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Abstract. Geometric structure of Cesàro function spaces Cesp(I), where I = [0, 1] and [0,∞),
is investigated. Among other matters we present a description of their dual spaces, characterize
the sets of all q ∈ [1,∞] such that Cesp[0, 1] contains isomorphic and complemented copies of
lq-spaces, show that Cesàro function spaces fail the fixed point property, give a description of
subspaces generated by Rademacher functions in spaces Cesp[0, 1].

1. Introduction. Many Banach spaces which play an important role in functional anal-
ysis and its applications are obtained in a special way: the norms of these spaces are
generated by positive sublinear operators and by Lp-norms. The well-known examples of
such spaces are real interpolation and extrapolation spaces, Besov spaces Bsp,q, Triebel
spaces F sp,q, “tent” spaces and many others. One of the simplest and, at the same time,
most important examples are Cesàro sequence and function spaces.
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The Cesàro sequence spaces are known much better than the function ones. The spaces
cesp are defined as the sets of all real sequences x = {xk} such that

‖x‖c(p) =
[ ∞∑
n=1

( 1
n

n∑
k=1
|xk|

)p]1/p
<∞, when 1 ≤ p <∞,

and

‖x‖c(∞) = sup
n∈N

1
n

n∑
k=1
|xk| <∞, when p =∞.

The Cesàro sequence spaces appeared explicitly in 1968 when the Dutch Mathematical
Society posted the problem to find a representation of their duals. For the first time some
investigations of cesp were done by Shiue [80] in 1970. Then Leibowitz [57] and Jagers [44]
proved that cesp are separable reflexive Banach spaces for 1 < p < ∞, ces1 = {0} and
that lp-spaces are strictly and continuously embedded into cesp for 1 < p ≤ ∞. More
precisely, ‖x‖c(p) ≤ p′‖x‖p for all x ∈ lp, with p′ = p

p−1 when 1 < p <∞ and p′ = 1 when
p =∞. Moreover, if 1 < p < q ≤ ∞, then cesp ⊂ cesq, and this embedding is continuous
and strict. Bennett [17] proved that cesp for 1 < p <∞ is not isomorphic to any lq-space
with 1 ≤ q ≤ ∞ (see also [69] for another proof).

Various geometric properties of the Cesàro sequence spaces cesp were studied in the
last years by many mathematicians (see e.g. [24], [26], [27], [28], [29], [30], [31], [55]). In
particular, in 2007 Maligranda–Petrot–Suantai [69] proved that cesp for 1 < p < ∞ are
not uniformly non-square, that is, there are sequences {xn} and {yn} from cesp such that
‖xn‖c(p) = ‖yn‖c(p) = 1 and limn→∞min(‖xn + yn‖c(p), ‖xn − yn‖c(p)) = 2. Moreover,
they proved that these spaces have trivial Rademacher type. Some more results on cesp
can be found in two books [17], [62].

The main goal of this survey is to give a comprehensive exposition of recent results
on the structure of Cesàro function spaces which for a long time have not attracted a
lot of attention in contrast to their sequence counterparts. The Cesàro function spaces
Cesp = Cesp(I), 1 ≤ p ≤ ∞, are classes of all Lebesgue measurable real functions f on
I = [0, 1] or I = [0,∞) such that

‖f‖C(p) =
[∫

I

( 1
x

∫ x

0
|f(t)| dt

)p
dx

]1/p
<∞ for 1 ≤ p <∞,

and
‖f‖C(∞) = sup

x∈I,x>0

1
x

∫ x

0
|f(t)| dt <∞ for p =∞.

The space Ces∞[0, 1] appeared already in 1948 and it is known as the Korenblyum–
Krein–Levin space K (see [52], [91, p. 26, 61] and [92, pp. 469–471]). The Cesàro function
spaces Cesp[0,∞) for 1 ≤ p ≤ ∞ were considered for the first time in 1970 by Shiue [81],
later these spaces were studied by Hassard–Hussein [42] and Sy–Zhang–Lee [85].

Recently, the structure and geometry of Cesàro function spaces were investigated by
Astashkin–Maligranda in several papers [7, 8, 9, 10, 11, 12, 13] and by others [5], [46].

This survey paper is organized as follows. In Section 2 some necessary definitions
and notations are collected. In Section 3 we consider the simplest properties of Cesàro
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function spaces. In particular, they are not reflexive but strictly convex for all 1 < p <∞.
Moreover, we discuss here a number of embeddings between Cesàro function spaces,
Lp-spaces and the so-called Copson spaces.

Section 4 contains results on the dual and Köthe dual of Cesàro function spaces.
Recall that Luxemburg–Zaanen [65] gave a description of the Köthe dual (Ces∞[0, 1])′.
In Theorems 4.1 and 4.6 we present an isomorphic representation of the dual space
(Cesp(I))′, 1 < p <∞. These results show an essential difference between the cases [0,∞)
and [0, 1]. The description on [0,∞) is in a sense similar to the one given for sequence
spaces by Bennett [17] (see also there his remark on the Köthe dual (Cesp[0,∞))′).

In Section 5, it is proved that the Cesàro function space Cesp(I), 1 < p ≤ ∞, con-
tains an order isomorphic and complemented copy of the lp-space (see Theorem 5.1(c)).
Therefore, Cesp(I), 1 < p < ∞, does not have the Dunford–Pettis property. This result
combined with some other known results implies that, for every 1 < p ≤ ∞, Cesp(I) is
not isomorphic to any Lq(I) space for 1 ≤ q ≤ ∞ (see Theorem 5.4). Moreover, we present
here a description of isomorphic and complemented copies of lq-spaces in Cesp[0, 1]. In
particular, for every 1 < p ≤ ∞ the space Cesp(I) contains an asymptotically isometric
copy of l1. Therefore, Cesàro function spaces are not reflexive and do not have the fixed
point property, in contrast to Cesàro sequence spaces cesp, which for 1 < p < ∞ are
reflexive and do have the fixed point property.

Section 6 deals with the p-concavity, Rademacher type and cotype of Cesàro function
spaces. In particular, in Theorem 6.1 it is shown that Cesp(I) is p-concave for 1 < p <∞
with constant one and, thus, it has cotype max(p, 2).

In Section 7 we give a construction of operators showing that the Cesàro spaces
Cesp[0,∞) and Cesp[0, 1] are isomorphic if 1 < p ≤ ∞. The question if Ces∞[0, 1] is
isomorphic to ces∞ is still an open problem.

Section 8 contains results on subspaces spanned by the Rademacher functions in
Cesp[0, 1], 1 ≤ p ≤ ∞. We show that these functions span in Cesp[0, 1], 1 ≤ p < ∞, an
uncomplemented subspace isomorphic to l2. We give also a description of the subspace
spanned by the Rademacher functions in Ces∞[0, 1]. This uncomplemented subspace
has many interesting properties. In particular, the standard unit vectors form in it a
conditional basis.

In Section 9 we present Theorem 9.1 showing that for 1 ≤ p <∞ the Cesàro function
spaces Cesp[0, 1] have the weak Banach–Saks property. The proof of the latter result is
based on the description of the dual space given in Section 4 and on a result characterizing
weakly null sequences in Cesp[0, 1], 1 < p <∞.

Finally, Section 10 contains interpolation results for Cesàro and Copson spaces. It is
shown that the Cesàro function space Cesp(I), where I = [0, 1] or [0,∞), is an interpola-
tion space between Cesp0(I) and Cesp1(I) for 1 < p0 < p1 ≤ ∞ and 1/p = (1− θ)/p0 +
θ/p1 with 0 < θ < 1. The same result is true for Cesàro sequence spaces. In the case of
Copson function and sequence spaces a similar result holds even if 1 ≤ p0 < p1 ≤ ∞. At
the same time, Cesp[0, 1] is not an interpolation space between Ces1[0, 1] and Ces∞[0, 1]
for any 1 < p < ∞. Moreover, we give a description of interpolation spaces which are
obtained from the Banach couple (Ces1[0, 1], Ces∞[0, 1]) by the real method of interpo-
lation.
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2. Preliminaries and notation. We recall first some notions and definitions which we
will need later on. For two normed spaces X and Y the symbol X C

↪→ Y means that
the embedding X ⊂ Y is continuous with the norm which is not greater than C, i.e.,
‖x‖Y ≤ C‖x‖X for all x ∈ X, and X ↪→ Y means that X C

↪→ Y for some C > 0.
Moreover, we write X = Y if X ↪→ Y and Y ↪→ X, that is, the spaces are the same and
the norms are equivalent. At the same time, notation X ' Y is used if these two spaces
are isomorphic. If f and g are nonnegative functions, then the symbol f ≈ g means that
c−1g ≤ f ≤ cg for some c ≥ 1.

By L0 = L0(I) we denote the set of all equivalence classes of real-valued Lebesgue
measurable functions defined on I = [0, 1] or I = [0,∞). A normed function lattice or
normed ideal space X = (X, ‖ · ‖) (on I) is understood to be a normed space X ⊂ L0(I),
which satisfies the so-called ideal property: if |f | ≤ |g| a.e. on I, f ∈ L0 and g ∈ X, then
f ∈ X and ‖f‖ ≤ ‖g‖. If, in addition, X is a complete space, then we say that X is a
Banach function lattice or a Banach ideal space (on I). Sometimes we write ‖ · ‖X to be
sure in which space the norm is taken.

For a normed ideal space X = (X, ‖ · ‖) on I and 1 < p < ∞ the p-convexification
X(p) of X is the space of all f ∈ L0(I) such that |f |p ∈ X with the norm

‖f‖X(p) :=
∥∥|f |p∥∥1/p

X
.

It is easy to check that X(p) is also a normed ideal space on I [61, p. 53].
Let X = (X, ‖ · ‖) be a normed ideal space on I. The Köthe dual (or associated space)

X ′ is the space of all f ∈ L0(I) such that the associated norm

‖f‖′ := sup
g∈X,‖g‖X≤1

∫
I

|f(x)g(x)| dx

is finite. The Köthe dual X ′ = (X ′, ‖ · ‖′) is a Banach ideal space such that X ′ ↪→ X∗,
where X∗ is the Banach dual space. Moreover, X ↪→ X ′′ with ‖f‖′′ ≤ ‖f‖ for all f ∈ X,
and X is isometric to X ′′ if and only if this space has the Fatou property, that is, if
0 ≤ fn ↗ f a.e. on I and supn∈N ‖fn‖X <∞, then f ∈ X and ‖fn‖X ↗ ‖f‖X .

For a normed ideal space X = (X, ‖ · ‖) on I with the Köthe dual X ′ we have the
following Hölder type inequality: if f ∈ X and g ∈ X ′, then fg is integrable and∫

I

|f(x)g(x)| dx ≤ ‖f‖X‖g‖X′ .

If 1 ≤ p ≤ ∞, then the conjugate number p′ to p is given by 1
p′ + 1

p = 1. A function f
from a normed ideal space X on I is said to have absolutely continuous norm in X if,
for any decreasing sequence of Σ-measurable sets An ⊂ I with empty intersection, we
have ‖fχAn

‖ → 0 as n → ∞. The set of all functions in X with absolutely continuous
norm is denoted by Xa. If Xa = X, then the space X itself is said to have absolutely
continuous norm. For a normed ideal space X with an absolutely continuous norm, the
Köthe dual X ′ and the Banach dual space X∗ coincide. Moreover, a Banach ideal space
X is reflexive if and only if both X and its associate space X ′ have absolutely continuous
norms.
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By a symmetric or rearrangement invariant space we mean a Banach function lattice
X on I satisfying the additional property: if g∗(t) = f∗(t) for all t > 0, f ∈ X and
g ∈ L0(I), then g ∈ X and ‖g‖X = ‖f‖X (cf. [18], [53]). Here and next f∗ denotes the
non-increasing rearrangement of |f | defined by

f∗(t) = inf
{
λ > 0 : m({x ∈ I : |f(x)| > λ}) ≤ t

}
, t > 0,

where m is the usual Lebesgue measure (see [53, pp. 78–79] or [18, Theorem 6.2,
pp. 74–75]). Moreover, in what follows χA is the characteristic function of a set A ⊂ R.

For general properties of normed ideal and symmetric spaces we refer to the books
Krein–Petunin–Semenov [53], Bennett–Sharpley [18], Lindenstrauss–Tzafriri [61] and
Maligranda [66].

3. Basic properties of Cesàro and Copson spaces. In the following theorem we
collect the simplest properties of Cesàro function spaces Cesp(I) for both cases I = [0, 1]
and I = [0,∞).

Theorem 3.1.

(a) If 1 < p ≤ ∞, then Cesp(I) are ideal Banach function spaces which are not
rearrangement invariant. Moreover, Ces1[0, 1] = L1(ln 1/t) isometrically and
Ces1[0,∞) = {0}.

(b) The spaces Cesp(I) are separable for 1 < p <∞ and Ces∞(I) is non-separable.

(c) If 1 < p ≤ ∞, then Lp(I)
p′

↪→ Cesp(I) and the embedding is strict.
(d) L∞(I) 1

↪→ Ces∞(I), Ces∞[0, 1] 1
↪→ L1[0, 1] and Cesp(I) 6⊂ L1(I) for every

1 < p <∞.
(e) If 1 ≤ p < q ≤ ∞, then Cesq[0, 1] 1

↪→ Cesp[0, 1] and the embedding is strict.
(f) The spaces Cesp[0, 1], 1 ≤ p ≤ ∞ and Cesp[0,∞), 1 < p ≤ ∞, are not reflexive.
(g) The spaces Cesp(I) for 1 < p < ∞ are strictly convex, that is, if ‖f‖C(p) =
‖g‖C(p) = 1 and f 6= g, then ‖ f+g

2 ‖C(p) < 1.

Proof. (a): We begin with the proof of the isometric equality Ces1[0, 1] = L1(ln 1
t ). In

fact,

‖f‖C(1) =
∫ 1

0

( 1
x

∫ x

0
|f(t)| dt

)
dx =

∫ 1

0

(∫ 1

t

1
x
dx
)
|f(t)| dt

=
∫ 1

0
|f(t)| ln 1

t
dt = ‖f‖L1(ln 1/t).

Next, if f ∈ L0[0,∞) and f(x) 6= 0 for x ∈ A with m(A) > 0, then there exists
sufficiently large a > 0 such that δ =

∫ a
0 |f(t)| dt > 0. Therefore, for b > a, it yields that

‖f‖C(1) ≥
∫ b

0

( 1
x

∫ x

0
|f(t)| dt

)
dx ≥

∫ b

a

( 1
x

∫ a

0
|f(t)| dt

)
dx = δ ln b

a
→∞ as b→∞.

Thus, f 6∈ Ces1[0,∞).
Let us show that the spaces Cesp[0, 1] are not rearrangement invariant. Consider

the functions fh(t) := χ(1−h,1](t) and gh(t) := f∗h(t) = χ(0,h](t) (0 < h < 1). Since
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0 |fh(t)| dt = 0 if x ≤ 1 − h and

∫ x
0 |fh(t)| dt = x − 1 + h if 1 − h < x ≤ 1, then in the

case 1 ≤ p <∞ we have

‖fh‖pC(p) =
∫ 1

1−h

(x− 1 + h

x

)p
dx =

∫ 1

1−h

(
1− 1− h

x

)p
dx ≤ h1+p.

On the other hand,
∫ x

0 |gh(t)| dt = x if 0 < x ≤ h, and hence ‖gh‖pC(p) ≥ h. Similarly, if
p =∞, we have ‖fh‖C(∞) ≤ h and ‖gh‖C(∞) = 1 (0 < h < 1). Thus, in both cases

‖gh‖C(p)

‖fh‖C(p)
≥ 1
h
→ +∞ as h→ 0+,

and we come to desired result.
Note, in addition, that a direct calculation shows that f(x) = (1− x)−1 is an explicit

example of a function from the space Cesp[0, 1], with 1 ≤ p <∞, such that its rearrange-
ment f∗(x) = x−1 does not belong to this space (in the case p = ∞ we may take the
function f(x) = (1− x)−1/2 and its rearrangement f∗(x) = x−1/2).

Arguing in a completely analogous way, we can do this in the case when I = [0,∞).
Properties in (b) follow from the fact that Cesp(I) has absolutely continuous norm

if and only if p <∞. Embedding (c) follows directly from the classical Hardy inequality
(cf. [41, Theorems 326 and 327] and [54, Chapter 3]). The proof of properties (d) and (e)
is direct and routine. Property (f) follows from the fact that for 1 < p ≤ ∞ the space
Cesp(I) contains a copy of L1(I) (cf. Part 5) and therefore, in particular, it cannot be
reflexive. Of course, Ces1[0, 1] = L1(ln 1/t) is not reflexive as well. Finally, for the proof
of (g) we refer to [8].

The norms in Cesàro sequence and function spaces are defined by the Cesàro operators
Cd x(n) = 1

n

∑n
k=1 |xk| and Cf(x) = 1

x

∫ x
0 |f(t)| dt, respectively. By using conjugate oper-

ators to them, that is, the operators C∗dx(n) =
∑∞
k=n

|xk|
k and C∗f(x) =

∫
(x,∞)∩I

|f(t)|
t dt

we can define the so-called Copson sequence and function spaces.
For 1 ≤ p <∞ the Copson sequence spaces copp are the sets of real sequences x = {xk}

such that

‖x‖cop(p) =
[ ∞∑
n=1

( ∞∑
k=n

|xk|
k

)p]1/p
<∞,

and the Copson function spaces Copp(I) are the classes of Lebesgue measurable real
functions f on I = [0,∞) or I = [0, 1] such that

‖f‖Cop(p) =
[∫ ∞

0

(∫ ∞
x

|f(t)|
t

dt
)p
dx

]1/p
<∞, for I = [0,∞),

and

‖f‖Cop(p) =
[∫ 1

0

(∫ 1

x

|f(t)|
t

dt
)p
dx

]1/p
<∞, for I = [0, 1].

We have cop1 = l1, Cop1(I) = L1(I) and by the classical Copson inequalities (cf. [41,
Theorems 328 and 331], [17, p. 25] and [54, p. 159]), which are valid for 1 < p < ∞, we
obtain lp

p
↪→ copp, Lp(I)

p
↪→ Copp(I).
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We can define similarly the spaces cop∞ and Cop∞ but, as it is easy to see,
cop∞ = l1(1/k) and Cop∞(I) = L1(1/t)(I). Moreover, for I = [0, 1] we have Lp

p
↪→

Copp
1
↪→ Cop1 = L1.

Theorem 3.2.

(a) If 1 < p <∞, then

cesp = copp and Cesp[0,∞) = Copp[0,∞). (1)

(b) If 1 < p ≤ ∞, then

Copp[0, 1]
p′

↪→ Cesp[0, 1] and Copp[0, 1] 6= Cesp[0, 1]. (2)

Proof. (a): The first equality in (1) was proved by Bennett (cf. [17], Theorems 4.5 and
6.6) and the second one in our paper [11], Theorem 1(ii). In fact, by the Fubini theorem,
for arbitrary f ∈ L0[0,∞) we have

CC∗f(x) = Cf(x) + C∗f(x) = C∗Cf(x), x > 0, (3)

and using already mentioned Hardy’s and Copson’s inequalities we obtain

‖f‖C(p) = ‖Cf‖Lp
≤ ‖Cf + C∗f‖Lp

= ‖C∗Cf‖Lp
≤ p ‖Cf‖Lp

= p ‖f‖C(p)

and

‖f‖Cop(p) = ‖C∗f‖Lp
≤ ‖Cf + C∗f‖Lp

= ‖CC∗f‖Lp
≤ p′ ‖C∗f‖Lp

= p′ ‖f‖Cop(p).

Therefore
(1− 1/p) ‖f‖C(p) ≤ ‖f‖Cop(p) ≤ p ‖f‖C(p).

(b): This part was proved in [11], Theorem 1(iii). In the case [0, 1] only the first
equality in (3) holds and therefore the only one embedding (see (2)) is true.

4. Dual spaces of Cesàro function spaces. In the prize problem of the Dutch Math-
ematical Society (1968), it was asked to determine the dual (Banach dual) of Cesàro
sequence and function spaces. The problem in the case of sequence spaces was solved
by Jagers in 1974. In 1987, Sy, Zhang and Yee have used the result of Jagers to get a
description of the Banach dual of Cesàro function spaces Cesp[0,∞), which, however, is
rather complicated and a bit implicit.

Another description based on a factorization idea due to G. Bennett [17] was given
in 2009 in our paper [8]. Surprisingly, the obtained results look quite differently in the
cases I = [0, 1] and I = [0,∞).

Firstly, we will consider a simpler case I = [0,∞). Let us define the Banach function
lattice Dp = Dp[0,∞), 1 ≤ p <∞, by the norm

‖f‖D(p) = ‖f̃‖Lp[0,∞), where f̃(x) = ess sup
t∈[x,∞)

|f(t)|.

Theorem 4.1. If 1 < p <∞, then

(Cesp[0,∞))∗ = (Cesp[0,∞))′ = Dp′ [0,∞), p′ = p

p− 1 , (4)

with ‖f‖C(p)′ ≤ p′‖f‖D(p′) ≤ (p′)2‖f‖C(p)′ .
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To explain the idea of the proof of this theorem, let us denote by Gp = Gp[0,∞),
1 ≤ p < ∞, the p-convexification of the space Ces∞[0,∞), that is, the space with the
norm

‖f‖G(p) =
∥∥|f |p∥∥1/p

C(∞) = sup
x>0

( 1
x

∫ x

0
|f(t)|p dt

)1/p
.

The proof of Theorem 4.1 is based on using the following factorization result which was
obtained also in [8].

Proposition 4.2. Let I = [0,∞).

(a) If 1 < p <∞, then
Cesp(I) = Lp(I) ·Gp′(I), (5)

that is, f ∈ Cesp(I) if and only if f = gh with g ∈ Lp(I), h ∈ Gp′(I) and

‖f‖C(p) ≈ inf ‖g‖p‖h‖G(p′),

where infimum is taken over all factorizations f = gh with g ∈ Lp(I), h ∈ Gp′(I).
(b) If 1 ≤ p <∞, then

Dp(I) ·Gp(I) = Lp(I)

and
‖f‖Lp

= inf{‖g‖D(p)‖h‖G(p) : f = g h, g ∈ Dp(I), h ∈ Gp(I)}.

(c) Let 1 < p < ∞. If g ∈ (Cesp(I))′, then g̃(x) = ess supt∈[x,∞) |g(t)| ∈ (Cesp(I))′
and

‖g̃‖C(p)′ ≤ 8‖g‖C(p)′ .

Remark 4.3. From Proposition 4.2(b), applied in the case when p = 1, it follows in
particular that

(Ces∞[0,∞))′ = (G1[0,∞))′ = D1[0,∞), (6)

which is an analogue of the result proved by Luxemburg–Zaanen in 1965 for I = [0, 1]
(cf. [65, Theorem 4.4]):

(Ces∞[0, 1])′ = L̃1[0, 1], where ‖f‖L̃1
= ‖f̃‖L1[0,1] and f̃(x) = ess sup

t∈[x,1]
|f(t)|.

Remark 4.4. In fact, the factorization equality from Proposition 4.2(b) holds for more
general spaces. Let w be a positive weight function on I = [0,∞) and let 1 ≤ p <∞. We
define the weighted spaces Dp,w and Gp,w on I = [0,∞) by the norms

‖f‖D(p,w) =
(∫ ∞

0
f̃(x)pw(x) dx

)1/p
, where f̃(x) = ess sup

t∈[x,∞)
|f(t)|,

and
‖f‖G(p,w) = sup

x>0

( 1
W (x)

∫ x

0
|f(t)|p dt

)1/p
, where W (x) =

∫ x

0
w(t) dt,

respectively. Then we have

Dp,w ·Gp,w = Lp and ‖f‖Lp = inf
{
‖g‖D(p,w)‖h‖G(p,w) : f = gh, g ∈ Dp,w, h ∈ Gp,w

}
.
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Proof of Theorem 4.1. Firstly, we show that the following embedding holds

Dp′ [0,∞) 1
↪→
(
Lp[0,∞) ·Gp′ [0,∞)

)′
.

In fact, let f ∈ Dp′ and g ∈ Lp · Gp′ . Then g = h · k with h ∈ Lp and k ∈ Gp′ . By the
Hölder–Rogers inequality and the embedding Dp′ · Gp′

1
↪→ Lp′ (see Proposition 4.2(b)),

we obtain

‖fg‖L1 = ‖fhk‖L1 ≤ ‖h‖Lp‖fk‖Lp′ ≤ ‖h‖Lp‖k‖G(p′)‖f‖D(p′),

from which it follows that Dp′ ⊂ (Lp ·Gp′)′ and ‖f‖(Lp·Gp′ )′ ≤ ‖f‖D(p′). Combining this
with the equality Cesp = Lp ·Gp′ (see Proposition 4.2(a)), we infer

Dp′ [0,∞)
p′

↪→ (Cesp[0,∞))′.

To prove the converse, take f ∈ (Cesp)′. Since f̃ ≥ |f | and Dp′ is a Banach lattice,
then by Proposition 4.2(c), we may (and will) assume that f is a non-negative decreasing
function on (0,∞), i. e., f = f̃ . Then, by the Hardy inequality,

‖f‖D(p′) = ‖f‖Lp′ = sup
{∫ ∞

0
|f(x)g(x)| dx : ‖g‖Lp

≤ 1
}

≤ p′ sup
{∫ ∞

0
|f(x)g(x)| dx : ‖g‖C(p) ≤ 1

}
= p′ ‖f‖(Cesp)′ .

Therefore, f ∈ Dp′ and (Cesp[0,∞))′
p′

↪→ Dp′ [0,∞).

Remark 4.5. Another proof of Theorem 4.1 was given by Kerman–Milman–Sinnamon
[49, Theorem D]. In contrast to factorization methods, it is likely that their method of
the proof works only in the case I = [0,∞).

Now, let us consider in a sense more interesting case I = [0, 1]. Recall that the space
K := Ces∞[0, 1] was introduced by Korenblyum, Krĕın and Levin [52] already in 1948.
As it was mentioned before (see Remark 4.3), the Köthe dual space K ′ was found by
Luxemburg–Zaanen a long time ago. Moreover, earlier (1954) Tandori [87] gave a similar
description of the dual space of Ka (the space of all elements from K having absolutely
continuous norm in K): (Ka)∗ = L̃1 with equality of the norms.

Let us consider the Banach function lattice Up = Up[0, 1] with the norm

‖f‖U(p) =
[∫ 1

0

( f̃(x)
1− x

)p
dx

]1/p
, 1 < p <∞,

where, as above, f̃(x) = ess supt∈[x,1] |f(t)|.

Theorem 4.6. If 1 < p <∞, then

(Cesp[0, 1])∗ = (Cesp[0, 1])′ = Up′ [0, 1], p′ = p

p− 1 . (7)

A rather surprised feature of the formula (7) is the fact that the norm of Up′ [0, 1]
contains a weight with a singularity at x = 1. To explain this point, we observe that, in
contrast to Lp-spaces, the restriction of the space Cesp[0,∞) to [0, 1] does not give the
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space Cesp[0, 1]. In fact, if f ∈ Cesp[0,∞) and supp f ⊂ [0, 1], then it is not hard to
check that

‖f‖pCesp[0,∞) = ‖f‖pCesp[0,1) + 1
p− 1 ‖f‖

p
L1[0,1],

which means
Cesp[0,∞)

∣∣
[0,1] = Cesp[0, 1] ∩ L1[0, 1].

Since there are not integrable on [0, 1] functions, which belong to the space Cesp[0, 1],
we conclude that Cesp[0,∞)

∣∣
[0,1] 6= Cesp[0, 1]. Thus, Cesp[0, 1] is not a subspace of the

space Cesp[0,∞).
In the proof of Theorem 4.6 we make use of the Banach ideal space Vp = Vp[0, 1],

1 < p <∞, given by the norm

‖f‖V (p) = sup
0<x≤1

[
(1− x1/(p−1))p−1

x

∫ x

0
|f(t)|p dt

]1/p

and of the following factorization result.

Proposition 4.7. Let 1 < p <∞.

(a) Cesp[0, 1] ↪→ Lp[0, 1] · Vp′ [0, 1] and

inf{‖g‖Lp
‖h‖V (p′) : f = g · h, g ∈ Lp[0, 1], h ∈ Vp′ [0, 1]} ≤ (p− 1)1/p ‖f‖C(p).

(b) Up[0, 1] · Vp[0, 1] ↪→ Lp[0, 1] with

‖f‖Lp
≤ max(1, p− 1) inf{‖g‖U(p)‖h‖V (p) : f = g · h, g ∈ Up[0, 1], h ∈ Vp[0, 1]}.

(c) Up[0, 1] ↪→
(
Vp[0, 1] · Lp′ [0, 1]

)′ and ‖f‖(V (p)·Lp′ )′ ≤ max(1, p − 1)‖f‖U(p) for all
f ∈ Up[0, 1].

Let us denote by K(p)(I) the p-convexification of the space Ces∞(I), where I = [0, 1]
or I = [0,∞). Clearly, K(p)(I) is a non-separable space.

Remark 4.8. In the embedding Cesp[0, 1] ↪→ Lp[0, 1] · Vp′ [0, 1] we cannot take instead
of the space Vp′ [0, 1], where the weight w(x) = (1 − xp−1)1/(p−1) appeared, the corre-
sponding space without this weight, that is, K(p′) := K(p′)[0, 1]. In fact, if the embedding
Cesp[0, 1] ⊂ Lp[0, 1] ·K(p′) would be valid, then combining it with the fact that

Lp ·K(p′) ⊂ Lp[0, 1] · Lp′ [0, 1] = L1[0, 1]

we will have a contradiction because of Cesp[0, 1] is not embedded into L1[0, 1] (cf. The-
orem 3.1(d)).

Problem 1. Identify the Köthe dual [K(p)(I)]′ for 1 < p <∞.

Let us mention here that from the Lozanovskĭı duality theorem for Calderón con-
struction (cf. [64]; see also [66, pp. 179 and 184]) it follows that

[K(p)]′ = [K1/p(L∞)1−1/p]′ = (K ′)1/p(L1)1−1/p = (D1)1/p(L1)1−1/p,

but we do not know an identification of the spaces from the right hand side of this
equality (see also the results related to Köthe dual of a general p-convexification in [50,
pages 7–9]).
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Kamińska and Kubiak [46] presented recently an isometric representation of the dual
space of Cesàro function spaces Cp,w, 1 < p <∞, with a positive weight function w on I:

‖f‖Cp,w
=
[∫

I

(
w(x)

∫ x

0
|f(t)| dt

)p
dx

]1/p
, (8)

assuming that w satisfies the conditions:
∫ 1
t
w(s)p ds < ∞ for all t ∈ (0, 1) and∫ 1

0 w(s)p ds = ∞ in the case I = [0, 1] (in the case I = [0,∞) the assumptions are∫∞
t
w(s)p ds < ∞ for all t ∈ (0,∞) and

∫∞
0 w(s)p ds = ∞). A description given in [46]

resembles the approach of Jagers [44] for sequence spaces, however, the techniques are
more involved due to necessity of dealing with measurable functions instead of sequences.
As applications Kamińska and Kubiak showed that every slice of the unit ball of Cp,w has
diameter 2 which implies that Cp,w are not dual spaces, do not have the Radon–Nikodym
property, and they are not locally uniformly convex (a Banach space (X, ‖·‖) is called lo-
cally uniformly convex if, for any x ∈ X, ‖x‖ = 1, and arbitrary sequence {xn}, ‖xn‖ ≤ 1
(n ∈ N), the assumption limn→∞ ‖x+ xn‖ = 2 implies that limn→∞ ‖x− xn‖ = 0).

Recently, in [12] (see Theorem 3), another much shorter proof of two first properties
in the case of Cesp(I) was presented. As is shown there, on this space an equivalent
norm ‖ · ‖∗C(p) can be introduced such that the space (Cesp(I), ‖ · ‖∗C(p)) contains a
closed subspace isometric to the space L1[0, 1]. Thus, from the well-known Bessaga–
Pełczyński theorem [20] it follows that Cesp(I) cannot be a dual space and does not have
the Radon–Nikodym property (note that, by Talagrand theorem [72, Corollary 5.4.21],
a separable Banach lattice is the dual Banach lattice if and only if it has the Radon–
Nikodym property).

5. lq-copies in Cesàro function spaces. One of the most important characteristics of
the geometric structure of a Banach space is the existence of (complemented) lq-copies,
that is, of (complemented) subspaces isomorphic to the space lq, 1 ≤ q ≤ ∞, in the space
in question (see, for example, [1, Chapters 6, 10 and 11]).

We begin with the following results which were proved in [7] and [8]. Let us recall
that a Banach space X contains an asymptotically isometric copy of l1 if there exist a
null sequence {εn}∞n=1, 0 < εn < 1, and a sequence {xn}∞n=1 ⊂ X such that

∞∑
n=1

(1− εn)|αn| ≤
∥∥∥ ∞∑
n=1

αnxn

∥∥∥
X
≤
∞∑
n=1
|αn|

for all {αn}∞n=1 ∈ l1. This notion was introduced by Dowling and Lennard in [37].

Theorem 5.1. Let 1 ≤ p ≤ ∞ if I = [0, 1] and 1 < p ≤ ∞ if I = [0,∞).

(a) Cesp(I) contains an asymptotically isometric copy of l1;
(b) Cesp(I) contains an order isomorphic and complemented copy of L1(I);
(c) Cesp(I) contains an order isomorphic and complemented copy of lp.

Proof. (a): Setting εn = 1−
(
2(1− 2−n)1−p−1

)−1/p, an = 21/(1−p)(1−2−n) if 1 ≤ p <∞
and εn = 2−n, an = 1−2−n if p =∞, we define fn = gn/‖gn‖C(p), where gn = χ[an,an+1)
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(n = 1, 2, . . . ). Then direct estimations show that
∞∑
n=1

(1− εn)|αn| ≤
∥∥∥ ∞∑
n=1

αnfn

∥∥∥
C(p)
≤
∞∑
n=1
|αn|,

and assertion (a) is proved.
(b): It can be easily checked that, for every h ∈ (0, 1/2), the subspace Xh of Cesp(I)

defined by
Xh :=

{
f ∈ Cesp(I) : supp f ⊂ [h, 1− h]

}
is isomorphic to L1[h, 1 − h] (and therefore to L1(I)). This follows from the fact that
‖f‖C(p) ≈ ‖f‖L1 for all f ∈ Xh, with a constant which depends only on h. Since the
orthogonal projection Pf := f · χ[h,1−h] is bounded in Cesp(I), the subspace Xh is
complemented in Cesp(I).

(c): If hn = χ[2−n−1,2−n] (n = 1, 2, . . . ), then ‖hn‖C(p) ≈ ‖hn‖Lp ≈ 2−n/p and for
h̃n = hn/‖hn‖C(p) we have ∥∥∥ ∞∑

n=1
anh̃n

∥∥∥
C(p)
≈
( ∞∑
n=1
|an|p

)1/p

(with a natural modification for p =∞), where the constant of equivalence depends only
on p. Therefore, the closed linear span [h̃n] is order isomorphic to lp. Since the orthogonal
projection onto [h̃n] is bounded in Cesp(I), this subspace is complemented.

Now, we proceed with some applications of Theorem 5.1.
A Banach space X = (X, ‖·‖) has the fixed point property for nonexpansive mappings

or shortly fixed point property (FPP) if every nonexpansive mapping T : C → C (means
‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C) of any closed bounded convex subset C of X has
a fixed point, that is, there exists a x0 ∈ C such that T (x0) = x0. Similarly the weak
fixed point property (WFPP) can be defined by replacing the class of closed and bounded
subsets by the class of weakly compact subsets.

In 1999–2000, it was proved by Cui–Hudzik [26], Cui–Hudzik–Li [29] and Cui–Meng–
Płuciennik [31] that the Cesàro sequence spaces cesp for 1 < p <∞ have the fixed point
property (cf. also [24, Part 9]). In contrast to this, in [7] the following result was obtained.

Corollary 5.2. Let 1 ≤ p ≤ ∞ if I = [0, 1] and let 1 < p ≤ ∞ if I = [0,∞). The
Cesàro function spaces Cesp(I) and their dual spaces Cesp(I)∗ fail to have the fixed
point property.

Proof. In [36], Dowling and Lennard proved that a Banach space containing an asymptot-
ically isometric copy of l1 fails to have the fixed point property. Therefore, from Theorem
5.1(a) it follows that Cesp(I) 6∈ FPP . Moreover, by the Dilworth–Girardi–Hagler re-
sult [34], a Banach space X contains an asymptotically isometric copy of l1 if and only
if the dual space X∗ contains an isometric copy of L1[0, 1]. Therefore, again by Theorem
5.1(a), (Cesp(I))∗ contains an isometric copy of L1[0, 1]. Since the latter space has not
the fixed point property we conclude that (Cesp(I))∗ 6∈ FPP as well.

Of course, X ∈ FPP implies that X ∈ WFPP and in the class of reflexive spaces
these two properties are equivalent. It is known that uniformly convex Banach spaces have
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the FPP (Browder–Göhde–Kirk 1965) and uniformly non-square Banach spaces have the
FPP (García–Falset, Llorens–Fuster, Mazcuñán–Navarro 2006), thus all classical reflexive
spaces have the FPP. On the other hand, there are examples of classical nonreflexive
spaces c0, l1, L1[0, 1], L∞[0, 1], C[0, 1] and Lp,1[0,∞) which fail the fixed point property for
nonexpansive mappings. We also have that l1, c0 ∈WFPP \FPP and L1[0, 1] /∈WFPP

(Alspach 1981).
In connection with Corollary 5.2 it is natural to ask what one can say about the

weak fixed point property of the Cesàro spaces Cesp(I) (see [7, p. 4293]). Note that the
space Ces1[0, 1] = L1(ln 1/t)[0, 1] is isometric to L1[0, 1] and by the Alspach result [3],
Ces1[0, 1] fails to have the WFPP.

Problem 2. Do Cesàro function spaces Cesp(I) for 1 < p < ∞ have the weak fixed
point property for nonexpansive mappings?

Let us state here also the following central problem in the fixed point theory.

Problem 3. Does reflexivity of a Banach space X imply that X ∈ FPP?

On the other hand, the converse problem was solved by Pei–Kee Lin in 2008 by his
surprising result: the space l1 with the norm ‖x‖ = supn∈N 8n

1+8n

∑∞
k=n |xk| is not reflexive

but it has the fixed point property [59].
As the next consequence of Theorem 5.1, we mention the failure of the Dunford–

Pettis property by spaces Cesp(I), 1 < p < ∞. A Banach space X has the Dunford–
Pettis property if xn → 0 weakly in X and fn → 0 weakly in the dual space X∗ imply
fn(xn)→ 0. The classical examples of Banach spaces with the Dunford–Pettis property
are AL-spaces and AM-spaces. Also, if the dual spaceX∗ has the Dunford–Pettis property
then X has itself this property. Of course, Cesàro sequence spaces cesp, 1 < p < ∞, as
reflexive spaces do not have the Dunford–Pettis property.

Corollary 5.3. If 1 < p <∞, then Cesp(I) do not have the Dunford–Pettis property.

Proof. By Theorem 5.1(c), Cesp(I) contains a complemented copy of lp and the space
lp does not have the Dunford–Pettis property. On the other hand, if a Banach space X
has the Dunford–Pettis property, then any complemented subspace of X should have also
this property. Thus, Cesp(I) do not have the Dunford–Pettis property.

Bennett [17] proved that the Cesàro sequence space cesp, 1 < p ≤ ∞, is not isomorphic
to lq-space for any 1 ≤ q ≤ ∞. Analogous theorem is true also for Cesàro function
spaces [8].

Theorem 5.4. If 1 < p ≤ ∞, then Cesp(I) is not isomorphic to Lq(I)-space for any
1 ≤ q ≤ ∞.

Proof. We will consider four cases:
1◦ q = 1. The spaces Cesp(I) for 1 < p <∞ are not isomorphic to L1(I) since L1(I)

has the Dunford–Pettis property but Cesp(I), as we have seen in Corollary 5.3, do not
have this property. Clearly, Ces∞(I) as a non-separable space is not isomorphic to L1(I).

2◦ 1 < q <∞. By Theorem 5.1(b), Cesp(I) contains an isomorphic copy of L1(I), thus
it is not reflexive. Hence, it cannot be isomorphic to the reflexive space Lq(I), 1 < q <∞.
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3◦ q =∞, 1 < p <∞. The space Cesp(I) is not isomorphic to L∞(I) since the former
space is separable and the latter one is non-separable.

4◦ p = q = ∞. Since, by the Pełczyński theorem (cf. Albiac–Kalton [1, Theorem
4.3.10]), L∞(I) is isomorphic to `∞, it is enough to show that Ces∞(I) is not isomor-
phic to `∞. By Theorem 5.1(b), Ces∞(I) contains a complemented copy of a separable
space while no separable subspace of `∞ is complemented in `∞. In fact, the latter space
is prime, that is, every infinite dimensional complemented subspace of `∞ is isomor-
phic to `∞ (see Lindenstrauss–Tzafriri [60, Theorem 2.a.7] or Albiac–Kalton [1, Theorem
5.6.5]). Therefore, Ces∞(I) and `∞ are not isomorphic.

One of the most important problems related to investigation of the geometric structure
of a Banach spaceX is a description of the set of such q thatX contains a (complemented)
lq-copy, that is, a (complemented) subspace isomorphic to the space lq, 1 ≤ q ≤ ∞. In the
case of Lp-spaces, the following result showing a difference of their geometric properties
in the cases 1 < p < 2 and 2 < p < ∞ (see [1, Theorem 6.4.19] and Kadec–Pełczyński
classical paper [45]) holds:

Let 1 ≤ q ≤ ∞. If 1 ≤ p ≤ 2, then the space lq can be embedded isomorphically in Lp[0, 1]
if and only if p ≤ q ≤ 2. If 2 < p <∞, then the space lq can be embedded isomorphically
in Lp[0, 1] if and only if q = p or q = 2.

A similar description of the set of all q for which isomorphic copies of lq are contained
in the Cesàro space Cesp[0, 1] was given in [8], Theorem 10.

Theorem 5.5.

(a) If 1 ≤ p ≤ 2, then the space lq is embedded isomorphically into Cesp[0, 1] if and
only if 1 ≤ q ≤ 2.

(b) If 2 < p < ∞, then the space lq is embedded isomorphically into Cesp[0, 1] if and
only if 1 ≤ q ≤ 2 or q = p.

1/q

1/p

1/2

1/2

1

10

(a) lq ⊆ Lp

1/q

1/p

1/2

1/2

1

10

(b) lq ⊆ Cesp

Fig. 1–2. lq is embedded isomorphically into Lp[0, 1] and Cesp[0, 1]
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A main reason of an essential difference between Theorem 5.5 and the preceding result
for Lp-spaces consists in the fact that, in contrast to Lp, 1 < p < ∞, the Cesàro space
Cesp[0, 1] contains an isomorphic copy of L1[0, 1] (see Theorem 5.1(b)).

In the final part of this section, we present the full description of complemented
lq-copies of the spaces Cesp[0, 1]. Firstly, recall the following classical result for Lp-spaces
(see [1, Theorem 6.4.21] and again Kadec–Pełczyński paper [45]):

Let 1 < p <∞. The space Lp[0, 1] contains a complemented subspace isomorphic to lq if
and only if q = p or q = 2.

An analogous description of complemented lq-copies in Cesp[0, 1], which was given
recently in [5] (see Theorem 2 and Corollary 1), again shows a substantial difference
between the geometric properties of Lp-spaces and Cesàro function spaces.

Theorem 5.6. Let 1 ≤ p <∞ and 1 ≤ q ≤ ∞. The following conditions are equivalent:

(a) The Cesàro space Cesp[0, 1] contains a complemented subspace X ' lq.
(b) There is a sequence of disjoint functions {fn}∞n=1 ⊂ Cesp[0, 1] such that [fn] ' lq.
(c) q = 1 or q = p.

1/q

1/p

1/2 ◦

•1

10

◦

◦

(c) lq
c

⊆ Lp

1/q

1/p

•1

10

◦

◦

(d) lq
c

⊆ Cesp

Fig. 3–4. Complemented lq-copies in Lp[0, 1] and Cesp[0, 1]

By Theorem 5.4, Cesp(I), 1 < p ≤ ∞, is not isomorphic to Lq(I)-space for any
1 ≤ q ≤ ∞. From Theorem 5.6, combined with the fact that the space Lq[0, 1], 1 < q <∞,
contains a complemented subspace isomorphic to l2, we obtain the following sharpening
of Theorem 5.4 in the case I = [0, 1].

Corollary 5.7. Let 1 < p < ∞ and p 6= 2. Then the Cesàro space Cesp[0, 1] contains
no complemented copy of the space Lq[0, 1] for any 1 < q ≤ ∞.

Remark 5.8. As it follows from Theorem 5.6, the space Ces2[0, 1] contains a comple-
mented copy of l2 and hence of L2[0, 1]. Moreover, by Theorem 5.1(b), for any 1 ≤ p ≤ ∞
the space Cesp[0, 1] contains a complemented copy of L1[0, 1]. Thus, the result of the last
corollary does not hold if p = 2 or q = 1.

By Theorem 5.1(c), we saw that the space Cesp[0, 1], 1 ≤ p < ∞, contains a com-
plemented lp-copy. Moreover, it turns out that this space is in a sense “saturated” by
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complemented copies of lp. Denote by L the vector space of all measurable on [0, 1] func-
tions x = x(t) such that

∫ u
0 |x(t)| dt <∞ for any 0 < u < 1. Define on L the topology τ

generated by the following countable system of seminorms

pn(x) :=
∫ 1−1/n

0
|x(t)| dt (n = 2, 3, . . . ).

It is clear that for any 1 ≤ p ≤ ∞ there is a continuous embedding Cesp[0, 1] ↪→ L.
The following result was proved also in [5].

Theorem 5.9. Let X be an arbitrary subspace of Cesp[0, 1] (1 ≤ p < ∞), which is not
closed with respect to the topology τ . Then X contains a subspace Y ' lp, complemented
in Cesp[0, 1].

As is proved in [6] (see also [70]), an analogous result holds also in the case of general
spaces whose norms are generated by positive sublinear operators and by Lp-norms.

6. Rademacher type and cotype of Cesàro spaces. Let 1 ≤ p ≤ ∞. A Banach
lattice X is said to be p–convex (resp. q–concave) with a constant K ≥ 1 if∥∥∥∥( n∑

k=1
|xk|p

)1/p
∥∥∥∥ ≤ K( n∑

k=1
‖xk‖p

)1/p
(
resp.

( n∑
k=1
‖xk‖p

)1/p
≤ K

∥∥∥∥( n∑
k=1
|xk|p

)1/p
∥∥∥∥)

for every choice of vectors x1, x2, . . . , xn in X (with a natural modification if p =∞). Of
course, every Banach lattice is 1-convex and ∞-concave with constant 1. Moreover, the
spaces Lp(I) are p-convex and p-concave with constant 1.

Let rn : [0, 1] → R, be the Rademacher functions, that is, rn(t) = sign(sin 2nπt),
n ∈ N. A Banach space X has type 1 ≤ p ≤ 2 (resp. cotype q ≥ 2) if there is a constant
K > 0 such that, for any choice of vectors x1, . . . , xn from X, we have∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk
∥∥∥ dt ≤ K( n∑

k=1
‖xk‖p

)1/p

(
resp.

( n∑
k=1
‖xk‖q

)1/q
≤ K

∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk
∥∥∥ dt)

(with a natural modification in the case when p =∞ or q =∞). We say that a Banach
space X has trivial type or trivial cotype, if it does not have any type bigger than one or
any finite cotype, respectively.

Theorem 6.1. Let I = [0, 1] or I = [0,∞).

(a) If 1 < p <∞, then the space Cesp(I) is p-concave with constant 1.
(b) If 1 < p <∞, then the space Cesp(I) has trivial type and cotype max(p, 2).
(c) The space Ces∞(I) has trivial type and trivial cotype.

Proof.
(a): The assertion can be proved by direct calculations (see also [8]).
(b): Since the space Cesp(I), 1 < p < ∞, contains an isomorphic copy of L1(I) (see

Theorem 5.1(b)), it has trivial type. On the other hand, by (a), the space Cesp(I) is
p-concave, and therefore (see, for instance, [61, p. 100]) this space has cotype max(p, 2).
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Finally, it has no smaller cotype because of, by Theorem 5.1(c), Cesp(I) contains an
isomorphic copy of lp.

(c): The space Ces∞(I) has no absolutely continuous norm and, by the Lozanovskĭı
theorem, it contains an isomorphic copy of l∞ (cf. [47, Chapter 10, § 4, Theorem 4],
[61, Proposition 1.a.7], [79, Theorem 3.8], [91, Theorem 4.1] and [92, Theorem 117.3]).
Therefore, Ces∞(I) has trivial type and trivial cotype.

Remark 6.2. The same proof shows that all assertions of the last theorem hold also for
the Cesàro sequence spaces cesp.

7. Spaces Cesp[0, 1] and Cesp[0, ∞) are isomorphic. Firstly, we present the con-
struction of an isomorphism between the Cesàro function spaces Cesp[0,∞) and Cesp[0, 1]
for 1 < p < ∞. Sy, Zhang and Lee proved that the norm in Cesp[0,∞) is equivalent to
the following functional obtained by discretization:

‖f‖0 =
[ ∞∑
n=1

( 1
n

n∑
k=1

sk(f)
)p

+
∞∑
m=1

(
m

∞∑
k=m

tk(f)
)p
m−2

]1/p
,

where

sk(f) =
∫ k+1

k

|f(s)| ds and tk(f) =
∫ 1/k

1/(k+1)
|f(s)| ds, k = 1, 2, . . . .

In [8], it was shown that an analogous assertion holds also for the spaces Cesp[0, 1].
Namely, letting

bk(f) =
∫ αk+1

αk

|f(t)| dt, where αk = 1
2(2− k1−p), k = 1, 2, . . . ,

we have

‖f‖C(p)[0,1] ≈
[ ∞∑
n=1

( 1
n

n∑
k=1

bk(f)
)p

+
∞∑
m=2

(
m

∞∑
k=m

tk(f)
)p
m−2

]1/p
.

Denote by kn and lm (n,m = 1, 2, . . . ) one-to-one affine mappings such that

kn : [n, n+ 1]→ [αn, αn+1], lm :
[ 1
m+ 1 ,

1
m

]
→
[ 1
m+ 2 ,

1
m+ 1

]
and define on the space Cesp[0, 1] the linear operator T by setting

Tf(x) =
∞∑
n=1

(αn+1 − αn)f(kn(x))χ[n,n+1](x) +
∞∑
m=1

f(lm(x))χ[1/(m+1),1/m](x).

By direct estimations, one can check that T : Cesp[0, 1]→ Cesp[0,∞) is an isomorphism
and we get the following result (see [8], Theorem 9).

Theorem 7.1. If 1 < p <∞, then the Cesàro function spaces Cesp[0, 1] and Cesp[0,∞)
are isomorphic.

In the case p =∞ we are able to prove even a stronger result (see also [8]).

Theorem 7.2. If 1 ≤ p < ∞, then the p-convexifications Ces(p)
∞ [0, 1] and Ces(p)

∞ [0,∞)
of Cesàro function spaces on [0, 1] and (0,∞) are isomorphic. In particular, the spaces
Ces∞[0, 1] and Ces∞[0,∞) are isomorphic.
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Proof. It is not difficult to check that

‖f‖C(∞)(p)[0,∞) ≈ sup
k∈Z

(
2−k+1

∫ 2k

2k−1
|f(t)|p dt

)1/p

and

‖f‖C(∞)(p)[0,1] ≈ sup
k=0,−1,−2,...

(
2−k+1

∫ 2k

2k−1
|f(t)|p dt

)1/p
.

Moreover, for every k ∈ Z

2−k+1
∫ 2k

2k−1
|f(t)|p dt =

∫ 1

0
|f(2k−1(t+ 1))|p dt.

Let us define the linear transforms

T1 : Ces(p)
∞ [0,∞)→ l∞

( ∞∑
k=−∞

⊕Lp[0, 1]
)
, T1f =

(
f(2k−1(t+ 1))

)
k∈Z

and

T2 : Ces(p)
∞ [0, 1]→ l∞

(−∞∑
k=0
⊕Lp[0, 1]

)
, T2f =

(
f(2k−1(t+ 1))

)−∞
k=0.

The preceding formulas show that T1 and T2 are isomorphisms. Moreover, it is clear that
the spaces l∞

(∑∞
k=−∞⊕Lp[0, 1]

)
and l∞

(∑−∞
k=0⊕Lp[0, 1]

)
are isomorphic. Therefore, the

spaces Ces(p)
∞ [0,∞) and Ces(p)

∞ [0, 1] are isomorphic as well.

Problem 4. Is the Cesàro function space Ces∞[0, 1] isomorphic to the Cesàro sequence
space ces∞?

Note that a well-known Pełczyński theorem (1958) states that L∞[0, 1] is isomorphic
to l∞.

8. Rademacher functions in Cesàro spaces. Recall that the Rademacher functions
rn : [0, 1] → R are defined by the formula rn(t) = sign(sin 2nπt) (n ∈ N). From the
classical Khintchine inequality it follows that these functions span an isomorphic copy of l2
in Lp for every 0 < p <∞. Investigations of Rademacher sums in general rearrangement
invariant spaces rather than Lp are well presented in a series of papers and in the books
by Lindenstrauss–Tzafriri [61], Krein–Petunin–Semenov [53] and Astashkin [4]. However,
not so much we know on the behaviour of the Rademacher functions in general Banach
lattices.

In this section we consider the Rademacher functions in the spaces Cesp[0, 1]. The
first result proved in [9, Theorems 1 and 6] is related to the case 1 ≤ p <∞.

Theorem 8.1. For any 1 ≤ p <∞ the Rademacher functions {rn} span an isomorphic
copy of l2 in Cesp[0, 1]. Moreover, the subspace [rn] is not complemented in Cesp[0, 1].

Proof. To prove the first assertion of the theorem, we have to show that there are positive
constants Ap > 0 and Bp > 0 such that

Ap

( n∑
k=1

a2
k

)1/2
≤
∥∥∥ n∑
k=1

ak rk

∥∥∥
C(p)
≤ Bp

( n∑
k=1

a2
k

)1/2
(9)
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for any real numbers a1, a2, . . . , an and any n ∈ N. It can be done by comparing the norms
of the Cesàro spaces and Lp-spaces and by using the classical Khintchine inequality in
Lp[0, 1] for 0 < p < ∞. In fact, it is sufficient to check that the following chain of
embeddings holds:

Lp
p′

↪→ Cesp
1
↪→ Ces1 = L1(ln 1/t) C

↪→ L1/3 if 1 < p <∞,

with some constant C > 0. The first two embeddings are immediate consequences
of Theorem 3.1(c) and (e). To prove the last one, assume that f ∈ L1(ln 1/t) with
‖f‖L1(ln 1/t) = 1. Since ln 1/t ≥ 1− t for 0 < t ≤ 1 and the function 1− t decreases, we
have

1 =
∫ 1

0
|f(t)| ln 1/t dt ≥

∫ 1

0
|f(t)|(1− t) dt ≥

∫ 1

0
f∗(1− t)(1− t) dt

=
∫ 1

0
f∗(s)s ds ≥

∫ t

0
f∗(s)s ds ≥ f∗(t)t2/2

or f∗(t) ≤ 2t−2. Thus,∫ 1

0
|f(t)|1/3 dt =

∫ 1

0
f∗(t)1/3 dt ≤

∫ 1

0
(2t−2)1/3 dt = 3 · 21/3

and so ‖f‖L1/3 ≤ 54, which finishes the proof of the last embedding with C = 54, and
the result follows.

The proof of the second assertion of the theorem is based on the fact that the space
Cesp[0, 1] contains an isomorphic copy of L1[0, 1] (for a detailed proof see [9]).

The behaviour of Rademacher functions in the space Ces∞[0, 1] is much more in-
teresting. In the following theorem (see [9, Theorem 2]), as above, K(p) := K(p)[0, 1] is
p-convexification of the space K := Ces∞[0, 1].

Theorem 8.2. For any 1 ≤ p <∞ we have the equivalence∥∥∥ n∑
k=1

akrk

∥∥∥
K(p)

≈
∥∥{ak}nk=1

∥∥
l2

+ max
1≤m≤n

∣∣∣ m∑
k=1

ak

∣∣∣, n = 1, 2, . . . , (10)

with a constant which depends only on p.

Remark 8.3. From (10) we obtain∥∥∥ ∞∑
k=1

akrk

∥∥∥
K(p)

≈
∥∥{ak}∞k=1

∥∥
l2

+ sup
m∈N

∣∣∣ m∑
k=1

ak

∣∣∣,
and hence the series

∑∞
k=1 akrk is convergent in K(p) if and only if both series

∑∞
k=1 a

2
k

and
∑∞
k=1 ak are convergent.

Recall that rn
w→ 0 in an rearrangement invariant space X on [0, 1] whenever X is

not equal to L∞[0, 1] up to an equivalent norm (cf. [77], see also [61, Proposition 2.c.10]).

Theorem 8.4. If 1 ≤ p < ∞, then rn
w→ 0 in Cesp[0, 1], and therefore the lattice

operations in this space are not weakly sequentially continuous.
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Proof. Taking into account that the Rademacher functions form an orthonormal se-
quence, from Bessel’s inequality we obtain

lim
n→∞

∫ 1

0
f(t)rn(t) dt = 0

for every f ∈ L2[0, 1]. Since the sequence {rn} is uniformly bounded and L2 is dense in L1,
we conclude that the latter equality holds for all f ∈ L1. From the embedding Lp ⊂ Cesp
we infer (Cesp)? ⊂ (Lp)? = Lp′ ⊂ L1 and therefore we obtain the weak convergence
of Rademacher functions to zero in Cesp[0, 1]. In particular, the lattice operations in
Cesp[0, 1] are not weakly sequentially continuous since rn

w→ 0 in Cesp[0, 1] but |rn| = 1
for all n ∈ N.

Problem 5. Are the lattice operations weakly sequentially continuous in the space
K(p)[0, 1], 1 ≤ p <∞?

The last result of this section is proved also in [9].

Theorem 8.5. The subspace [rn] generated by the Rademacher functions in the Cesàro
space Ces∞[0, 1] is not complemented in this space.

Problem 6. Clarify if the subspace [rn] generated by the Rademacher functions in K(p)

for 1 < p <∞ is complemented or not in this space.

9. On weak Banach–Saks property of Cesp[0, 1]. Let us recall that a Banach
space X is said to have the weak Banach–Saks property if every weakly null sequence
{xn}∞n=1 ⊂ X contains a subsequence {xnk

} whose first arithmetical means converge
strongly to zero, that is, limm→∞

1
m

∥∥∑m
k=1 xnk

∥∥
X

= 0.
It is known that uniformly convex spaces, c0, l1 and L1 have the weak Banach–Saks

property, but C[0, 1] and l∞ do not have. We should mention that the result on L1-space,
proved by Szlenk in 1965, was a very important break-through in investigation of the
weak Banach–Saks property.

In 1982 Rakov proved that a Banach space with non-trivial type has the weak Banach–
Saks property. Recently, Dodds–Semenov–Sukochev (2004) examined the weak Banach–
Saks property in the class of rearrangement invariant spaces and Astashkin–Sukochev
(2007) completely characterized Marcinkiewicz spaces having this property.

The spaces Cesp[0, 1] for 1 ≤ p <∞ neither have non-trivial type nor rearrangement
invariant. Nevertheless, the following result, which was proved in [8], holds.

Theorem 9.1. If 1 ≤ p < ∞, then the Cesàro function space Cesp[0, 1] has the weak
Banach–Saks property.

The proof of this theorem given in [8] is based on two main ingredients: an applica-
tion of the Szlenk result and the following characterization of weakly null sequences in
Cesp[0, 1], 1 < p <∞.
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Theorem 9.2. Let 1 < p <∞ and let {xn}∞n=1 ⊂ Cesp[0, 1]. Then xn
w→ 0 in Cesp[0, 1]

if and only if

(a) there exists a constant M > 0 such that ‖xn‖C(p) ≤M for all n = 1, 2, . . . ;
(b) for every set A ⊂ [0, 1] such that A ⊂ [h, 1 − h] for some h ∈ (0, 1/2) we have∫

A
xn(t) dt→ 0 as n→∞.

Recently, in [12], we have presented another much shorter proof of Theorem 9.1 by
observing that Cesp[0, 1] is a closed subspace of the mixed norm space Lp[L1]. Since the
latter space is equal to the Bochner vector-valued space Lp(L1) (see [39, Theorem 1.1] and
[22, Theorem 2.2]), from the Cembranos result [23, Theorem C] (see also [58, pp. 295–302])
and the Komlós theorem [51] it follows that the space Lp[L1] has the weak Banach–Saks
property. Hence, as a closed subspace of Lp[L1], the space Cesp[0, 1] also possesses this
property.

10. Interpolation of Cesàro and Copson spaces. For more detailed definitions of
a Banach couple, intermediate and interpolation spaces with some results introduced
briefly below, see [19] and [18, pp. 95–116].

For a Banach couple X̄ = (X0, X1) of two compatible Banach spaces X0 and X1
consider two Banach spaces X0 ∩X1 and X0 +X1 with their natural norms

‖f‖X0∩X1 = max
(
‖f‖X0 , ‖f‖X1

)
, for f ∈ X0 ∩X1,

and

‖f‖X0+X1 = inf
{
‖f0‖X0 +‖f1‖X1 : f = f0 +f1, f0 ∈ X0, f1 ∈ X1

}
, for f ∈ X0 +X1.

A Banach space X is called an intermediate space between X0 and X1 if X0 ∩ X1 ↪→
X ↪→ X0 + X1. Such a space X is called an interpolation space between X0 and X1
if, for any bounded linear operator T : X0 + X1 → X0 + X1 such that the restriction
T|Xi

: Xi → Xi is bounded for i = 0, 1, the restriction T|X : X → X is also bounded and
‖T‖X→X ≤ C max

{
‖T‖X0→X0 , ‖T‖X1→X1

}
for some C ≥ 1. If C = 1, then X is called

an exact interpolation space between X0 and X1.
One of the most important interpolation methods is the K-method known also as the

real Lions–Peetre interpolation method. For a Banach couple X̄ = (X0, X1) the Peetre
K-functional of an element f ∈ X0 +X1 is defined for t > 0 by

K(t, f ;X0, X1) = inf
{
‖f0‖X0 + t‖f1‖X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1

}
.

Then the spaces of the K-method of interpolation are

(X0, X1)θ,p =
{
f ∈ X0 +X1 : ‖f‖θ,p =

(∫ ∞
0

[t−θK(t, f ;X0, X1)]p dt
t

)1/p
<∞

}
if 0 < θ < 1 and 1 ≤ p <∞, and

(X0, X1)θ,∞ =
{
f ∈ X0 +X1 : ‖f‖θ,∞ = sup

t>0
K(t, f ;X0, X1)t−θ <∞

}
if 0 ≤ θ ≤ 1. It is not hard to check that (X0, X1)θ,p is an exact interpolation space
between X0 and X1 for arbitrary 0 < θ < 1 and 1 ≤ p ≤ ∞.

Very useful in calculations are the so-called reiteration formulae showing the stability
of the K-method of interpolation. If 1 ≤ p0, p1, p ≤ ∞, 0 < θ0, θ1, θ < 1 and θ0 6= θ1,
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then (
(X0, X1)θ0,p0 , (X0, X1)θ1,p1

)
θ,p

= (X0, X1)(1−θ)θ0+θθ1,p, (11)

with equivalent norms (see [18, Theorem 2.4, p. 311] or [19, Theorems 3.5.3] or [89,
Theorem 1.10.2]) and in the extreme cases(

X0, (X0, X1)θ1,p1

)
θ,p

= (X0, X1)θθ1,p,(
(X0, X1)θ0,p0 , X1

)
θ,p

= (X0, X1)(1−θ)θ0+θ,p
(12)

with equivalent norms (see [43], formulae 3.16 and 3.17).
We present here the interpolation results for Cesàro and Copson spaces from [11]

and [13]. It should be noted that interpolation properties of Cesàro spaces are more
non-trivial and interesting than those of Copson spaces.

Theorem 10.1. Let I = [0, 1] or [0,∞).

(a) If 1 ≤ p0 < p1 ≤ ∞ and 1
p = 1−θ

p0
+ θ

p1
with 0 < θ < 1, then

(copp0 , copp1)θ,p = copp and (Copp0(I), Copp1(I))θ,p = Copp(I). (13)
(b) If 1 < p0 < p1 ≤ ∞ and 1

p = 1−θ
p0

+ θ
p1

with 0 < θ < 1, then
(cesp0 , cesp1)θ,p = cesp and (Cesp0(I), Cesp1(I))θ,p = Cesp(I). (14)

Proof. (a): In the case of sequence spaces the proof follows from the identification(
l1, l1(1/k)

)
1−1/p,p = copp, 1 < p <∞

(see [11, Theorem 1 (i)]), from the equalities l1 = cop1, l1(1/k) = cop∞ and from reit-
eration formulae (11), (12). The proof is completely similar for Copson function spaces,
only we use the following identification of them as interpolation spaces with respect to a
couple of weighted L1-spaces [11, Theorem 1 (ii) and (iii)]:

(L1(I), L1(1/t)(I))1−1/p,p = Copp(I), 1 < p <∞,
and the equalities Cop∞(I) = L1(1/t)(I), Cop1(I) = L1(I).

(b): In the case of sequence and function spaces on [0,∞), provided that p1 < ∞, it
is sufficient to apply equalities (13) from the part (a) and Theorem 3.2(a). If p1 = ∞,
equalities (14) are proved in [12] (see Theorem 2) and [11] (see Corollary 2).

In contrast to the case [0,∞), the space Cesp[0, 1], 1 ≤ p <∞, is not an intermediate
space between L1[0, 1] and Ces∞[0, 1]. However, we have

Ces∞[0, 1] 1
↪→ Cesp[0, 1] 1

↪→ Ces1[0, 1] = L1(ln 1/t)[0, 1] 1
↪→ L1(1− t)[0, 1].

Moreover, as was shown in [11, Theorem 2], if 1 < p <∞, the following equality holds:(
L1(1− t)[0, 1], Ces∞[0, 1]

)
1−1/p,p = Cesp[0, 1]. (15)

Therefore, if I = [0, 1], the second equality in (14) can be proved in the same way as in
the part (a) by using reiteration formulae (11) and (12).

Remark 10.2. The space cesp for 1 < p < ∞ can be obtained also as an interpolation
space with respect to the couple (l1, l1(2−n)) by the so-called K+-method being a version
of the standard K-method, precisely, cesp = (l1, l1(2−n))K+

lp(1/n) (cf. [25, the proof of
Theorem 6.4]). However, by now, for the K+-method there is no suitable reiteration
theorem.
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Remark 10.3. Note that the proof of the second equality in (14) for the spaces on
I = [0,∞) in [11] is essentially based on some results from the paper [71]. Moreover,
another proof of this equality in the case I = [0,∞) was also given by Sinnamon
[83, Corollary 2].
Remark 10.4. As was mentioned in Section 4, the restriction of the space Cesp[0,∞),
1 < p < ∞, to the interval [0, 1] coincides with the intersection Cesp[0, 1] ∩ L1[0, 1].
Therefore, if we “restrict” the second formula in (14) for [0,∞) to [0, 1] we obtain(

Cesp0 [0, 1] ∩ L1[0, 1], Cesp1 [0, 1] ∩ L1[0, 1]
)
θ,p

= Cesp[0, 1] ∩ L1[0, 1],

where 1 < p0 < p1 < ∞ and 1
p = 1−θ

p0
+ θ

p1
. The latter equality shows that the real

method (·, ·)θ,p “properly” interpolates the intersections of Cesàro spaces on the segment
[0, 1] with the space L1[0, 1] or, more precisely, we have(
Cesp0 [0, 1] ∩ L1[0, 1], Cesp1 [0, 1] ∩ L1[0, 1]

)
θ,p

=
(
Cesp0 [0, 1], Cesp1 [0, 1]

)
θ,p
∩ L1[0, 1],

for all 1 < p0 < p1 ≤ ∞, 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
.

Recalling that Ces1[0, 1] = L1(ln 1/t), let us consider a problem if Cesp[0, 1],
1 < p < ∞, is an interpolation space between Ces1[0, 1] and Ces∞[0, 1]. We show that
for arbitrary 1 < p <∞ the following embedding holds:(

Ces1[0, 1], Ces∞[0, 1]
)

1−1/p,p
1
↪→ Cesp[0, 1]. (16)

First, for any f ∈ Ces1 and all 0 < t ≤ 1 we have

K(t, f) := K(t, f ;Ces1, Ces∞) ≥
∫ t

0
(Cf)∗(s) ds. (17)

In fact, we can assume that f ≥ 0. If f = g + h, g ≥ 0, h ≥ 0, g ∈ Ces1, h ∈ Ces∞, then
Cf = Cg + Ch and, therefore, by using the well-known formula for K-functional with
respect to the couple (L1, L∞) (cf. [18, Theorem 5.1.6]), we obtain

‖g‖C(1) + t‖h‖C(∞) = ‖Cg‖L1 + t‖Ch‖L∞
≥ inf

{
‖y‖L1 + t ‖z‖L∞ : Cf = y + z, y ∈ L1, z ∈ L∞

}
= K(t, Cf ;L1, L∞) =

∫ t

0
(Cf)∗(s) ds.

Taking the infimum over all suitable g and h we get (17). Next, by the definition of the
real interpolation spaces, we obtain

‖f‖p1−1/p,p ≥
∫ 1

0

[
t1/p−1K(t, f)

]p dt
t

=
∫ 1

0
t−pK(t, f)p dt

≥
∫ 1

0
t−p
[∫ t

0
(Cf)∗(s) ds

]p
dt ≥ ‖Cf‖pLp

= ‖f‖pC(p),

and the proof of the embedding (16) is complete.
However, the opposite embedding does not hold. Moreover, in [11, Theorem 6] the

following result is proved.
Theorem 10.5. For any 1 < p < ∞ the space Cesp[0, 1] is not an interpolation space
between the spaces Ces1[0, 1] and Ces∞[0, 1].
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Remark 10.6. Equality (15) and the last theorem show that the weighted space
L1(1 − t)[0, 1] is in a sense the “proper” end of the scale of Cesàro spaces Cesp[0, 1],
1 < p ≤ ∞.

Problem 7. The proof of Theorem 10.5 given in [11] is of functorial “flavour”. Hence,
it would be worth to construct a sequence of operators {Tn}∞n=1 which are uniformly
bounded in Ces1[0, 1] and Ces∞[0, 1] but supn=1,2,... ‖Tn‖Cesp[0,1]→Cesp[0,1] = ∞ for any
1 < p <∞.

After the negative answer given in Theorem 10.5 it is interesting to find a space which
we get by the K-method applied to the couple (Ces1[0, 1], Ces∞[0, 1]). A rather elaborate
estimations in [11, Theorems 3 and 5] give the following result with an identification of
the latter space.

Theorem 10.7. For every 1 < p <∞ we have(
Ces1[0, 1], Ces∞[0, 1]

)
1−1/p,p = Cesp(ln e/t)[0, 1], (18)

where the weighted Cesàro function space Cesp(ln e
t )[0, 1] is a Banach space generated by

the norm

‖f‖C(p,ln) :=
(∫ 1

0

( 1
x

∫ x

0
|f(t)| dt

)p
ln e

x
dx
)1/p

.

The crucial point in proving Theorem 10.7 is the following description of the
K-functional for the couple (Ces1[0, 1], Ces∞[0, 1]): for every f ∈ Ces1[0, 1] and for all
0 < t ≤ 1 we have

K
(
t, f ;Ces1[0, 1], Ces∞[0, 1]

)
≈ ‖fχ[0,τ1(t)]∪[τ2(t),1]‖C(1) + t ‖fχ[τ1(t),τ2(t)]‖C(∞),

where τ1(t) = t/ ln(e/t) and τ2(t) = e−t (cf. [11, Theorem 3]). Clearly, if t ≥ 1, we have
K
(
t, f ;Ces1[0, 1], Ces∞[0, 1]

)
= ‖f‖C(1).

Note that Cesp(ln e
t )[0, 1] 1

↪→ Cesp[0, 1] for every 1 < p < ∞, and this embedding is
strict.

References

[1] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math. 233,
Springer, New York 2006.

[2] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Academic Press, Orlando 1985.
[3] D. E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981),

423–424.
[4] S. V. Astashkin, Rademacher functions in symmetric spaces, Sovrem. Mat. Fundam.

Napravl. 32 (2009), 3–161 (Russian); English transl.: J. Math. Sci. (New York) 169 (2010),
725–886.

[5] S. V. Astashkin, On the geometric properties of Cesàro spaces, Mat. Sb. 203 (2012), no. 4,
61–80; English transl.: Sb. Math. 203 (2012), 514–533.

[6] S. V. Astashkin, Geometrical properties of Banach spaces generated by sublinear operators,
Positivity 17 (2013), 223–234.

http://dx.doi.org/10.1090/S0002-9939-1981-0612733-0
http://dx.doi.org/10.1007/s10958-010-0074-z
http://dx.doi.org/10.1070/SM2012v203n04ABEH004232
http://dx.doi.org/10.1007/s11117-012-0159-7


STRUCTURE OF CESÀRO FUNCTION SPACES 37

[7] S. V. Astashkin, L. Maligranda, Cesàro function spaces fail the fixed point property, Proc.
Amer. Math. Soc. 136 (2008), 4289–4294.

[8] S. V. Astashkin, L. Maligranda, Structure of Cesàro function spaces, Indag. Math. (N.S.)
20 (2009), 329–379.

[9] S. V. Astashkin, L. Maligranda, Rademacher functions in Cesàro type spaces, Studia
Math. 198 (2010), 235–247.

[10] S. V. Astashkin, L. Maligranda, Geometry of Cesàro function spaces, Funktsional. Anal.
i Prilozhen. 45 (2011), no. 1, 79–83; English transl.: Funct. Anal. Appl. 45 (2011), 64–68.

[11] S. V. Astashkin, L. Maligranda, Interpolation of Cesàro sequence and function spaces,
Studia Math. 215 (2013), 39–69.

[12] S. V. Astashkin, L. Maligranda, A short proof of some recent results related to Cesàro
function spaces, Indag. Math. (N.S.) 24 (2013), 589–592.

[13] S. V. Astashkin, L. Maligranda, Interpolation of Cesàro and Copson spaces, in: Banach
and Function Spaces IV (Kitakyushu, 2012), Yokohama Publ., Yokohama 2014, 123–133.

[14] S. V. Astashkin, F. A. Sukochev, Banach–Saks property in Marcinkiewicz spaces, J. Math.
Anal. Appl. 336 (2007), 1231–1258.

[15] S. Banach, Théorie des Opérations Linéaires, Monografie Matematyczne 1, PWN, War-
saw 1932; Reprinted in: Stefan Banach, Œuvres, Vol. II, PWN, Warszawa 1979, 13–219;
English transl.: Theory of Linear Operations, North-Holland Math. Library 38, North-
Holland, Amsterdam 1987.

[16] M. S. Baouendi, C. Goulaouic, Commutation de l’intersection et des foncteurs d’interpo-
lation, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A313–A315.

[17] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc. 120 (1996),
no. 576.

[18] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
Press, Boston, 1988.

[19] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss.
223, Springer, Berlin 1976.

[20] C. Bessaga, A. Pełczyński, On extreme points in separable conjugate spaces, Israel J. Math.
4 (1966), 262–264.

[21] Yu. A. Brudny̆ı, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-
Holland Math. Library 47, North-Holland, Amsterdam 1991.

[22] A. V. Bukhvalov, Spaces with mixed norm, Vestnik Leningrad. Univ. no. 19 Mat. Meh.
Astronom. Vyp. 4 (1973), 5–12; English transl.: Vestn. Leningr. Univ. Math. 6 (1979),
303–311.

[23] P. Cembranos, The weak Banach-Saks property on Lp(µ,E), Math. Proc. Cambridge Phi-
los. Soc. 115 (1994), 283–290.

[24] S. Chen, Y. Cui, H. Hudzik, B. Sims, Geometric properties related to fixed point theory
in some Banach function lattices, in: Handbook on Metric Fixed Point Theory, Kluwer
Acad. Publ., Dordrecht 2001, 339–389.

[25] F. Cobos, L. M. Fernández-Cabrera, M. Mastyło, Abstract limit J-spaces, J. Lond. Math.
Soc. (2) 82 (2010), 501–525.

[26] Y. Cui, H. Hudzik, Some geometric properties related to fixed point theory in Cesàro
sequence spaces, Collect. Math. 50 (1999), 277–288.

[27] Y. Cui, H. Hudzik, On the Banach-Saks and weak Banach-Saks properties of some Banach
sequence spaces, Acta Sci. Math. (Szeged) 65 (1999), 179–187.

http://dx.doi.org/10.1090/S0002-9939-08-09599-3
http://dx.doi.org/10.1016/S0019-3577(10)00002-9
http://dx.doi.org/10.4064/sm198-3-3
http://dx.doi.org/10.1007/s10688-011-0007-8
http://dx.doi.org/10.4064/sm215-1-4
http://dx.doi.org/10.1016/j.indag.2013.03.00
http://dx.doi.org/10.1016/j.jmaa.2007.03.040
http://dx.doi.org/10.1090/memo/0576
http://dx.doi.org/10.1007/BF02771641
http://dx.doi.org/10.1017/S030500410007208X
http://dx.doi.org/10.1112/jlms/jdq043


38 S. V. ASTASHKIN AND L. MALIGRANDA

[28] Y. Cui, H. Hudzik, Packing constant for Cesaro sequence spaces, Nonlinear Anal. 47
(2001), 2695–2702.

[29] Y. Cui, H. Hudzik, Y. Li, On the García–Falset coefficient in some Banach sequence
spaces, in: Function Spaces (Poznań, 1998), Lecture Notes in Math. 213, Marcel Dekker,
New York 2000, 141–148.

[30] Y. Cui, L. Jie, R. Płuciennik, Local uniform nonsquareness in Cesàro sequence spaces,
Comment. Math. Prace Mat. 37 (1997), 47–58.

[31] Y. Cui, C. Meng, R. Płuciennik, Banach-Saks property and property (β) in Cesàro sequence
spaces, Southeast Asian Bull. Math. 24 (2000), 201–210.

[32] J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math. 485,
Springer, Berlin 1975.

[33] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv.
Math. 43, Cambridge Univ. Press, Cambridge 1995.

[34] S. Dilworth, M. Girardi, J. Hagler, Dual Banach spaces which contain an isometric copy
of L1, Bull. Polish Acad. Sci. Math. 48 (2000), 1–12.

[35] P. G. Dodds, E. M. Semenov, F. A. Sukochev, The Banach–Saks property in rearrangement
invariant spaces, Studia Math. 162 (2004), 263–294.

[36] P. N. Dowling, C. J. Lennard, Every nonreflexive subspace of L1[0, 1] fails the fixed point
property, Proc. Amer. Math. Soc. 125 (1997), 443–446.

[37] P. N. Dowling, C. J. Lennard, B. Turett, Renormings of l1 and c0 and fixed point properties,
in: Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht 2001, 269–297.

[38] R. E. Edwards, Functional Analysis. Theory and Applications, Holt, Rinehart and Win-
ston, New York–Toronto–London 1965.

[39] H. W. Ellis, A note on Banach function spaces, Proc. Amer. Math. Soc. 9 (1958), 75–81.
[40] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, V. Zizler, Functional

Analysis and Infinite-Dimensional Geometry, CMS Books in Math. 8, Springer, New York
2001.

[41] G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge
1952.

[42] B. D. Hassard, D. A. Hussein, On Cesàro function spaces, Tamkang J. Math. 4 (1973),
19–25.

[43] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199.
[44] A. A. Jagers, A note on Cesàro sequence spaces, Nieuw Arch. Wisk. (3) 22 (1974), 113–124.
[45] M. I. Kadec, A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the

spaces Lp, Studia Math. 21 (1962), 161–176.
[46] A. Kamińska, D. Kubiak, On the dual of Cesàro function space, Nonlinear Anal. 75 (2012),

2760–2773.
[47] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Nauka, Moscow 1977; English

transl.: Pergamon Press, Oxford–Elmsford, NY 1982.
[48] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow 1984; English transl.:

Transl. Math. Monogr. 75, Amer. Math. Soc., Providence, RI 1989.
[49] R. Kerman, M. Milman, G. Sinnamon, On the Brudny̆ı–Krugljak duality theory of spaces

formed by the K-method of interpolation, Rev. Mat. Complut. 20 (2007), 367–389.
[50] P. Kolwicz, K. Leśnik, L. Maligranda, Pointwise products of some Banach function spaces

and factorization, J. Funct. Anal. 266 (2014), 616–659.
[51] J. Komlós, A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar. 18

(1967), 217–229.

http://dx.doi.org/10.1016/S0362-546X(01)00389-3
http://dx.doi.org/10.1017/CBO9780511526138
http://dx.doi.org/10.4064/sm162-3-6
http://dx.doi.org/10.1090/S0002-9939-97-03577-6
http://dx.doi.org/10.1090/S0002-9939-1958-0096972-3
http://dx.doi.org/10.1007/978-1-4757-3480-5
http://dx.doi.org/10.1016/j.na.2011.11.019
http://dx.doi.org/10.1016/j.jfa.2013.10.028
http://dx.doi.org/10.1007/BF02020976


STRUCTURE OF CESÀRO FUNCTION SPACES 39
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