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Abstract. We prove inclusion relations between generalizing Waterman’s and generalized
Wiener’s classes for functions of two variable.

The notion of function of bounded variation was introduced by C. Jordan [16]. Gener-
alizing this notion N. Wiener [30] has considered the class BVp of functions. L. Young [31]
introduced the notion of functions of Φ-variation. In [26] D. Waterman has introduced
the following concept of generalized bounded variation.
Definition 1. Let Λ = {λn : n ≥ 1} be an increasing sequence of positive numbers such
that

∑∞
n=1(1/λn) =∞. A function f is said to be of Λ-bounded variation (f ∈ ΛBV ), if

for every choice of nonoverlapping intervals {In : n ≥ 1}, we have
∞∑
n=1

|f(In)|
λn

<∞,

where In = [an, bn] ⊂ [0, 1] and f(In) = f(bn)− f(an). If f ∈ ΛBV , then Λ-variation of
f is defined to be the supremum of such sums, denoted by VΛ(f).
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Properties of functions of the class ΛBV as well as the convergence and summability
properties of their Fourier series have been investigated in [22]–[29].

For everywhere bounded 1-periodic functions, Z. Chanturia [6] has introduced the
concept of the modulus of variation.

H. Kita and K. Yoneda [18] studied generalized Wiener classes BV (p(n) ↑ p). They
introduced

Definition 2. Let f be a finite 1-periodic function defined on the interval (−∞,+∞).
∆ = {ti : i = 0,±1,±2, . . . } is said to be a partition with period 1 if

. . . < t−1 < t0 < t1 < t2 < . . . < tm < tm+1 < . . . , (1)

and tk+m = tk + 1 when k = 0,±1,±2, . . . , where m is a natural number. Let p(n) be an
increasing sequence such that 1 ≤ p(n) ↑ p, n → ∞, where 1 ≤ p ≤ +∞. We say that a
function f belongs to the class BV (p(n) ↑ p) if

V (f, p(n) ↑ p) ≡ sup
n≥1

sup
∆

{( m∑
k=1
|f(Ik)|p(n)

)1/p(n)
: inf
k
|Ik| ≥

1
2n

}
< +∞.

We note that if p(n) = p for each natural number, where 1 ≤ p < +∞, then the class
BV (p(n) ↑ p) coincides with the Wiener class Vp.

Properties of functions of the class BV (p(n) ↑ p) as well as the uniform convergence
and divergence at point of their Fourier series with respect to trigonometric and Walsh
system have been investigated in [9], [12], [17].

Generalizing the class BV (p(n) ↑ p) T. Akhobadze (see [1, 2]) has considered the
classes of functions BV (p(n) ↑ p, ϕ) and BΛ(p(n) ↑ p, ϕ).

The relation between different classes of generalized bounded variation was taken into
account in the works of M. Avdispahić [4], A. Kováčik [19], A. Belov [5], Z. Chanturia [7],
T. Akhobadze [3], M. Medvedeva [21] and U. Goginava [11, 13].

Let f be a real and measurable function of two variables of period 1 with respect to
each variable. Given intervals J1 = (a, b), J2 = (c, d) and points x, y from I := [0, 1], we
define

f(J1, y) := f(b, y)− f(a, y), f(x, J2) := f(x, d)− f(x, c)

and for the rectangle A = (a, b)× (c, d), we set

f(A) = f(J1, J2) := f(a, c)− f(a, d)− f(b, c) + f(b, d).

Let E = {Ii} be a collection of nonoverlapping intervals from I ordered in an arbitrary
way and let Ω be the set of all such collections E.

For the sequence of positive numbers Λ = {λn}∞n=1 we define

ΛV1(f) = sup
y∈I

sup
{Ii}∈Ω

∑
i

|f(Ii, y)|
λi

,

ΛV2(f) = sup
x∈I

sup
{Jj}∈Ω

∑
j

|f(x, Jj)|
λj

,

ΛV1,2(f) = sup
{Ii},{Jj}∈Ω

∑
i

∑
j

|f(Ii, Jj)|
λiλj

.
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Definition 3. We say that the function f has bounded Λ-variation on I2 := [0, 1]× [0, 1]
and write f ∈ ΛBV , if

ΛV (f) := ΛV1(f) + ΛV2(f) + ΛV1,2(f) <∞.
We say that the function f has bounded partial Λ-variation and write f ∈ PΛBV if

PΛV (f) := ΛV1(f) + ΛV2(f) <∞.
If λn ≡ 1 (or if 0 < c < λn < C < ∞, n = 1, 2, . . . ) the classes ΛBV and PΛBV

coincide with the Hardy class BV and PBV respectively. Hence it is reasonable to assume
that λn →∞ and since the intervals in E = {Ii} are ordered arbitrarily, we will suppose,
without loss of generality, that the sequence {λn} is increasing. Thus, in what follows we
suppose that

1 < λ1 ≤ λ2 ≤ . . . , lim
n→∞

λn =∞,
∞∑
n=1

1
λn

=∞. (2)

In the case when λn = n, n = 1, 2, . . . , we say Harmonic Variation instead of
Λ-variation and write H instead of Λ (HBV , PHBV , HV (f), etc.).

The notion of Λ-variation was introduced by Waterman [26] in one-dimensional case
and Sahakian [24] in two-dimensional case. The notion of bounded partial variation (class
PBV ) was introduced by Goginava [10]. These classes of functions of generalized bounded
variation play an important role in the theory of Fourier series.

We have proved in [14] the following theorem.
Theorem 4 (Goginava, Sahakian). Let Λ = {λn = nγn} and γn ≥ γn+1 > 0, where
n = 1, 2, . . . .

1) If
∞∑
n=1

γn
n
<∞, (3)

then PΛBV ⊂ HBV .
2) If for some δ > 0

γn = O(γn[1+δ]) as n→∞ (4)
and

∞∑
n=1

γn
n

=∞, (5)

then PΛBV 6⊂ HBV .
Dyachenko and Waterman [8] introduced another class of functions of generalized

bounded variation. Denoting by Γ the the set of finite collections of nonoverlapping
rectangles Ak := [αk, βk]× [γk, δk] ⊂ T 2 we define

Λ∗V (f) := sup
{Ak}∈Γ

∑
k

|f(Ak)|
λk

.

Definition 5 (Dyachenko, Waterman). Let f be a real function on I2. We say that
f ∈ Λ∗BV if

ΛV (f) := ΛV1(f) + ΛV2(f) + Λ∗V (f) <∞.
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In [15] Goginava and Sahakian introduced a new class of functions of generalized
bounded variation and investigated the convergence of Fourier series of function of this
class.

For the sequence Λ = {λn}∞n=1 we put

Λ#V1(f) = sup
{yi}⊂T

sup
{Ii}∈Ω

∑
i

|f(Ii, yi)|
λi

,

Λ#V2(f) = sup
{xj}⊂T

sup
{Jj}∈Ω

∑
j

|f(xj , Jj |
λj

.

Definition 6 (Goginava, Sahakian). We say that the function f belongs to the class
Λ#BV , if

Λ#V (f) := Λ#V1(f) + Λ#V2(f) <∞.

The following theorem was proved in [15].

Theorem 7.

a) If

lim
n→∞

λn log(n+ 1)
n

<∞, (6)

then
Λ#BV ⊂ HBV.

b) If λn
n ↓ 0 and

lim
n→∞

λn log(n+ 1)
n

= +∞,

then
Λ#BV 6⊂ HBV.

In this paper we introduce new classes of bounded generalized variation.
Let f be a function defined on R2 and 1-periodic with respect to each variable.

∆1 and ∆2 are said to be partitions with period 1, if

∆i : . . . < t
(i)
−1 < t

(i)
0 < t

(i)
1 < . . . < t(i)mi < t

(i)
mi+1 < . . . , i = 1, 2,

satisfies t(i)k+mi = t
(i)
k + 1 for k = 0,±1,±2, . . . , where mi, i = 1, 2, are positive integers.

Definition 8. Let p(n) be an increasing sequence such that 1 ≤ p(n) ↑ p, n→∞, where
1 ≤ p ≤ +∞. We say that a function f belongs to the class BV #(p(n) ↑ p) if

V #
1 (f, p(n) ↑ p) := sup

{yi}⊂I
sup
n≥1

sup
∆1

{(m1∑
i=1
|f(Ii, yi)|p(n)

)1/p(n)
: inf
i
|Ii| ≥

1
2n

}
< +∞,

and

V #
2 (f, p(n) ↑ p) := sup

{xj}⊂I
sup
n≥1

sup
∆2

{(m2∑
j=1
|f(xj , Jj)|p(n)

)1/p(n)
: inf
j
|Jj | ≥

1
2n

}
< +∞,

where
Ii := (t(1)

i−1, t
(1)
i ), Jj := (t(2)

j−1, t
(2)
j ).
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C(I2) and B(I2) are the spaces of continuous and bounded functions given on I2,
respectively.

In this paper we prove inclusion relations between Λ#BV and BV #(p(n) ↑∞) classes.

Theorem 9. Λ#BV ⊂ BV #(p(n) ↑∞) if and only if

lim
n→∞

sup
1≤m≤2n

m1/p(n)∑m
j=1(1/λj)

<∞. (7)

Theorem 10. Suppose that
∑∞
n=1(1/λn) = +∞. Then there exists a function

f ∈ BV #(p(n) ↑∞) ∩ C(I2) such that f /∈ ΛBV #.

Corollary 11. BV #(p(n) ↑∞) ⊂ Λ#BV if and only if Λ#BV = B(I2).

Proof of Theorem 9. Let us take an arbitrary f ∈ Λ#BV . Following the method of
Kuprikov [20], we can prove that(m1∑

k=1
|f(Ik, yk)|p(n)

)1/p(n)
≤ Λ#V1(f) sup

1≤m≤2n

m1/p(n)∑m
i=1(1/λi)

<∞

and (m2∑
k=1
|f(xk, Jk)|p(n)

)1/p(n)
≤ Λ#V2(f) sup

1≤m≤2n

m1/p(n)∑m
i=1(1/λi)

<∞.

Therefore, f ∈ Λ#BV (p(n) ↑∞).
Next, we suppose that the condition (7) does not hold. As an example we construct

a function from Λ#BV which is not in BV #(p(n) ↑∞).
Since

lim
n→∞

sup
1≤m≤2n

m1/p(n)∑m
j=1(1/λj)

= +∞,

there exists a sequence of integers {n′k : k ≥ 1} such that

lim
k→∞

m(n′k)1/p(n′k)∑m(n′
k
)

j=1 (1/λj)
= +∞, (8)

where

sup
1≤m≤2n

m1/p(n)∑m
j=1(1/λj)

= m(n)1/p(n)∑m(n)
j=1 (1/λj)

.

We choose an increasing sequence of positive integers {nk : k ≥ 1} ⊂ {n′k : k ≥ 1}
such that

m(nk)1/p(nk)∑m(nk)
j=1 (1/λj)

≥ 4k, (9)

p(nk) ≥ nk−1, (10)
nk > 3nk−1 + 1 for all k ≥ 2. (11)

If m(nk) ≤ 22nk−1 then by (10) condition (8) does not hold. Hence without lost of
generality we can suppose that 22nk−1 < m(nk) ≤ 2nk for every k.
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Two cases are possible:
a) There exists a monotone sequence of positive integers {sk : k ≥ 1} ⊂ {nk : k ≥ 1}

such that
22sk−1 < m(sk) ≤ 2sk−sk−1−1. (12)

Consider the function fk defined by

fk(x) =


hk(2skx− 2j + 1), x ∈ [(2j − 1)/2sk , 2j/2sk)
−hk(2skx− 2j − 1), x ∈ [2j/2sk , (2j + 1)/2sk)

for j = m(sk−1), . . . ,m(sk)− 1
0, otherwise

where

hk =
(

2k
m(sk)∑
j=1

(1/λj)
)−1/2

.

Let

f(x, y) =
∞∑
k=2

fk(x)fk(y),

where
f(x+ l, y + s) = f(x, y), l, s = 0,±1,±2, . . . .

First we prove that f ∈ Λ#BV . For every choice of nonoverlapping intervals {In : n ≥ 1},
we get

Λ#V1(f ; p(n) ↑∞) ≤
∞∑
j=1

|f(Ij , yj)|
λj

≤ 4
∞∑
i=1

h2
i

m(si)∑
j=1

1
λj

= 4
∞∑
i=1

1
2i = 4.

Analogously, we can prove that

Λ#V2(f ; p(n) ↑∞) ≤ 4.

Next, we shall prove that f /∈ BV #(p(n) ↑∞). By (11), (12) and from the construction
of the function we get

V1(f ; p(n) ↑∞) ≥
{ m(sk)−1∑
j=m(sk−1)

∣∣∣∣f(2j − 1
2sk ,

2j
2sk
)
− f

( 2j
2sk ,

2j
2sk
)∣∣∣∣p(sk)}1/p(sk)

=
{ m(sk)−1∑
j=m(sk−1)

∣∣∣∣(fk(2j − 1
2sk

)
− fk

( 2j
2sk
))
fk

( 2j
2sk
)∣∣∣∣p(sk)}1/p(sk)

= h2
k

(
m(sk)−m(sk−1)

)1/p(sk)

≥ c m(sk)1/p(sk)

2k
∑m(sk)
j=1 (1/λj)

≥ c2k →∞ as k →∞.

Therefore, we get f /∈ BV #(p(n) ↑∞).
b) Without lost of generality we can suppose that

2nk−nk−1−1 < m(nk) ≤ 2nk for all k > k0.
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Consider the function gk defined by

gk(x) =


dk(2nkx− 2j + 1), x ∈ [(2j − 1)/2nk , 2j/2nk)
−dk(2nkx− 2j − 1), x ∈ [2j/2nk , (2j + 1)/2nk)

for j = 2nk−1−nk−2 , . . . , 2nk−nk−1−1 − 1
0, otherwise

where

dk =
(

2k
m(nk)∑
j=1

(1/λj)
)−1/2

.

Let

g(x, y) =
∞∑

k=k0+2
gk(x)gk(y),

where
g(x+ l, y + s) = g(x, y), l, s = 0,±1,±2, . . . .

For every choice of nonoverlapping intervals {In : n ≥ 1} we get
∞∑
j=1

|f(Ij , yj)|
λj

≤ 4
∞∑

i=k0+1
d2
i

2ni−ni−1−1∑
j=1

1
λj

≤ 4
∞∑

i=k0+1
d2
i

m(ni)∑
j=1

1
λj

<∞.

Analogously, we can prove that
∞∑
j=1

|f(xj , Jj)|
λj

<∞.

Hence g ∈ Λ#BV .
Next we shall prove that g /∈ BV #(p(n) ↑∞). By (8), (10), (11) and from the con-

struction of the function we get

V #
1 (g; p(n) ↑∞) ≥

{2nk−nk−1−1−1∑
j=2nk−1−nk−2

∣∣∣∣g(2j − 1
2nk ,

2j
2nk

)
− g
( 2j

2nk ,
2j
2nk

)∣∣∣∣p(nk)}1/p(nk)

=
{2nk−nk−1−1−1∑
j=2nk−1−nk−2

∣∣∣∣(gk(2j − 1
2nk

)
− gk

( 2j
2nk

))
gk

( 2j
2nk

)∣∣∣∣p(nk)}1/p(nk)

= d2
k(2nk−nk−1−1 − 2nk−1−nk−2)1/p(nk) ≥ 1

4 d
2
k2(nk−nk−1)/p(nk)

≥ c2nk/p(nk)

2k+2∑m(nk)
j=1 (1/λj)

≥ c m(nk)1/p(nk)

2k
∑m(nk)
j=1 (1/λj)

≥ c2k →∞ as k →∞.

Therefore, we get g /∈ BV #(p(n) ↑∞) and the proof of Theorem 1 is complete.
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Proof of Theorem 10. We choose an increasing sequence of positive integers {lk : k ≥ 1}
such that l1 = 1 and

p(lk−1) ≥ ln k for all k ≥ 2. (13)

Set for k = 1, 2, . . .

rk(x) =


2lk+1ck(x− 1/2lk), if 1/2lk ≤ x ≤ 3/2lk+1

−2lk+1ck(x− 1/2lk−1), if 3/2lk+1 ≤ x ≤ 1/2lk−1

0, otherwise

where

ck =
( k∑
j=1

1
λj

)−1/4

and

r(x, y) =
∞∑
k=1

rk(x)rk(y),

where
r(x+ l, y + s) = r(x, y), l, s = 0,±1,±2, . . . .

It is easy to show that r ∈ C(I2).
First we show that r ∈ BV #(p(n) ↑∞). Let {Ii} be an arbitrary partition of the

interval I such that infi |Ii| ≥ 1/2l. For this fixed l, we can choose integers lk−1 and lk
for which lk−1 ≤ l < lk holds. Then it follows that p(lk−1) ≤ p(l) ≤ p(lk) and
1/2lk < 1/2l ≤ 1/2lk−1 .

By (13) and from the construction of the function r we obtain{ m∑
j=1
|r(Ii, yi)|p(l)

}1/p(l)
=
{ k∑
j=1

∑
{i:2−lj≤yi<2−lj+1}

|r(Ii, yi)|p(l)
}1/p(l)

≤
{ k∑
j=1

( ∑
Ii∩(2−lj ,2−lj+1)6=∅
{i:2−lj≤yi<2−lj+1}

|r(Ii, yi)|
)p(l)}1/p(l)

≤
{ k∑
j=1

( ∑
{i:Ii∩(2−lj ,2−lj+1)6=∅}

∣∣∣r(Ii, 3
2lj+1

)∣∣∣)p(l)}1/p(l)

≤
{ k∑
j=1

(∣∣∣∣r(( 1
2lj ,

3
2lj+1

)
,

3
2lj+1

)∣∣∣∣+
∣∣∣∣r(( 3

2lj+1 ,
1

2lj−1

)
,

3
2lj+1

)∣∣∣∣)p(l)}1/p(l)

≤
{ k∑
j=1

(2c2j )p(l)
}1/p(l)

≤ 2k1/p(lk−1) ≤ 4k1/ ln k = 4e.

Therefore r ∈ BV #(p(n) ↑∞).
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Finally, we prove that r /∈ ΛBV #. Since cn ↓ 0, we get
k∑
j=1

∣∣r(1/2lj , 3/2lj+1)− r(3/2lj+1, 3/2lj+1)
∣∣

λj

=
k∑
j=1

∣∣(rj(1/2lj )− rj(3/2lj+1))rj(3/2lj+1)
∣∣

λj

=
k∑
j=1

c2j
λj
≥ c2k

k∑
j=1

1
λj

=
( k∑
j=1

1
λj

)1/2
→∞ as k →∞.

Therefore, we get r /∈ ΛBV # and the proof of Theorem 10 is complete.

Since ΛBV # = B(I2) if and only if
∑∞
j=1(1/λj) < ∞ the validity of Corollary 11

follows from Theorem 10.
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