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Abstract. For two Banach spaces X and Y , we write dim`(X) = dim`(Y ) if X embeds into Y

and vice versa; then we say that X and Y have the same linear dimension. In this paper, we
consider classes of Banach spaces with symmetric bases. We say that such a class F has the
Cantor–Bernstein property if for every X, Y ∈ F the condition dim`(X) = dim`(Y ) implies the
respective bases (of X and Y ) are equivalent, and hence the spaces X and Y are isomorphic. We
prove (Theorems 3.1, 3.3, 3.5) that the class of Orlicz sequence spaces generated by regularly
varying Orlicz functions is of this type. This complements some results in this direction obtained
earlier by S. Banach (Proposition 1.1), L. Drewnowski (Proposition 1.2), and M. J. Gonzalez,
B. Sari and M. Wójtowicz (Theorem 1.4). Our theorems apply to large families of concrete Orlicz
spaces.

1. Introduction. In what follows, we use the notation from the abstract.
The study of the comparison of the linear dimension between Banach spaces goes

back to S. Banach himself (see [B, Chap. XII, p. 193]). For example, in [B, Chap. XII,
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Théorème 1, p. 194] it is proved that each closed subspace of c0 and `p, 1 ≤ p <∞, with
strictly lower dimension is finite-dimensional. Banach also proved the following result (see
[B, Chap. XII, Lemme, p. 202, and Théorèmes 4–6, p. 203]):

Proposition 1.1. If Lp = Lp[0, 1] is isomorphic to a subspace of Lq = Lq[0, 1], where
p > 1, q > 1, then q ≤ p ≤ 2 or 2 ≤ p ≤ q. Consequently,

(a) If Lp and Lq have the same linear dimension, then p = q.
(b) If 1 < p < 2 < q, then neither Lp embeds isomorphically into Lq nor Lq embeds

isomorphically into Lp.
(c) If 1 < p 6= 2, then L2 has strictly lower linear dimension than Lp.

If X and Y are Banach spaces having the same linear dimension, they need not
be isomorphic. These remarks go back to S. Banach and S. Mazur [BM]: in 1932 they
proved that C[0, 1] and C[0, 1] ⊕ `1 have the same linear dimension, yet they are not
isomorphic because their duals do not have the same linear dimension. We also mention
that Plichko and Wójtowicz [PW] have constructed a Banach space X having the same
linear dimension as its bidual X∗∗ but not isomorphic to it. We conclude then that the
concept of linear dimension in general is stronger than the concept of linear isomorphism.

In 1987, L. Drewnowski [D] proved the following remarkable result, which motivates
our studies of a similar property for countable symmetric bases.

Proposition 1.2. Let X and Y be two nonseparable Banach spaces with uncountable
symmetric bases (xγ)γ∈Γ and (yδ)δ∈∆, respectively. Then the following conditions are
equivalent:

(i) X and Y have the same linear dimension,
(ii) X and Y are isomorphic,
(iii) the bases (xγ)γ∈Γ and (yδ)δ∈∆ are equivalent, that is, there exists a bijection

f : Γ→ ∆ such that the linear map T determined by the condition T (xγ) = yf(γ),
for every γ ∈ Γ, extends to an isomorphism from X onto Y .

Rodriguez-Salinas [R] studied “large” Orlicz spaces hϕ(Γ) of this type, while Finol
and Wójtowicz [FW2] considered linear dimension problems for long symmetric basic
sequences.

In this paper, we are interested in indicating families of symmetric bases having the
following property:

Definition 1.3. Given a family of symmetric bases F , we say that F has the Cantor–
Bernstein property whenever, for every (xn) and (yn) in F spanning Banach spaces X
and Y , respectively, X and Y have the same linear dimension if and only if (xn) is
equivalent to (yn). Then we also say that the family F0, of the Banach spaces X that
each member of the family F spans, has the Cantor–Bernstein property.

One should not confuse the above property with the Schröder–Bernstein property dis-
cussed by Casazza [C]: A Banach space X is said to have the Schröder–Bernstein property
whenever for every complemented subspace Y of X for which X is also isomorphic to a
complemented subspace of Y , the space X is isomorphic to Y . The long-standing open
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question of whether or not every Banach space possesses this property has been solved
by T. Gowers [Gow] in the negative.

Let us notice that the following result in the class of Orlicz sequence spaces, given in
[GSW, Theorem 5.1], holds.

Theorem 1.4. Let S be either the family of all super-multiplicative Orlicz functions
satisfying the ∆2-condition at zero or the family of all sub-multiplicative Orlicz functions.
Then the family of all unit vector bases of Orlicz spaces `M such that M ∈ S has the
Cantor–Bernstein property.

Let us recall that a function f defined on the interval [0,1] is said to be sub- [resp.,
super-] multiplicative whenever f(st) ≤ f(s)f(t) [resp., f(st) ≥ f(s)f(t)], for every s, t
in [0, 1]. The examples of such functions can be found in [FM], [FW] and [GSW].

Remark 1.5. If we remove in Theorem 1.4 the assumption on ∆2-condition on M , then
the statement remains true if we replace `M by hM everywhere.

In order to illustrate the ideas that have motivated this investigation we provide
a proof for Theorem 1.4, which is based on the geometry of Orlicz sequence spaces
as developed by Lindberg [L], Lindenstrauss and Tzafriri [LT1] and, more recently, by
Kamińska and Raynaud [KR]. Such a proof is different from the one given in [GSW],
which is based on the notion of semi-homogeneity instead.

In 1971, Lindenstrauss and Tzafriri [LT, Theorem 2] defined a large family of Orlicz
sequence spaces having (up to equivalence) a unique symmetric basis.

Our first result, stated as Theorem 3.1, asserts that such a family actually has the
Cantor–Bernstein property.

Next we focus on finding applications for Theorem 3.1 to the framework of function
theory.

Definition 1.6 (see [M, p. 11] and [BGT, Section 2.3, p. 83]). A ϕ-functionM (i.e.,M is
increasing and continuous on [0,∞) with M(0) = 0 and lims→∞M(s) = ∞), is said to
be regularly varying at zero (resp., at infinity), whenever the limit f(s) = limt→0+

M(ts)
M(t)

(resp., limt→∞
M(ts)
M(t) ) exists and is nonzero, for each s > 0. For example, Mp(t) := tp is

regularly varying for every p > 0. If the limit f(s) = limt→0+
M(ts)
M(t) (resp., limt→∞

M(ts)
M(t) )

exists and

f(t) = M∞(t) :=


0 if 0 ≤ t < 1,
1 if t = 1,
∞ if t > 1,

then the function M is called rapidly varying at zero (resp., at infinity). Notice that
limp→∞Mp(t) = M∞(t), for every t ≥ 0.

In Theorem 3.3 we establish that the family of Orlicz sequence spaces generated by
regularly (or rapidly) varying Orlicz functions has, in fact, the Cantor–Bernstein property.

In Theorem 3.5 we strengthen Theorem 3.3 by showing that the strong Cantor–
Bernstein property established in Theorem 3.3 is hereditary: the family of symmetric basic
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sequences in an Orlicz sequence space generated by a regularly varying Orlicz function has
the Cantor–Bernstein property.

Finally, in the last section, we show how our Theorems 3.1, 3.3 and 3.5 apply to
large families of concrete Orlicz sequence spaces. For example, Theorem 3.3 applies to
the family of Orlicz functions Mp,a,b, having each principal value xp |log(bx)|a, studied
in [GSW] (see Corollary 5.1).

2. Preliminaries. We follow the notation and terminology used in the monographs by
Lindenstrauss and Tzafriri [LT1], and Singer [S]. For the convenience of the reader we
recall some definitions.

The bases (xn) and (yn) of Banach spaces X and Y , respectively, are said to be equiv-
alent whenever there exists a linear isomorphism T from X onto Y such that Txn = yn,
for every n ≥ 1. Equivalently, there exists a positive constant K such that, for every
integer N ≥ 1 and every scalar sequence (αn)∞n=1,

1
K

∥∥∥ N∑
n=1

αnxn

∥∥∥ ≤ ∥∥∥ N∑
n=1

αnyn

∥∥∥ ≤ K∥∥∥ N∑
n=1

αnxn

∥∥∥.
A basis (xn) of a Banach space X is said to be symmetric if every permutation

of (xn) is equivalent to (xn). An unconditional basis which is equivalent to each of its
subsequences is called subsymmetric. Every symmetric basis is subsymmetric. We shall
use the fact that every subsymmetric basis is semi-normalized (that is, the sequence of
norms is bounded and bounded away from zero).

A basis is said to be perfectly homogeneous if it is equivalent to each of its normal-
ized block basic sequences. A basis (xn) is perfectly homogeneous if and only if (xn) is
equivalent to the unit vector basis of either the Banach space c0 or some of the Banach
spaces `p, with 1 ≤ p <∞ (see Zippin [Z]; cf. [LT]).

The examples of Banach spaces having symmetric bases are provided by Orlicz se-
quence spaces.

An Orlicz function M is a non-negative, non-decreasing, convex function defined on
[0,∞) and satisfyingM(0) = 0. Let RN denote the space of all scalar sequences. We define
the function %M : RN → [0,∞] by the formula %M (a) =

∑
M(|an|), where a = {an} is a

scalar sequence. The Orlicz sequence space `M is defined as the linear set

`M := {a ∈ RN : %M (a/λ) <∞ for some λ > 0},

and equipped with the norm ‖a‖M := inf{λ > 0 : %M (a/λ) ≤ 1} it becomes a Banach
space. By hM we denote the closed subspace of `M defined as

hM := {a ∈ RN : %M (a/λ) <∞ for all λ > 0},

where the unit vectors form a symmetric basis of hM (see e.g. [LT1, Proposition 4.a.2.,
p. 138]).

If M(t) > 0 for all t > 0 then M is called non-degenerate. An Orlicz function M is
degenerate if and only if the unit vector basis of hM is equivalent to the unit vector basis
of c0 (see [L, Proposition 2.14]).
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The function M fulfils the so-called ∆2-condition at 0 whenever there exist constants
K, t0 > 0 such that 0 < M(2t) ≤ K · M(t), for every t ∈ [0, t0]. In this case, the
spaces `M and hM coincide, M is necessarily non-degenerate and the unit vectors form a
boundedly complete basis for hM = `M . More precisely, we have the following (see [LT1,
Proposition 4.a.4]):

Proposition 2.1. Let M be an Orlicz function M . Then the following four conditions
are equivalent:

(i) The function M fulfils the ∆2-condition at zero.
(ii) `M = hM .
(iii) The unit vectors form a boundedly complete symmetric basis of hM .
(iv) The space `M is separable.

Let M , N be two Orlicz functions. We say that M dominates N at 0 if there exist
constants a, t0 > 0, such that M(at) ≥ N(t) for every t ∈ [0, t0]. The functions are
equivalent at 0 if M dominates N and N dominates M . The following statement is
well-known [LT1, Proposition 4.a.5].

Proposition 2.2. Let M , N be two Orlicz functions. Then the following conditions are
equivalent:

(i) The unit vector bases of hM and hN are equivalent.
(ii) M and N are equivalent, that is, there exist constants a, b > 0 and t0 such that

M(at) ≤ N(t) ≤M(bt), for every 0 < t ≤ t0.
(iii) There exist constants A,B, a, b > 0 and t0 > 0 such that AM(at) ≤ N(t) ≤

BM(bt), for every 0 < t ≤ t0.

The properties of regularly varying measurable functions and regularly varying
ϕ-functions at infinity were studied by Matuszewska [M] (see also Bingham, Goldie and
Teugels [BGT]). Let us notice that a ϕ-function M(t) is regularly varying at zero if and
only if M̃(t) := M(t−1)−1 is regularly varying at infinity. Indeed, for every s, u > 0, we
have the equality

f(u) = lim
s→∞

M̃(su)
M̃(s)

= lim
s→∞

M(1/s)
M(1/su)

1/t=su= lim
t→0+

M(tu)
M(t) ,

whenever either one of the limits involved exists. The same remarks also apply to rapidly
varying functions. This fact allows us to translate the statement (at infinity) already
established in [M, BGT] to the present case (at zero).

For example, the following test for an Orlicz function to be regularly varying, in terms
of its (right or left) derivative (which is also given implicitly in the proof of the Corollary
to Theorem 2 in [LT]) is true:

Proposition 2.3. Let M be a non-degenerate Orlicz function such that the limit
p = limt→0+

tM ′(t)
M(t) exists and is finite. Then M is a regularly varying function with

index p. If, on the other hand, limt→0+
tM ′(t)
M(t) = ∞, then M is a rapidly varying func-

tion.
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The geometry of Orlicz sequence spaces has been developed in [L], [LT1] and, more
recently, in [KR]. We follow the approach suggested by Kamińska and Raynaud [KR].

An Orlicz function M can be regarded as an element of the cube [0,∞][0,∞], where
[0,∞] is the one-point compactification of [0,∞). By the Tychonoff theorem, [0,∞][0,∞] is
a compact Hausdorff space under the product topology, which coincides with the topology
of pointwise convergence. Given a non-degenerate Orlicz functionM and λ > 0, we denote
by Mλ the non-degenerate Orlicz function Mλ(t) := M(λt)

M(λ) , for every t ∈ [0,∞). Let us
consider the following subsets of [0,∞][0,∞], for 0 < Λ ≤ ∞: set

C0
M,Λ := convE0

M,Λ (1)

where E0
M,Λ :=

{
Mλ : 0 < λ < Λ

}
, and set

EM,Λ := E0
M,Λ =

{
Mλ : 0 < λ < Λ

}
, EM :=

⋂
Λ>0

EM,Λ (2)

CM,Λ := C0
M,Λ = convEM,Λ, CM =

⋂
Λ>0

CM,Λ. (3)

where the closure is taken with respect to the product topology. Then the closed subsets
CM,Λ and EM,Λ of [0,∞][0,∞] are non-empty compact sets and, consequently, the inter-
sections CM and EM are non-empty and compact as well. Since the evaluation at each
point t ∈ [0,∞) is an open continuous surjection from [0,∞][0,∞] onto [0,∞] (that is,
for every t ∈ [0,∞], the projection on the t-th coordinate f 7→ f(t) is a continuous open
surjection), we have the following tests which we state here for future references.

Lemma 2.4. Let M be a non-degenerate Orlicz function.

(a) If N ∈ EM,λ then, for every fixed t > 0, there exists a sequence {λn} ⊂ (0, λ) such
that limn→∞

M(λnt)
M(λn) = N(t).

(b) If N ∈ CM,λ then, for every fixed t > 0, there exists a sequence of functions
{Mn} ⊂ C0

M,λ such that N(t) = limn→∞Mn(t).

Notice that every function N in CM,∞ is a Young function (i.e., a non-negative,
non-decreasing, convex function from [0,∞) into [0,∞]) fixing at least three points in
[0,∞], that is, N(0) = 0, N(1) = 1 and N(∞) =∞. Hence, N is finite at least on [0, 1].
Since N is convex, it is continuous on (0, 1). Also, the inequality 0 ≤ M(λt)

M(λ) ≤ t implies
that 0 ≤ N(t) ≤ t, and hence N is continuous at 0, whence on [0, 1). Consequently,
N ∈ C[0, s], for every 0 < s < 1. In other words, N belongs to C[0, 1).

As we have mentioned above, the set CM,1 consists entirely of Young functions. It
turns out that, for each function N ∈ CM,1, the associated Orlicz sequence space hN is
isomorphic to some subspace of `M (see [LT1, Theorem 4.a.8]). The converse is also true
and is based on the following result (see [LT1, Proposition 4.a.7]):

Proposition 2.5 (K. Lindberg). Let hM be an Orlicz sequence space, and let (un)∞n=1
be a normalized block basic sequence of the unit vector basis of hM . Then there exists a
subsequence (unk

)∞k=1 of (un)∞n=1, which is equivalent to the unit vector basis of hN , for
some (possibly degenerate) Orlicz function N ∈ CM,1. Moreover, the function N is the
pointwise limit of a sequence {Mk} ⊂ CM,1, where Mk ∈ C0

M,‖unk
‖∞

, for every k ≥ 1.
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LetM be a non-degenerate Orlicz function. Let us define a map fM : I → EM,1, where
I := (0, 1], as follows: for every λ ∈ (0, 1], we set fM (λ)(t) = M(λt)

M(λ) , for every t ∈ R+.
Then the map fM is continuous on (0, 1], with respect to the topology of pointwise
convergence in EM,1, that is, the topology induced on EM,1 by the product topology
τ in [0,∞][0,∞). Since EM,1 is a compact set, we may extend the function fM (λ) to a
continuous function FM defined on the Stone–Čech compactification of I, denoted by βI.
The advantage of choosing this compactification is that it guarantees the extension FM
exists and is onto (i.e. surjective). That is, the range of FM is all of EM,1. For each
ω ∈ βI, we let FM (ω) = Mω. On the other hand, for every λ ∈ (0, 1], each fM (λ) is
a normalized non-degenerate Orlicz function and belongs to the Fréchet space C[0, 1)
(its topology is generated by the sequence of seminorms pk(f) := supt∈[0,k/(k+1)] |f(t)|,
k = 1, 2, . . . ).

Since X = C[0, 1) is locally convex, the space X∗ of continuous linear functionals
on X separates the points in C[0, 1). Moreover, the collection of {fM (λ) : λ ∈ (0, 1]} is
equicontinuous on [0, s), for every 0 < s < 1, and bounded by the function Id(t) = t.
Hence, on one hand, the restriction N |[0,1) belongs to C[0, 1), for every N ∈ EM,1,
and, on the other hand, EM,1|[0,1) is a compact subset. Indeed, if we recall that C[0, 1) is
metrizable, we only need to verify that EM,1|[0,1) is sequentially compact, but this follows
from the fact that if fn : I → R is a sequence of convex functions converging to a finite
limit function f on I, then f is convex and, moreover, the convergence is uniform on
any closed subinterval of I◦, the interior of I (see [RV], Theorem D, p. 16) which implies
that f ∈ C([0, 1)). Consequently, by the Krein–Smulyan Theorem, we have the following
result which is included implicitly in the proof of [LT1, Theorem 4.a.8]:

Proposition 2.6. Let M be a non-degenerate Orlicz function. Then N ∈ CM,1 =
convEM,1 if and only if there exists a Borel probability measure µ over βI such that
N(t) =

∫
βIMω(t) dµ(ω), for every t ∈ [0, 1).

3. Main results. Let X be a Banach space with a subsymmetric basis (xn). We say
that

SCB The basis (xn) has the Strong Cantor–Bernstein property (SCB property, for short)
whenever, for every Banach space Y with a subsymmetric basis (yn), X and Y have
the same linear dimension if and only if (xn) is equivalent to (yn).

USB The space X is said to have unique subsymmetric basis (USB, for short) if, for every
Banach space Y having a subsymmetric basic sequence (yn), the isomorphism of
the spaces X and Y implies that (xn) is equivalent to (yn).

Notice that the family of all subsymmetric basic sequences in X has the Cantor–
Bernstein property if and only if every subsymmetric basic sequence in X has the strong
Cantor–Bernstein property. Notice also that the SCB property implies the USB property.
The problem of uniqueness of symmetric basis have received some attention in the past
(see, e.g. [ACL], [CL1], [LT1], [Tz]).

Our main results report on certain families of Orlicz sequence spaces having the
Cantor–Bernstein property.
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The following theorem strengthens Theorem 2 from [LT].

Theorem 3.1. LetM be an Orlicz function fulfilling the ∆2-condition at zero and having
the additional property that CM does not contain any function equivalent to M . Then the
corresponding unit vector basis of the Orlicz sequence space `M has the Strong Cantor–
Bernstein property and, consequently, it is (up to equivalence) the unique symmetric basis
for `M .

Remark 3.2. If, in Theorem 3.1, we remove the assumption on the ∆2-condition, then
the statement remains true if we replace `M by hM everywhere.

The examples of Orlicz functions satisfying the hypotheses of Theorem 3.1 are pro-
vided by regularly (or rapidly) varying functions which are not equivalent to any mul-
tiplicative function. These are the Orlicz functions for which the set CM reduces to a
singleton (see Lemma 4.3 below).

As a consequence of Theorem 3.1, we obtain the following:

Theorem 3.3. Let M and N be two regularly varying Orlicz functions. Then the follow-
ing four conditions are equivalent:

(i) dim`(`M ) = dim`(`N ).
(ii) `N and `N are isomorphic.
(iii) The unit vector bases of `M and `N are equivalent.
(iv) there are constants A,B, a, b, t0 > 0 such that

AN(at) ≤M(t) ≤ BN(bt), for every 0 < t ≤ t0.

Remark 3.4. If, in Theorem 3.3, we replace the assumption onM and N to be regularly
varying by the assumption to be rapidly varying, then the statement remains true if we
replace `M and `N , respectively, by hM and hN everywhere.

Theorem 3.3 shows us that, in a class of Orlicz sequence spaces, the linear dimension
can be expressed in the terms of equivalence of functions.

Once we have established these results, by using a well-known representation theorem
for Orlicz functions in CM,1, it will be relatively easy to prove that every function in
CM,1 is regularly varying whenever M itself is. Consequently, we will be able to prove
the following:

Theorem 3.5. Let M be an Orlicz function which is equivalent to a regularly (resp.,
rapidly) varying function. Then, for every N ∈ CM,1, the unit vector basis of `N
(resp., hM ) has the Strong Cantor–Bernstein property.

In particular, for every N ∈ CM,1, the space `N (resp., hM ) has (up to equivalence)
a unique symmetric basis.

4. The proofs. The following lemma allows us to reduce the problem of the comparison
of linear dimensions of two Banach spaces having subsymmetric bases to the study of the
equivalence relation between one of the bases and its ‘large’ subsymmetric block basic
sequences.
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Lemma 4.1. Let X and Y be two Banach spaces having subsymmetric bases (xn)
and (yn), respectively. Then the following conditions are equivalent:

(a) The space X and Y have the same linear dimension.
(b) The basis (xn) is equivalent to a normalized block vector basis of (yn) and, vice

versa, the basis (yn) is equivalent to a normalized block vector basis of (xn).

We only sketch the proof. Assume (a). First recall that every subsymmetric basis is
semi-normalized. According to [BP1, Theorem 3] and [BP2], either (xn) is equivalent to
the unit vector basis of `1, or some subsequence of (xn), and hence (xn) itself, is equivalent
to a normalized unit vector basis of (yn). Due to the symmetry of the assumptions,
a similar assertion holds for (yn) and (xn) interchanged. Therefore, if either (xn) or (yn)
is equivalent to the unit vector basis of `1, then they are equivalent to each other because
the unit vector basis of `1 is perfectly homogeneous. The remaining case is the statement
of (b).

In order to identify trivial cases, we will need the following particular case of Zippin’s
theorem which is a direct consequence of [GSW, Theorem 3.1].

Lemma 4.2. Let M be a non-degenerate Orlicz function with M(1) = 1. The following
three conditions are equivalent:

(a) The unit vector basis of hM is perfectly homogeneous.
(b) The function M is equivalent to a multiplicative Orlicz function.
(c) There exists a constant D ≥ 1 such that for every s, t ∈ [0, 1/D]

M
(st
D

)
≤M(s)M(t) ≤M(Dst).

In the case M fulfils the ∆2-condition, conditions (a)–(c) are equivalent to:

(c′) There exists a constant C ≥ 1 such that, for every s, t ∈ [0, 1],

M(st)
C

≤M(s)M(t) ≤ CM(st).

We shall also apply the following fact which allows us to compute the set CM whenM
is either regularly varying or rapidly varying (see the hypotheses with those of Lemma 4.4
below).

Lemma 4.3. Let M be a non-degenerate Orlicz function such that the limit f(t) =
lims→0+

M(st)
M(s) exists, for every t ≥ 0. Then

CM :=
⋂

0<λ≤1
CM,λ = {Mp(t)},

where p = lims→0+
logM(s)

log s .

For the proof of Lemma 4.3 we will need the following useful fact. Its proof is straight-
forward, and we state it here for future reference.
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Lemma 4.4. Let M be an Orlicz function such that the limit lims→0+
M(st)
M(s) = f(t) exists.

Then we have the following mutually exclusive possibilities:

(a) either f(s) > 0, for some 0 < s < 1, in which caseM is a regularly varying function
and f(t) = tp, t ≥ 0, where p = lims→0+

sM ′(s)
M(s) ,

(b) or f(s) = 0, for some 0 < s < 1, in which case M is rapidly varying, that is,
f(t) = M∞(t), t ≥ 0, where M∞(t) denotes the pointwise limit of Mp(t) = tp as
p→∞.

Proof of Lemma 4.3. First recall that CM,λ is a compact non-empty subset of the cube
[0,∞][0,∞) (endowed with the product topology), consisting entirely of Young functions.
Consequently, CM =

⋂
0<λ≤1 CM,λ is a compact non-empty subset of [0,∞][0,∞) as well

and, moreover, it contains a Young function N ∈ CM . We claim that N equals f , that
is, that CM = {f}. Let us fix t ≥ 0 and let us prove that N(t) = f(t).

Indeed, on one hand, since the limit lims−→0+
M(ts)
M(s) = f(t) exists for every ε > 0,

there is s0 > 0 such that ∣∣∣f(t)− M(st)
M(s)

∣∣∣ < ε (4)

for every 0 < s < s0.
On the other hand (since N ∈ CM ⊂ CM,s0) according to Lemma 2.4, for every fixed

t > 0, there is a sequence of functions {Mn} ⊂ C0
M,s0

such that N(t) = limn→∞Mn(t).
From the definition of C0

M,s0
(see (1)) it follows that, for each n ≥ 1, there exist

α1, . . . , αm ≥ 0, with α1 + . . .+ αm = 1, and s1, . . . , sm ∈ (0, s0) such that

Mn(t) =
m∑
k=1

αk
M(skt)
M(sk) . (5)

Hence we obtain

|f(t)−Mn(t)| =
∣∣∣f(t)−

m∑
k=1

αk
M(skt)
M(sk)

∣∣∣ =
∣∣∣ m∑
k=1

αk

[
f(t)− M(skt)

M(sk)

]∣∣∣
≤

m∑
k=1

αk

∣∣∣f(t)− M(skt)
M(sk)

∣∣∣ < m∑
k=1

αkε = ε;

by taking limits as n→∞, we get that |f(t)−N(t)| < ε, for every t ≥ 0. Since ε > 0 is
arbitrary, we deduce that N(t) = f(t) as claimed.

We have thus proved that CM = {f(t)}. Finally, according to Lemma 4.4, either

(a) f(s) > 0, for some 0 < s < 1; in this case M is a regularly varying function and
f(t) = tp, for every t ≥ 0, where p = lims→0+

sM ′(s)
M(s) , or

(b) f(s) = 0, for some 0 < s < 1, and then M is rapidly varying, that is, f(t) = M∞(t)
for every t ≥ 0, where M∞(t) denotes the pointwise limit of Mp(t) = tp as p→∞.

This concludes the proof of Lemma 4.3.
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4.1. Proof of Theorem 1.4. The proof of Theorem 1.4 is based partially on the lemma
below; its proof follows the proof of the theorem.

Lemma 4.5. LetM be a non-degenerate sub- [resp., super-] multiplicative Orlicz function.
Then M dominates [resp., is dominated by] every function in CM,1.

Proof of Theorem 1.4. LetM and N be both sub-multiplicative Orlicz functions. Suppose
the spaces hM and hN have the same linear dimension. Let (eMn ) and (eNn ) denote the
unit vector bases of hM and hN , respectively. According to Lemma 4.1, (eMn ) is equivalent
to a normalized block basis of (eNn ) and, vice versa, (eNn ) is equivalent to a normalized
block basis of (eMn ). If, for example, M is degenerate then (eMn ) is equivalent to the unit
vector basis of c0. But the latter basis is perfectly homogeneous, so is (eMn ), that is, the
basis (eMn ) is equivalent to each of its normalized block bases and in particular to (eNn ).
Summing up, we conclude that, if either M or N is degenerate, the bases (eMn ) and (eNn )
are equivalent.

Assume now that the both functions,M and N , are non-degenerate. Then Lemma 4.5
implies thatM dominates every function in CM,1. On the other hand, according to Propo-
sition 2.5 and the fact that (eNn ) is symmetric, there exists N1 ∈ CM,1 such that (eNn ) is
equivalent to the unit vector basis of hN1 and now using Proposition 2.2 we conclude
that N is equivalent to N1. This proves that M dominates N . Since the assumptions are
symmetric on M and N , we also see that N dominates M and hence these functions are
equivalent. By using Proposition 2.2 again, we deduce that (eMn ) and (eNn ) are equivalent
also in this case.

Proof of Lemma 4.5. Suppose, for example, that M is sub-multiplicative, that is,
M(st) ≤ M(s)M(t), for every s, t ∈ [0, 1). Let N ∈ CM,1. According to Proposition 2.6,
there exists a Borel probability measure µ over βI such that

N(t) =
∫
βI
Mω(t) dµ(ω),

for every t ∈ [0, 1). On the other hand, since Mω(t) is a pointwise limit of convex combi-
nations of Orlicz functions of the form Ms(t) := M(st)

M(s) , we have Mω(t) ≤M(t), for every
t ∈ [0, 1). Since this inequality holds for every ω ∈ βI, we also have

N(t) =
∫
βI
Mω(t) dµ(ω) ≤

∫
βI
M(t) dµ(ω) = M(t),

for every [0, 1). ThusM dominates N . This completes the proof for the sub-multiplicative
case. The proof of the super-multiplicative case is similar.

4.2. Proof of Theorem 3.1. In the proof of Theorem 3.1, we shall use two lemmas
below; their proofs follow the proof of the theorem.

The first lemma deals with a natural stability property of the relating the construc-
tions CM and CM,1 (see (3)).

Lemma 4.6. Let M be a non-degenerate Orlicz function.

(a) For every N ∈ CM , we have CN,1 ⊂ CM .
(b) For every N ∈ CM,1, we have CN ⊂ CM .
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Lemma 4.7. Let M be a non-degenerate Orlicz function. Then every N ∈ CM,1 \ CM
dominates M .

In particular, if M is equivalent at zero to a regularly varying function with index p
(see Proposition 2.3), then every N ∈ CM,1 which is not equivalent to tp dominates M .
Proof of Theorem 3.1. Let M be an Orlicz function for which M is not equivalent to any
function in CM . We need to prove that for every Banach space X having a symmetric
basis (xn), the following conditions are equivalent:
(i) dim`(hM ) = dim`(X).
(ii) The spaces hM and X are isomorphic.
(iii) The unit vector basis of hM is equivalent to (xn).
This will suffice because in the case M fulfils the ∆2-condition we have hM = `M (by
virtue of the equivalence between (i) and (ii) of Proposition 2.1).

Also, it is enough to prove that (i) ⇒ (iii), because the implications (iii) ⇒ (ii) ⇒ (i)
are obvious.

Let dim`(hM ) = dim`(X). According to Lemma 4.1, the basis (xn) is equivalent to a
normalized block basis of the unit vector basis of hM . By Proposition 2.5, there exists an
Orlicz function N ∈ CM,1 such that the basis (xn) is equivalent to the unit vector basis of
the space hN , and hence X = hN . We thus have dim`(hM ) = dim`(hN ) with N ∈ CM,1.
By Proposition 2.5 again and the equivalence between (i) and (ii) in Proposition 2.2,
we have M ∈ CN,1 up to equivalence of functions. We claim that N /∈ CM . Otherwise,
by Lemma 4.6, part (a), we would have M ∈ CN,1 ⊂ CM , up to equivalence, but this
contradicts our assumption that M is not equivalent to any function in CM . Therefore,
N is not equivalent to any function in CM whence, by Lemma 4.7, N dominates M .

The case M ∈ CN is not possible either because CN ⊂ CM . Hence, by using
Lemma 4.7 again, M dominates N .

Summing up, M and N are equivalent, as claimed.
Proof of Lemma 4.6. We notice first that CN,1 is the smallest closed convex set contain-
ing N and invariant under the continuous semi-flow (F (t), λ) 7→ F (λt)

F (λ) . Since CM has
the same properties (closed, convex, N ∈ CM and is invariant under the semi-flow), it
contains the smallest one CN,1. This proves part (a).

For the proof of part (b), notice first that, according to Proposition 2.6, there exists
a regular Borel probability measure µ defined on βI such that N(t) =

∫
βIMω(t) dµ(ω),

for every t ∈ [0, 1). Then part (b) follows from the fact that CN,λ/2 ⊂ CM,λ, for every
0 < λ ≤ 1. Indeed, since N(t) =

∫
βIMω(t) dµ(ω), for every t ∈ [0, 1), we have N(λt) =∫

βIMω(λt) dµ(ω) and N(λ) =
∫
βIMω(λ) dµ(ω), for every t, λ ∈ [0, 1).

Therefore, since the relation dν(ω) := 1
N(λ)Mω(λ)dµ(ω) defines a probability measure

on βI such that
N(λt)
N(λ) = 1

N(λ)

∫
βI
Mω(λt) dµ(ω)

= 1
N(λ)

∫
βI

Mω(λt)
Mω(λ) Mω(λ) dµ(ω) =

∫
βI

Mω(λt)
Mω(λ) dν(ω),

and Mω(λt)
Mω(λ) ∈ EM,λ, by using again Proposition 2.6, we conclude that N(λt)

N(λ) ∈ CM,λ.
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Proof of Lemma 4.7. By virtue of Proposition 2.6, N(t) =
∫
βI0

Mω(t) dµ(ω), for every
t ∈ [0, 1), for some probability Borel measure on βI0, the Stone–Čech compactification of
the interval (0, 1]. Then, N ∈ CM if and only if µ is concentrated on βI0 \ I0. Otherwise,
there exists an interval [λ1, λ2] ⊂ I0, such that µ([λ1, λ2]) > 0. On the other hand, if
M(λ0) = maxλ∈[λ1,λ2]{M(λ)}, then

N(t) =
∫
βI0

Mω(t) dµ(ω) ≥
∫ λ2

λ1

M(λt)
M(λ) dµ(λ) ≥ µ([λ1, λ2])M(λ1t)

M(λ0) ,

and hence N(t) ≥ AM(at), for every 0 < t ≤ t0, where A = µ([λ1,λ2])
M(λ0) and a = λ1.

The last assertion is immediate from the observation that for the case where M is
equivalent to a regularly varying function with index of regularity p (see Proposition 2.3)
then, according to Lemma 4.3, every function of CM is equivalent to tp.

4.3. Proof of Theorem 3.3. The first part of the proof of Theorem 3.3 is based on
the lemma below; its proof follows the proof of the theorem.

Lemma 4.8. Every regularly varying Orlicz function at zero fulfils the ∆2-condition at
zero.

Proof of Theorem 3.3. SupposeM is a non-degenerate Orlicz function such that the limit
f(t) = lims→0+

M(st)
M(s) exists. If M is a regularly varying Orlicz function at zero then, ac-

cording to Lemma 4.8, it fulfils the ∆2-condition at zero and, by virtue of Proposition 2.1,
`M = hM . Otherwise,M is rapidly increasing and does not fulfil the ∆2-condition at zero.
Now we consider two cases:

Case 1. M is not equivalent to a multiplicative Orlicz function.
By Lemma 4.3, every function N in CM is equivalent to tp, so N is multiplicative.

Since, by assumption, M is not equivalent to any multiplicative Orlicz function, M is
not equivalent to any function in CM . Consequently, M fulfils the conditions of Theo-
rem 3.1, and hence the equivalences between (i)–(iii) follow. The remaining equivalences
are obtained from Proposition 2.2.

Case 2. M is equivalent to a multiplicative Orlicz function.
In this case, according to Lemma 4.2 the unit vector basis (eMn ) of `M is perfectly

homogeneous. Hence, by Lemma 4.1, for every Banach space with a symmetric basis (xn)
having the same linear dimension as `M , the basis (xn) is equivalent to a normalized block
basis of (eMn ) and hence to (eMn ) itself, because the last one is perfectly homogeneous.
This proves again that conditions (i)–(iii) are equivalent.

Proof of Lemma 4.8. According to part (a) of Lemma 4.4, for every regularly varying
Orlicz functionM the limit p = lims→0+

sM ′(s)
M(s) exists and is finite. On the other hand, for

every non-degenerate Orlicz function M , sup0<s≤1
sM ′

+(s)
M(s) is finite if and only if M fulfils

the ∆2-condition at zero (see e.g. [LT1, p. 140]). Consequently,M fulfils the ∆2-condition
at zero.
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4.4. Proof of Theorem 3.5. We first remark that, in the proof of Theorem 3.3, we
have actually proved the following stronger statement:
(*) Let M be an Orlicz function such that the limit f(t) = lims→0+

M(st)
M(s) exists. Then,

the unit vector basis of hM has the SCB property. Consequently, the space hN has
the USB property.

According to Lemma 4.3, we have CM = {Mp(t)} for p = lims→0+
logM(s)

log s . Now,
using Lemma 4.7, we obtain CN ⊂ CM = {Mp(t)}, for every Orlicz function N ∈ CM.1.
This shows that every function in CM,1 fulfils the assumption that the limit Mp(t) =
lims→0+

N(st)
N(s) exists. Consequently, by property (*), the unit vector basis of hM has the

SCB property.
If M is regularly varying at zero so is N , because CN = {Mp(t)} (recall that CN is

non-empty in general), and hence lims→0+
M(st)
M(s) = Mp(t). Now, according to Lemma 4.8,

N fulfils the ∆2-condition at zero. Hence, by Proposition 2.1, hN = `N . By (*) again, the
unit vector basis of `N has the SCB property.

If M is not regularly varying at zero, it is rapidly increasing (that is, p must be ∞),
and hence every N ∈ CM,1 is rapidly increasing, too. By using (*), we deduce that the
unit vector basis of hN the SCB property.

This completes the proof of Theorem 3.5.

5. Applications to concrete examples. In this section we give a few examples of
classes of Orlicz functions fulfilling the assumptions of Theorem 3.1.

In the first example, taken from [GSW], we consider Orlicz functions Ma,b,p(x) equal
to xp |log(bx)|a near zero. The cases b = 1 = a and a > 0 were studied by Lindberg
[L, Example 3.4] and Lindenstrauss and Tzafriri [LT1, Example 4.c.1].

Let a, b, p be fixed real numbers, with a 6= 0, b > 0, and p > 1. Let Ma,b,p be the
function defined on the interval [0, 1/b) by the formulas Ma,b,p(0) = 0, and

Ma,b,p(x) = xp |log(bx)|a for x 6= 0.
We have

lim
x→0+

Ma,b,p(x) = lim
x→0+

xp |log(bx)|a x=1/y= lim
y→∞

( log(y/b)
yp/a

)a
= 0.

That is, Ma,b,p(0+) = 0. On the other hand, for x > 0, the first derivatives of Ma,b,p is
computed by using that |log(bx)| = − log(bx), for x < 1/b:

M ′a,b,p(x) = (xp |log(bx)|a)′

= pxp−1 |log(bx)|a − xpa |log(bx)|a−1 1
x

= xp−1 |log(bx)|a−1 (p |log(bx)| − a) = Ma−1,b,p−1(x)(p |log(bx)| − a).
By using this formula, the second derivative is computed as follows:
M ′′a,b,p(x) =

(
Ma−1,b,p−1(x)(p |log(bx)| − a)

)′
=
(
Ma−1,b,p−1(x)

)′(p |log(bx)| − a) +Ma−1,b,p−1(x)(p |log(bx)| − a)′

= Ma−2,b,p−2(x)((p− 1) |log(bx)| − a+ 1)(p |log(bx)| − a)− p

x
Ma−1,b,p−1(x).
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Now, by noticing that p 1
xMa−1,b,p−1(x) = pxp−2 |log(bx)|a−1, we obtain

M ′′a,b,p(x) = A(a, b, p, x)
[(
p+ a

log(bx)

)(
p− 1 + a− 1

log(bx)

)
+ p

log(bx)

]
,

where A(a, b, p, x) = (log(bx))2Ma−2,b,p−2(x). Thus, the both derivatives are positive on
an interval [0, t0] with t0 ∈ (0, 1/b), and hence Ma,b,p extends—linearly on [t0,∞)—to an
Orlicz function, denoted further also by Ma,b,p. Now, for x ∈ (0, t0), we have

xM ′a,b,p(x)
Ma,b,p(x) = p− a

|log(bx)| ,

whence limx→0
xM ′

a,b,p(x)
Ma,b,p(x) = p. According to Proposition 2.3, the function Ma,b,p is reg-

ularly varying near zero. Moreover, Ma,b,p is not equivalent at 0 to a power function.
Indeed,

lim
x→0+

Ma,b,p(x)
xα

= lim
x→0+

xp |log(bx)|a

xα
= lim
x→0+

xp−α |log(bx)|a =
{

0 if α ≤ p,
∞ if α > p.

By virtue of Theorem 3.5, each of the functions mentioned above generates an Orlicz
sequence space for which every symmetric basic sequence enjoys the Strong Cantor–
Bernstein property and, consequently, spans an Orlicz sequence space having a unique
symmetric basis.

On the other hand, by applying Theorem 3.3 we obtain the following:

Corollary 5.1. Let a1, a2, b1, b2, p1 and p2 be real numbers, such that b1, b2 > 0, and
p1, p2 > 1. Let Ma1,b1,p1 and Ma2,b2,p2 be defined as above. Set M1 = Ma1,b1,p1 and
M2 = Ma2,b2,p2 . Then the following conditions are equivalent:

(i) dim`(`M1) = dim`(`M2).
(ii) The Orlicz sequence spaces `M1 and `M2 are isomorphic.
(iii) The unit vector bases of `M1 and `M2 are equivalent.
(iv) There are constants A,B, t0 > 0, such that AM2(t) ≤ M1(t) ≤ BM2(t), for every

0 < t ≤ t0.
(v) p1 = p2 and a1 = a2.

An example of another rapidly varying Orlicz function is M(t) := e−1
e1/t2−1 , for t > 0,

and M(0) := 0. Indeed, the function N(t) = et2
−1

e−1 , t > 0, is convex, and M(t) =
1/N(1/t), for every t > 0. Since the function u 7→ 1/u is convex and decreasing, we
obtain that N(1/t) is convex and decreasing, and hence M(t) = 1/N(1/t) is convex and
increasing, whence Orlicz. Finally, for every t > 0,

lim
s→0+

M(st)
M(s)

1/u=st= lim
u→∞

N(ut)
N(u) = lim

u→∞

e(ut)2 − 1
eu2 − 1

= lim
u→∞

2ut2e(ut)2

2ueu2 = lim
u→∞

t2e(t2−1)u2
= M∞(t),

that is, the limit equals 0 for every t ∈ (0, 1), 1 for t = 1, and ∞ for every t > 1.
Now, according to Theorem 3.5, even though M does not fulfil the ∆2-condition

at zero, and consequently, `M is not separable, still the Orlicz sequence space hM has
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the property that every symmetric basic sequence enjoys the Strong Cantor–Bernstein
property and, consequently, spans an Orlicz sequence space having a unique symmetric
basis. We thus have obtained:
Corollary 5.2. Let M(t) := e−1

e1/t2−1 . Then the family of all symmetric basic sequences
in the Orlicz sequence space hM has the Cantor–Bernstein property.

The function L constructed by K. Lindberg [L, Example 3.11], defined for each
p > 1 +

√
2 by the formula

L(t) = tp+sin(log|log t|),

is an Orlicz function on some neighborhood of t = 0, which can be extended linearly
to the whole R+. In 1971, Lindenstrauss and Tzafriri [LT] proved that L is an Orlicz
function fulfilling the ∆2-condition which is not equivalent to any function in CL (that
is, L fulfils the assumptions of Theorem 3.1). They then concluded that the Orlicz space
`L has a unique symmetric basis (see also [LT1, Example 4.c.2]). From Theorem 3.1 we
obtain a much stronger result:
Corollary 5.3. Let L be the function defined above. Then the unit vector basis of the
Orlicz sequence space `L has the strong Cantor–Bernstein property.

The stronger property enjoyed by the Orlicz space `M in Theorem 3.5 may be infor-
mally called the hereditary strong Cantor–Bernstein property, or briefly HSCB property.
It is also enjoyed by `L, where L is the Lindberg function, although Theorem 3.1 is not
enough to establish this fact. More precisely, we have the following:
Corollary 5.4. Let L be the function defined above. Then the family of all symmetric
basic sequences in the Orlicz sequence space `L has the Cantor–Bernstein property.

The proof of the corollary is based on the following property:
Let L be the Orlicz function defined above, and let EL denote the set defined in (2).

Then
(L) EL is the set {tq : p−

√
2 ≤ q ≤ p+

√
2}.

For the proof of property (L), see [LT1, Example 4.c.2].
We claim that every function in N ∈ CL is super-multiplicative. Indeed, set α :=

p−
√

2, β := p+
√

2 and observe that, by virtue of Proposition 2.6 and property (L), the
function N can be represented as N(t) =

∫ β
α
tq dµ(q), and is such that the function

u 7→ logN(e−u)
u

= log
(∫ β

α

(e−s)u dµ(s)
)1/u

is increasing, because
(∫ β
α

(e−s)u dµ(s)
)1/u are means with respect to the probability

measure µ (see, e.g. [MPF, Chap. VI, Sec. 2, Corollary 1]). Therefore, by [HP, Theorem
7.2.4], the function u 7→ logN(e−u) is super-additive, and hence t 7→ N(t) is super-
multiplicative.

Suppose now that N1, N2 ∈ CL,1 are such that dim`(hN1) = dim`(hN2). Then, ac-
cording to Lemma 4.1, the unit vector bases of hN1 and hN2 are each one equivalent to
a normalized block basis with respect the other. On the other hand, now by virtue of
Proposition 2.5, this implies that N1 ∈ CN2,1 and vice versa: N2 ∈ CN1,1. If N2 ∈ CN1
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then, by Lemma 4.6, N1, N2 ∈ CN1 ⊂ CL, and hence both the functions are super-
multiplicative. Now from Theorem 1.4 and Theorem 2.2 it follows that N1 is equivalent
to N2. A similar conclusion we obtain in the case N1 ∈ CN2 . Otherwise, N1 ∈ CN2,1 \CN2

and N2 ∈ CN1,1 \CN1 , which means, according to Lemma 4.7, that N1 dominates N2 and
N2 dominates N1, that is, N1 and N2 are equivalent.
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