:A→ B. The morphism of special affine
bundles corresponding to this section,

gr(Ψ): (ζA � ζB)−1(gr(Ψ))→ I, (22)

will be called the graph of Ψ.
Let Φ:A × B → R be a bi-affine mapping such that for each a ∈ A and each b ∈ B

the corresponding mappings

Φ(a, ·):B → R, b′ 7→ Φ(a, b′), Φ(·, b):A→ R, a′ 7→ Φ(a′, b), (23)

are morphisms of special affine spaces. It follows that

Φ(a, b+ w) = Φ(a+ v, b), (24)

i.e. Φ projects to a mapping Φ̃:A � B → R. We say that Φ is special bi-affine. On the
other hand, we say that a mapping

Φ̃:A�B → I

is special bi-affine if its pull-back to a function Φ:A×B → I is special bi-affine. A special
bi-affine mapping Φ:A×B → R induces mappings

Φl:A→ B#, a 7→ Φ(a, ·), (25)

and
Φr:B → A#, b 7→ Φ(·, b). (26)

For r ∈ R we have Φl(a+ rv)(b) = Φl(a)(b+ rw) = Φl(a)(b) + r1(a) and, according to
(16), Φl(a+ rv)− Φl(a) = −r1. It follows that Φl is a morphism of special affine spaces

Φl:A→ B#

and similarly,
Φr:B → A#.

We say that Φ is nondegenerate if Φl,Φr are injective. For injective Φl,Φr, we have

dim V(A) 6 dim V(B#) = dim V(B) 6 dim V(A),

i.e. they are isomorphisms. A pairing between special affine spaces A = (A, v1) and
B = (B,w1) is a nondegenerate special bi-affine mapping

Φ:A�B → I. (27)

Example 2. Let A = (A, v) be a special affine space. The mapping

∆A:A# � A→ I, (ϕ, a) 7→ −ϕ(a), (28)

is the canonical pairing between A# and A, while the mapping

∆A:A�A# → I, (a, ϕ) 7→ ϕ(a), (29)
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is the canonical pairing between A and A#. Since these pairings are nondegenerate, we
have the canonical isomorphism of A and (A#)#.

For a morphism Φ:A → B of special affine spaces, we define the dual morphism
Φ#:B# → A# by the formula

Φ#(ψ) = ψ ◦ Φ.

Proposition 2. Let Φ:A→ B be a morphism of special affine spaces. Then

(Φ#)# = Φ,

where we have used the canonical isomorphisms (A#)# = A and (B#)# = B.

Proof. Let χ ∈ (A#)# and a ∈ A be related by the canonical isomorphism, i.e. let
χ(ϕ) = −ϕ(a) for each ϕ ∈ A#. By the definition of the dual morphism, we have for each
ψ ∈ B#

(Φ##(χ))(ψ) = χ(Φ#(ψ)) = −(Φ#(ψ))(a) = −ψ(Φ(a)), (30)

which implies that Φ##(χ) and Φ(a) are related by the canonical isomorphism of B and
B##.

For B = A# we have Φ#:A## = A→ A#.

Definition 2. A morphism Φ:A→ A# is called self-dual if Φ = Φ#.

As we have already noticed, the model vector space for A# is the vector space of affine
functions on A. The distinguished function is the constant unit function. It follows that
the model vector space for A# is the space V(A)∗. The canonical projection A# → A#

corresponds to extracting from an affine function its linear part.

Proposition 3. Let Φ:A→ B be a morphism of special affine spaces. Then V(Φ#) =
Φ∗, where V(Φ#) is the linear part of Φ#.

Proof. Let a ∈ A and let f be an affine function on B. Then for a = ζA(a) and ψ ∈ B#

(V(Φ#)(f))(a) = (Φ#(ψ + f)− Φ#(ψ))(a) = (Φ#(ψ))(a)− (Φ#(ψ + f))(a)

= ψ(Φ(a))− (ψ(Φ(a))− f(Φ(a))) = f(Φ(a)) = (Φ∗f)(a). (31)

Corollary 1. Let Φ:A→ A# be a self-dual morphism. Then the linear part of the
induced mapping of affine spaces Φ:A→ A# is skew self-adjoint.

Proof. We have from the previous proposition that

V(Φ#) = V(Φ)∗: V(Φ##)→ V(Φ#).

We identify the model space V(A#) with the space Aff(A,R) of affine functions on A.
Similarly, the space V(A##) is identified with the space Aff(A#,R). Using the pairing (28)
(or (29)) we see that an element of V(A) can be interpreted as an affine function on A#.
With this interpretation the sets V(A) and V(A##) are equal and the linear part of the
canonical isomorphism A → A## is the identity. Let ϕ be an affine function on A#

with linear part v(ϕ): V(A#) = V(A)∗ → R. The same function, interpreted as an affine
function on A# has the linear part −v(ϕ). It follows that the canonical isomorphism of
A and A## projects to the minus standard isomorphism of V(A) and V(A)∗∗.
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The linear part of a self-dual morphism projects then to a skew self-adjoint linear
mapping.

Proposition 4. Let Φ:A → A# be a morphism of special affine spaces. Then Φ is
self-dual if and only if for each pair a, b ∈ A

Φ(b)(a) = −Φ(a)(b). (32)

Proof. Let ψ ∈ A## and b ∈ A. By the definition of the dual morphism Φ#(ψ)(b) =
ψ(Φ(b)). If ψ and a ∈ A are related by the canonical isomorphism A → A## then
ψ(Φ(b)) = −Φ(b)(a) and we get the formula

Φ#(a)(b) = −Φ(b)(a). (33)

It follows that Φ is self-dual if and only if Φ(a)(b) = −Φ(b)(a) for each pair a, b ∈ A.

Let us choose a point a0 ∈ A and ϕ0 ∈ A#. We define an isomorphism A → V × R,
where V = V(A), by

A 3 a 7→ (v(ζA)(a− a0), ϕ0(a)) ∈ V × R, (34)

where ζA:A → A is the canonical projection. The affine structure in V × R induced by
the affine structure of A coincides with the canonical affine structure of a vector space
and the distinguished vector is (0, 1).

Now, let ϕ ∈ A#. We have

ϕ(a) = ϕ0(a)− (ϕ− ϕ0)(ζA(a)) = ϕ0(a)− v(ϕ− ϕ0)(a− a0)− (−ϕ(a0)). (35)

The mapping
A# 3 ϕ 7→ (v(ϕ− ϕ0),−ϕ(a0)) ∈ V ∗ × R (36)

gives an isomorphism of special affine spaces. The affine structure in V ∗ × R induced
by the affine structure of A# is the canonical affine structure of a vector space and the
distinguished vector is (0, 1). With the isomorphisms (34), (36) the pairing ∆A reads

∆A: ((f, t), (v, r)) 7→ t− r + 〈f, v〉. (37)

Remark. We must be aware of the fact that in the formula (37) the pair (v, r)
represents an element of A and the affine structure in A does not correspond to the
canonical affine structure on the vector space V × R but to the conjugate one. This
implies that for given (f, t) the linear part of the mapping (v, r) 7→ t − r + 〈f, v〉 is
r − 〈f, v〉.

Theorem 1. Let Φ:A → A# be an affine mapping such that its linear part is skew
self-adjoint. There exists exactly one lift of Φ to a self-dual morphism Φ:A→ A#.

Proof. Let a0 ∈ A and ϕ ∈ A# and let Φ:A→ A# be a morphism. With the isomor-
phisms (34) and (36) we represent Φ by a quadruple (F, f, g, t), where F ∈ Lin(V, V ∗),
f, g ∈ V ∗, t ∈ R:

Φ(v, r) = (F (v) + f, g(v) + t+ r). (38)

Φ is self-dual if and only if (32) is satisfied, i.e.

∆A((F (v) + f, g(v) + t+ r), (w, s)) = −∆A((F (w) + f, g(w) + t+ s), (v, r))
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for any pairs (v, r), (w, s). Using the formula (37) we obtain

〈F (v) + f, w〉+ g(v) + t+ r − s = −〈F (w) + f, v〉 − g(w)− t− s+ r.

It follows that Φ is self-dual if and only if F = −F ∗, f = −g and t = 0. This implies that
a self-dual morphism is uniquely determined by F and f , i.e. by the mapping Φ:A→ A#

with the skew self-adjoint linear part.

3.1. Special affine bundles. A special vector bundle is a vector bundle with a distin-
guished non-vanishing section and a special affine bundle is an affine bundle modeled on
a special affine space. A fibre of a special vector bundle is a special vector space and a
fibre of a special afffine bundle is a special affine space. Let A = (A,X) and B = (B, Y )
be special affine bundles. We define in an obvious way special affine bundles A, A�B,
A# and A�M B if A,B have the same base manifold M . We have also an affine bundle
A = A/{X} and the canonical projection ζA:A→ A.

Let V = (V,X) and V ′ = (V ′, X ′) be special vector bundles. A morphism F :V → V ′

of vector bundles is called a morphism of special vector bundles if X and X ′ are F -related.
A morphism of special affine bundles is a morphism of affine bundles such that its linear
part is a morphism of special vector bundles.

Example 3. Let ζ:Z → M be an affine fibration modeled on the trivial fibration
prM :M × R → M . A pair Z = (Z,1M ) is a special affine bundle. Also the pair CZ =
(CZ, (0,1M )) is a special affine fibration with CZ = PZ.

Example 4. Let prZ :Y = Z ×R→ Z be a trivial affine bundle and let Y = (Y,1Z).
We define a morphism of special affine bundles

λZ :Y → Z, (z, r) 7→ z + r, (39)

which gives a mapping λ∗Z : Sec(Z)→ Sec(Y ) = C∞(Z). We have

λ∗Zσ(z) = σ(ζ(z))− z. (40)

In a trivialization provided by a section, we have

λ∗Zσ(m, t) = σ(m)− t. (41)

The image of the induced relation PλZ is a coisotropic submanifold K−1 of T∗Z,

K−1 = {a: 〈a,X1〉 = −1},
where X1 is a vector field on Z represented by the mapping Z ×R 3 (z, r)→ z + r ∈ Z.

Proposition 5. Let Z = (Z,1M ) and Z ′ = (Z ′,1M ′) be special affine bundles mod-
eled on M × R and M ′ × R respectively. There are canonical symplectomorphisms

(P(Z �Z ′), ωZ�Z′) = (PZ × PZ ′, ωZ + ωZ′), (PZ, ωZ) = (PZ,−ωZ). (42)

Proof. (1) Let σ, ψ be sections of Z and σ′, ψ′ sections of Z ′. We have from the
definition of Z � Z ′ that

σ � σ′ − ψ � ψ′ = (σ − ψ) + (σ′ − ψ′)).
It follows that (σ � σ′, (m,m′)) is equivalent to (ψ � ψ′, (n, n′)) if and only if (σ,m) is
equivalent to (ψ, n) and (σ′,m′) is equivalent to (ψ′, n′). The correspondence σ � σ′ →
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(dσ(m), dσ′(m′)) gives a diffeomorphism of manifolds P(Z�Z ′) and PZ×PZ ′. It is easy
to check that this isomorphism is also a symplectomorphism.

(2) It is obvious that PZ and PZ are equal as manifolds. Let σ be a section of Z. The
same mapping interpreted as a section of Z will be denoted by σ. Since σ − σ′ = σ′ − σ,
the isomorphisms Idσ: PZ → T∗M and Idσ: PZ → T∗M are related by Idσ = −Idσ. It
follows that

ωZ = I∗dσωM = −I∗dσωM = −ωZ .
We have also similar equalities for contact fibrations:

CZ = CZ, C(Z � Z ′) = CZ � CZ ′. (43)

4. Reduced tangent bundles. LetZ = (Z,1M ) be, as before, a special affine bundle
modeled on the trivial bundle M ×R. We denote by φ the R-action on Z: φ(z, r) = z+ r.
The R-action φ induces an R-action φ∗ on TZ. In this section we provide an interpretation
of special affine bundles dual to PZ × R and CZ in terms of vectors tangent to Z and
the action φ.

We will make use of the correspondence (40) between sections of ζ:Z → M and
functions on Z. For σ ∈ Sec(ζ) we denote by fσ the corresponding function on Z. For
each v ∈ TzZ we have a mapping

C∞(Z) 3 f 7→ 〈dzf, v〉 ∈ R,
and the induced mapping

Sec(ζ) 3 σ 7→ 〈dzfσ, v〉 ∈ R. (44)

In a trivialization fσ(m, s) = σ(m) − s, v = v + ṡ∂/∂s, where v ∈ Tζ(z)M , and the
formula (44) takes the form

σ 7→ 〈dmσ, v〉 − ṡ. (45)

This shows that v defines an affine function on Pζ(z)Z and the vector ∂/∂s gives the
function −1PZ . Two vectors v, v′ define the same function on Pζ(z)Z if and only if they
are in the same orbit of the R-action φ∗. We will denote by T̃Z the space of orbits of
this action and we will call it the reduced tangent bundle. It is a vector bundle over M
and there is the canonical projection T̃ζ: T̃Z → TM induced by the tangent projection
Tζ: TZ → TM and the reduced canonical projection τ̃Z : T̃Z →M .

This way we have obtained a bi-affine mapping

Φ: PZ ×M T̃Z → R, (dζ(z)σ, [v]) 7→ 〈dzfσ, v〉 ∈ R, (46)

which extends to a special bi-affine mapping (denoted by the same letter)

Φ: (PZ × R, (0, 1))�M (T̃Z,−X1)→ R, (47)

where −X1 is the fundamental vector field for the action φ∗, i.e. in local trivialization
X1 = ∂/∂s.

The induced mapping (26) Φr: T̃Z → (PZ × R)# = PZ† (see Example 1) is bijective
and defines an isomorphism of special affine bundles

Φr: (T̃Z,−X1)→ (PZ × R, (0, 1))# = (PZ†,1PZ). (48)



AFFINE FRAMEWORK FOR ANALYTICAL MECHANICS 269

Since T̃Z is a vector bundle, we have an involution v 7→ −v, which is an isomorphism of
special vector (affine) spaces

(T̃Z,−X1) ' (T̃Z,X1). (49)

In the following we identify the special affine dual (PZ×R, (0, 1))# with T̃Z = (T̃Z,X1).
In a trivialization Iσ provided by a section σ0, we have Z ' M × R, PZ ' T∗M and
T̃Z ' TM × R, with

(p, 0)(v, ṡ) = ṡ− 〈p, v〉. (50)

Remark. The trivialization T̃Z ' TM ×R is given by the decomposition of a vector
tangent to Z:

TZ 3 v = v + ṡ
∂

∂s
(51)

and it is not compatible with the special affine structure (T̃Z,−X1). The trivialization
v 7→ (v, r) = (v,−ṡ) is compatible and gives

(v, r)(p, 0) = −(p, 0)(v, r) = r + 〈p, v〉 (52)

(see (28) and (38)).

Remark. We can identify the manifolds PZ and PZ and consequently, the bundles
(PZ)† and (PZ)† of affine functions. However, if v ∈ TZ defines a function gv on PZ,
then the function defined by v on PZ is −gv. The natural isomorphism of P†Z and P†Z
corresponds to the multiplication by −1 in T̃Z.

For each v ∈ TmM there is a unique element ṽ ∈ T̃mZ such that T̃ζ(ṽ) = v and
(p, 0)(ṽ) = 0. In the trivial case this means that r = 〈p, v〉. This justifies the notation

ṽ = 〈p, v〉 (53)

which will be used in the following.

Proposition 6. Let Z = (Z,1M ) and Z ′ = (Z ′,1M ′) be special affine bundles mod-
eled on M × R and M ′ × R respectively. There are canonical isomorphisms

T̃I ' I, T̃(Z � Z ′) ' T̃Z � T̃Z ′. (54)

Proof. TI = R× R and φ∗((s, ṡ), r) = (s+ r, ṡ). It follows that the space of orbits is
parametrized by ṡ and the distinguished vector is 1.

The second isomorphism follows from Proposition 1 and Proposition 5:

T̃(Z � Z ′) = (P(Z � Z ′))† = (PZ × PZ ′)† = P†Z � P†Z ′ = T̃Z � T̃Z ′.

Now, we find the dual to the contact bundle CZ. As before, we associate to a vector
v ∈ TzZ a mapping C∞(Z)→ R, this time by the formula

f 7→ 〈dzf, v〉+ f (55)

which gives for f = fσ, in a trivialization provided by a section of ζ,

Sec(ζ) 3 σ 7→ 〈dmσ, v〉 − ṡ+ σ(m)− s. (56)

This mapping projects to a special affine mapping CmZ → R and this way a vector
v ∈ TzZ defines an element of C#

mZ = (CmZ)#, where m = ζ(z). Thus we have a
mapping TZ → C#Z. It follows from the formula (56) that this mapping is surjective
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and when restricted to TzZ it is bijective. Two vectors v ∈ TzZ, v′ ∈ Tz′Z define the
same element of C#Z if ζ(z) = ζ(z′) and

v′ = φ∗(v, r)− rX1(z′), (57)

i.e. they are in the same orbit of an R-action on TZ:

(v, r) 7→ φ∗(v, r)− rX1(z + r). (58)

The space of orbits of this action will be denoted by TZ. The vector bundle structure
of TZ induces a structure of an affine bundle on TZ with model vector bundle T̃Z. We
denote by Tζ and τZ the induced projections TZ → TM and TZ →M .

The mapping
((σ,m), v) 7→ 〈dzfσ, v〉+ fσ(z), ζ(z) = m,

projects then to a bi-affine mapping

CZ ×M TZ → R

and a special bi-affine and nondegenerate mapping

CZ �M (TZ,−X1)→ I

which gives an isomorphism
C#Z ' (TZ,−X1). (59)

The bundle (TZ,−X1) is, by definition, equal to (TZ,−X1). This means that we
have on TZ an affine structure induced from the affine structure on TZ, conjugate to the
canonical one. Using the involution ṽ 7→ −ṽ on T̃Z, we get (TZ,−X1) = (TZ,X1) and
the isomorphism

C#Z ' (TZ,X1) = TZ. (60)

This isomorphism can be deduced also from Proposition 1, an obvious isomorphism
CZ = (PZ,1PZ) �M Z, and the canonical isomorphism Z# = Z. The last isomorphism
is provided by the pairing

Z �M Z 3 z � z′ 7→ z − z′. (61)

Remark. The involution v 7→ −v on TZ gives a correspondence between the R-
action (58) and the R-action given by the formula

(v, r) 7→ φ∗(v, r) + rX1(z + r). (62)

Let us denote by T
c
Z the manifold of orbits of the action (62). It is an affine bundle over

M with the affine structure induced by the vector bundle structure on TZ (over Z) and
isomorphic to the affine bundle TZ. The model bundle for T

c
Z is T̃Z. This way we have

obtained, via the involution in TZ, an isomorphism of special affine bundles

TZ ' (T
c
Z,−X1). (63)

For every bundle Z we have a canonical projection µ: CZ → Z which is a surjective
morphism of special affine bundles ζCZ : CZ → PZ and ζ:Z →M . There is also the dual
injective morphism

Z = Z# → C#Z = TZ (64)
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which is the composition of the zero section Z → TZ and the canonical projection
TZ → TZ.

Proposition 7. Let Z = (Z,1M ) and Z ′ = (Z ′,1M ′) be special affine bundles mod-
eled on M × R and M ′ × R respectively. There are canonical isomorphisms

TI ' I, TZ ' TZ, T(Z � Z ′) ' TZ � TZ ′. (65)

Proof. From (64) we have the canonical injection I → TI which is an isomorphism.
The two remaining isomorphisms follow by the duality from (43) and (19). They can be
also obtained directly from the definition of TZ as the quotient of the tangent bundle
TZ.

Let Φ:Z → Z ′ be a morphism of special affine bundles. The fundamental vector fields
−X1 and −X ′1 of the canonical R-actions are Φ∗-related, i.e. X ′1 = Φ∗X1. It follows that
the tangent mapping TΦ: TZ → TZ ′ projects to morphisms of special affine bundles

T̃Φ: T̃Z → T̃Z ′, TΦ: TZ → TZ ′. (66)

In particular, we can apply T̃,T to a morphism ϕ:Z → I. Such a morphism corresponds
in a unique way to a section of ζ. Let us recall that this correspondence is given by the
condition

ϕ ◦ σ = 0.

We denote by ϕσ the morphism corresponding to the section σ.

Remark. A morphism ϕσ:Z → I defines a function ϕσ:Z → R which is related to
the already introduced function fσ by ϕσ = −fσ.

The reduced tangent morphism

T̃ϕ: T̃Z → T̃I = I

and the morphism
Tϕ: TZ → TI = I

(see (54), (65)) correspond to sections of T̃ζ: T̃Z → TM and Tζ: TZ → TM respectively.
If ϕ = ϕσ then we denote these sections by dT̃σ and dTZσ respectively, and we call them
tangent or complete lifts of the section σ.

In the trivialization provided by a section of ζ, ϕσ(m, s) = s− σ(m), T̃Z = TM ×R,
TZ = TM × R, and

T̃ϕσ(v, ṡ) = ṡ− dTσ(v),

dT̃Zσ = dTσ,

Tϕσ(v, t) = t− σ(m)− dTσ(v),

dTZσ = dTσ + σ,
(67)

where v ∈ TmM and dT is the standard tangent lift of a function on M to a function on
TM : dTf(v) = 〈df, v〉 (see [9, 2]).

5. Canonical isomorphisms. It is known (see [4]) that for a vector bundle ξ:E →M

there is a canonical isomorphism of T∗E and T∗E∗. The graph of this isomorphism is a
Lagrangian submanifold of T∗(E∗×E) generated by the evaluation function E∗×M E 3
(a, f) 7→ 〈f, a〉.
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In the affine case we replace E, or rather E×R by a special affine bundle A = (A,XA)
and E∗ × R by A#. We have the pairing (28) between A# and A

∆A:A# �M A→ I, (ϕ, a) 7→ −ϕ(a), (68)

which corresponds to a section δA of ζA#�A:A#�MA→ A#×MA. This section generates
a Lagrangian submanifold of P(A# �M A) and, together with the canonical embedding

A# �M A ↪→ A# �A,

a Lagrangian submanifold L of P(A# �A) = P(A#)× P(A). The pull-back of δA with
respect to the projection

P(A# �A)→ A# ×A
is a section of

ζC(A#�A): C(A# �A) = CA# � CA→ A# ×A
over L. This section corresponds to a morphism

µA: ζ−1
C(A#�A)

(L)→ I. (69)

Theorem 2. The morphism µA is the graph of an isomorphism ΨA: CA → CA# of
special affine bundles. Moreover, ΨA preserves Liouville forms, i.e.

θA = Ψ∗AθA# .

Proof. Let ψ be a section of η:A → M . It defines an isomorphism Iψ:A → E of A
and the model bundle E. It provides also a trivialization of the bundle ζA# :A# → A#.
Similarly, a section ψ∗ gives a trivialization of ζA:A→ A and an isomorphism of A# and
its model space. Having chosen ψ and ψ∗, we can identify A with E × R and A# with
E∗ × R. We have then

∆A((f, t), (e, r)) = t− r + 〈f, e〉
and

δA(f, e) = −〈f, e〉.
According to (42) we identify PA with PA and the symplectic structure on ωA with −ωA.
In the trivialization PA = T∗E, PA# = T∗E∗, CA = T∗E ×R, and CA# = T∗E∗ ×R.

Let (xi, ya, s) be an adapted coordinate system on E × R and (xi, fa, t) the dual
coordinate system on E∗ × R. Let (xi, ya, pj , πa) be the induced coordinate system on

T∗E and (xi, fa, qi, χa) the induced coordinate system on T∗E∗. We have

θA = pidxi + πadya, −θA# = −qidxi + χadfa, (70)

and the Lagrangian submanifold L, generated by the function δA = −faya is given by
the equations

ya = −χa, pj = qj , πb = fb. (71)

It follows that L is the graph of a symplectomorphism T∗E → T∗E∗.
The coordinate systems on A and A# give the following local expression for ∆A:

µA = t− r + fay
a (72)



AFFINE FRAMEWORK FOR ANALYTICAL MECHANICS 273

and for the corresponding section δA:

t− r = −faya.
It follows that ΨA is given in the induced local coordinates by

xi ◦ΨA = xi,

χa ◦ΨA = −ya,
qj ◦ΨA = pj ,

fb ◦ΨA = πb,

t ◦ΨA = r − faya.
(73)

It follows from these formulae and from (70) that

Ψ∗AθA# = pidxi − yadπa + d(πaya) = pidxi + πadya = θA.

There are canonical contact structures on the contact fibration CζA: CA→ A and on
the contact fibration CζA# : CA# → A#. It follows from the theorem that there are also
fibrations CA→ A# and CA# → A, which are special affine bundles. Moreover, we have
morphisms (10) of special affine bundles:

CA→ A,

CA→ A#,

CA# → A#,

CA# → A.
(74)

The projections CA→ A#, CA# → A, and the related structures can be obtained di-
rectly, i.e. without using the mapping ΨA. As an example we give an alternative definition
of the projection CA→ A#.

First, we define a mapping
χ:A×M A→ TA (75)

where χ(a, b) is the vector represented by the curve γa,b: t 7→ a + t(b − a). In the case
under consideration the action φ of (62) reads

φ(a, r) = a+ rXA(η(a))

and the mapping (χ(a, b), r) 7→ χ(a + rXA(η(a))) coincides with the action (62). Hence
the mapping χ projects to

χ:A×M A→ TA (76)

and for each a ∈ A the mapping χ(a, ·) is a morphism of special affine bundles

χ(a, ·):A→ TA. (77)

The dual morphisms
χ(a, ·)#: CaA→ A#

define the projection
CA→ A#.

5.1. Tangent affine bundles. Let ξ:E →M be a vector bundle. It is well known that
the tangent manifold TE carries in a natural way two different structures of a vector
bundle: one on the canonical fibration τE : TE → E and the second on the tangent
fibration Tξ: TE → TM .

Let η:A → M be an affine bundle modeled on ξ:E → M . The tangent manifold
TA is a vector bundle τA: TA → A and it is also an affine bundle with respect to the
tangent fibration Tη: TA → TM . The model vector bundle is Tξ: TE → TM and the
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affine structure is obtained by applying the tangent functor to mappings which define
the affine structure of A.

Let A = (A,XA) be a special affine bundle. The canonical projections

T̃A→ TA→ TM (78)

give a fibration
T̃η: T̃A→ TM (79)

and the affine bundle structure on TA → TM induces an affine bundle structure on
this fibration. The model vector bundle is the reduced tangent bundle T̃ξ: T̃E → TM .
To avoid ambiguities we denote by +̇ the operation of addition for this structure. The
section XA can be lifted to a section X̃A of T̃η in the following way: for v ∈ TmM the
vector X̃A(v) is the equivalence class of a vector X̂A(v) in T0(m)E defined by the formula

X̂A(v) = vTXA(0E(m)) + T0E(v), (80)

where vTXA is the standard vertical lift of XA and 0E :M → E is the zero section of η.
The pair (T̃A, X̃A) is a special affine bundle over TM . Thus the reduced tangent

manifold T̃A carries two special affine structures: with respect to the canonical projection
τ̃A: T̃A→ A (the distinguished vector field is the vertical lift of XA) and with respect to
the reduced tangent projection T̃η: T̃A→ TM .

In local coordinates (xi, ya, s) on A and (xi, ya, ẋj , ẏb, ṡ) on T̃A, we have ya ◦XA =
0, s ◦XA = 1 and

ya ◦ X̃A = 0, ẏb ◦ X̃A = 0, ṡ ◦ X̃A = 1

ẋi ◦ vTXA = 0, ẏa ◦ vTXA = 0, ṡ ◦ vTXA = 1.
(81)

It follows that the induced R-actions T̃A 3 v 7→ v+̇rX̃A and T̃A 3 v → v+vTXA coincide
and the quotient manifold for these actions is TA.

The special affine dual to (T̃A, vTXA) is PA×R. We show that the special affine dual
to (T̃A, X̃A) is (T̃A#, X̃A#).

Let us notice first that the equality T̃(A�B) = T̃A�T̃B implies not only the equality

(T̃(A�B), vTXA�B) = (T̃A, vTXA)� (T̃B, vTXB)

which follows from Proposition 6, but also

(T̃(A�B), X̃A�B) = (T̃A, X̃A)� (T̃B, X̃B). (82)

If A and B have the same base manifold M then (82) implies

(T̃(A�M B), X̃A�B) = (T̃A, X̃A)�TM (T̃B, X̃B). (83)

The tangent lift T̃∆A of the pairing ∆A:A# �A→ I is a morphism

T̃∆A: T̃(A# �M A)→ I, (84)

in local coordinates (see (67) and (74) )

((xi, ya, ẋj , ẏb, ṡ), (xi, fa, ẋj , ḟb, ṫ)) 7→ ṫ− ṡ+ ḟay
a + faẏ

a.

It follows from this formula that T̃∆A is a pairing

T̃∆A: (T̃A, X̃A)�TM (T̃A
#
, X̃A#)→ I (85)
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and from (25) we get an isomorphism

(T̃A, X̃A)# ' (T̃A#, X̃A#). (86)

The same procedure can be applied to the tangent bundle TA and we get two special
affine structures on TA: with respect to the canonical projection TA→ A and the tangent
projection TA→ TM .

5.2. The isomorphism αZ . Let Z be as in the previous sections. The tangent bundles
T̃Z and TZ have been defined as reductions of TZ. This implies that the iterated tangent
manifolds T̃T̃Z, T̃TZ and TT̃Z are reductions of the iterated tangent manifold TTZ.

Theorem 3. The canonical flip κZ

TTZ
κZ−−−−→ TTZ

τTZ

|
|
↓

TτZ
|
|
↓

TZ id−−−−→ TZ

(87)

projects to κ̃Z :

T̃T̃Z
κ̃Z−−−−→ T̃T̃Z

τ̃ T̃Z

|
|
↓

T̃τ̃Z
|
|
↓

TM id−−−−→ TM

(88)

and to κZ :

TT̃Z
κZ−−−−→ T̃TZ

τ T̃Z

|
|
↓

T̃τZ
|
|
↓

TM id−−−−→ TM

(89)

Proof. The canonical R-action φ on Z induces the tangent action of TR = R2 on TZ
and the iterated tangent action of TTR on TTZ. Since κ is a natural transformation of
functors, we have

TTφ ◦ (κZ × κR) = κZ ◦ TTφ. (90)

The manifold T̃Z is the manifold of orbits of the kernel subgroup of the homomorphism
TR → R, (r, ṙ) 7→ ṙ. Similarly, TZ is the manifold of orbits of the kernel of the ho-
momorphism TR → R, (r, ṙ) 7→ r + ṙ. The canonical R-actions are induced by these
homomorphisms. It follows that TT̃Z is TTZ reduced by the tangent group homomor-
phism

TTR→ TR, (r, ṙ, r′, ṙ′) 7→ (ṙ, ṙ′),

and T̃T̃Z is TTZ reduced by the group homomorphism

χ1: TTR→ R, (r, ṙ, r′, ṙ′) 7→ ṙ′.

In the same way we interpret TT̃Z as TTZ reduced by the group homomorphism

χ2: TTR→ R, (r, ṙ, r′, ṙ′) 7→ ṙ′ + ṙ,
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and T̃TZ as TTZ reduced by the group homomorphism

χ3: TTR→ R, (r, ṙ, r′, ṙ′) 7→ ṙ′ + r′.

We see that χ1 ◦κZ = χ1, χ2 ◦κZ = χ3, and consequently κZ projects to diffeomorphisms

κ̃Z : T̃T̃Z → T̃T̃Z, κZ : TT̃Z → T̃TZ.

The affine structures of T̃T̃Z, T̃TZ and TT̃Z are obtained by reductions from the vector
bundle structures of TTZ. It follows that κ̃Z and κZ are isomorphisms of the correspond-
ing special affine bundles.

Theorem 4. There are canonical isomorphisms

α̃Z : T̃T̃#Z → T̃#T̃Z dual to κ̃Z (91)

such that the diagram

T̃T̃#Z
α̃Z−−−−→ T̃#T̃Z

T̃π̃Z
|
|
↓

π̃T̃Z

|
|
↓

TM id−−−−→ TM

(92)

is commutative and
αZ : T̃CZ → CT̃Z (93)

with the commutative diagram

T̃CZ
αZ−−−−→ CT̃Z

T̃Cζ
|
|
↓

CT̃ζ
|
|
↓

TM id−−−−→ TM

(94)

Proof. Follows directly from the previous theorem and from (86).

Both isomorphisms α̃Z and αZ project to the same diffeomorphism

αZ : TPZ → PT̃Z. (95)

Let ϕ:M → PZ be an affine 1-form. Then αZ ◦ Tϕ: TM → PT̃Z is an affine 1-form on
TM . We call it the complete or tangent lift of ϕ and we will denote it by dT̃ϕ. As in the
classical case we have for a section σ of ζ and for an affine 1-form ϕ

dT̃Zdσ = ddT̃Zσ, dTdϕ = ddT̃Zϕ. (96)

Proposition 8.

α∗ZθT̃Z = dT̃ZθZ , α∗ZωT̃Z = dTωZ . (97)

Proof. In a trivialization given by a section of ζ, T̃CZ ' TT∗M×R, CT̃Z ' T∗TM×R
and α̃Z is the trivial lift of αM . The first equality follows from the well known equality
α∗MθTM = dTθM . The second equality is a consequence of the first one and of (96).

6. The dynamics of a charged particle [14]. In gauge theories potentials are
interpreted as connections on principal bundles. In electrodynamics the gauge group is
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(R,+) and a potential is a connection on a principal bundle ζ:Z →M over the space-time
M . The bundle Z can be considered a special affine bundle modeled on M × R with the
distnguished section 1M . An electromagnetic potential is a section A:M → PZ.

According to [18] the phase manifold for a particle with charge e ∈ R is obtained by
the symplectic reduction of T∗Z with respect to the coisotropic submanifold

Ke = {p ∈ T∗Z: 〈p,X1〉 = e}. (98)

Let us denote by PeZ the reduced phase space. It is easy to see that it is an affine bundle
modeled on T∗M . We show that PeZ is the phase bundle for a certain special affine
bundle Ze.

First, let Y = Z × R and Y = (Y,1Z) as in Example 4. We define an R-action on Y

by the formula

(Z × R)× R 3 ((z, r), t) 7→ (z + t, r + te) ∈ Z × R = Y. (99)

The space of orbits is an affine bundle modeled on M ×R and denoted by Ze. We denote
by ζe the canonical projection Ze →M . The distinguished section of V(Y ) (the function
1Z) projects to the constant function 1M and the canonical projection λe:Y → Ze is a
morphism of special affine bundles Y → Ze = (Ze,1M ). The induced R-action on Ze has
the form

λe(z, r) + s = λe(z, r + s) = λe(z + t, r + s+ te) (100)

For e = 0 the bundle Ze is trivial: Z0 = M × R and for e 6= 0 we have a diffeomorphism

Φe:Z → Ze, z 7→ λe(z, 0). (101)

The diffeomorphism Φe is not a morphism of special affine bundles:

Φe(z + r) = λe(z + r, 0) = λe(z,−er) = λe(z, 0)− er = Φe(z)− er, (102)

unless e = −1 (Example 4).
Let σ be a section of ζe. The function λ∗eσ on Z has the property

X1(λ∗eσ) = e. (103)

We conclude that the relation PY → PZe induced by λe is the symplectic reduction
with respect to the coisotropic submanifold

Ke = {p ∈ T∗Z: 〈p,X1〉 = e}. (104)

Thus we have proved

Proposition 9. The phase manifold PeZ for a particle with charge e is the phase
bundle for the special affine bundle Ze.

The diffeomorphism Φe gives a one-to-one correspondence between sections of ζ and
sections of ζe, for e 6= 0. It follows that a chosen section of ζ provides a trivialization of
Z and also of Ze. In such trivializations, a section σ of ζ and the corresponding section
Φe ◦ σ of ζe are functions on M related by the formula

Φe ◦ σ(m) = −eσ(m). (105)

The correspondence σ → Φe◦σ of sections projects to a correspondence of affine covectors
and consequently gives a correspondence of affine 1-forms. Let A be a section of Pζ and
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Ae the corresponding section Pζe. In given trivializations, the sections A and Ae are
1-forms related by the formula

Ae = −eA. (106)

The Lagrangian of a charged particle is a section Le of the bundle T̃ζa: T̃Ze → TM
over the open set C = {v ∈ TM : g(v, v) > 0} and is given by the formula

L(v) = 〈Ae, v〉+ m
√
g(v, v) (107)

where g is the metric tensor, m is the mass of the particle, and 〈 , 〉 has been defined
in (53). The Lagrangian section Le generates a Lagrangian submanifold Dl,e of PZe.

The dynamics of the system is the Lagrangian submanifold De of TPZe

De = α−1
Ze

(Dl,e). (108)

We have

De = {w ∈ TPZe: v = TPζZe(w) ∈ C and mv =
√
g(v, v)g(p−Ae(m))}, (109)

where p = τPZe(w) and m = Pζe(p).
In the Hamiltonian formulation of the dynamics, the generating object is a Morse

family F :N → R defined on N = TM ×M PZ with the canonical projection

ς:N = TM ×M PZ → PZ

by
F (v, p) = L(v)− 〈p, v〉.
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