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Abstract. We prove inclusion relations between generalizing Waterman’s and generalized
Wiener’s classes for functions of two variable.

The notion of function of bounded variation was introduced by C. Jordan [16]. Gener-
alizing this notion N. Wiener [30] has considered the class BV, of functions. L. Young [31]
introduced the notion of functions of ®-variation. In [26] D. Waterman has introduced
the following concept of generalized bounded variation.

DEFINITION 1. Let A = {)\, : n > 1} be an increasing sequence of positive numbers such
that Y7, (1/A,) = co. A function f is said to be of A-bounded variation (f € ABV), if
for every choice of nonoverlapping intervals {I,, : n > 1}, we have

Sl
n=1 n

where I,, = [ay,b,] C [0,1] and f(I,) = f(bn) — f(an). If f € ABV, then A-variation of
f is defined to be the supremum of such sums, denoted by Vi (f).
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Properties of functions of the class ABV as well as the convergence and summability
properties of their Fourier series have been investigated in [22]-]29].

For everywhere bounded 1-periodic functions, Z. Chanturia [6] has introduced the
concept of the modulus of variation.

H. Kita and K. Yoneda [I8] studied generalized Wiener classes BV (p(n) 1 p). They
introduced

DEFINITION 2. Let f be a finite 1-periodic function defined on the interval (—oo, +00).
A={t;:i=0,£1,£2,...} is said to be a partition with period 1 if

Lt <to<ti<ta<. .. <tpm <tmg1<..., (1)

and tg4m = tp+1 when k = 0,£1,£2, ..., where m is a natural number. Let p(n) be an
increasing sequence such that 1 < p(n)1p, n — oo, where 1 < p < 4+00. We say that a
function f belongs to the class BV (p(n) 1 p) if

1/p(n)
V(o)1) = s (32 17000 ) " gt 2 5 <o

We note that if p(n) = p for each natural number, where 1 < p < +o00, then the class
BV (p(n)1p) coincides with the Wiener class V,.

Properties of functions of the class BV (p(n) 1 p) as well as the uniform convergence
and divergence at point of their Fourier series with respect to trigonometric and Walsh
system have been investigated in [9], [12], [I7].

Generalizing the class BV (p(n)1Tp) T. Akhobadze (see [, [2]) has considered the
classes of functions BV (p(n) 1 p,¢) and BA(p(n) T, ¢).

The relation between different classes of generalized bounded variation was taken into
account in the works of M. Avdispahié¢ [4], A. Kovacik [19], A. Belov [5], Z. Chanturia [7],
T. Akhobadze [3], M. Medvedeva [21I] and U. Goginava [I1], [13].

Let f be a real and measurable function of two variables of period 1 with respect to
each variable. Given intervals J; = (a,b), J» = (¢, d) and points z,y from I := [0, 1], we
define

f(ley) = f(b7 y) - f(a’vy)’ f(z, J2) = f(x’d) - f(mvc)

and for the rectangle A = (a,b) x (¢, d), we set
f(A) = f(‘]17']2) = f(a,c) - f(aad) - f(b,C) + f(b7d)
Let E = {I;} be a collection of nonoverlapping intervals from I ordered in an arbitrary

way and let 2 be the set of all such collections E.
For the sequence of positive numbers A = {A,}22; we define

Iiv
AVi(f) =sup sup L( y)\’
yel {I,}eQ %5 Ai
‘f(l', Jj)l

AVa(f) =sup sup 3 ,
z€l {J;} e j

AVia(f)=  sup zz 'f Lo )

{L},{J;}€Q



CLASSES OF FUNCTIONS 91

DEFINITION 3. We say that the function f has bounded A-variation on I? :=[0,1] x [0, 1]
and write f € ABV, if
AV (f) = AVA(f) + AVa(f) + AVi2(f) < oo.
We say that the function f has bounded partial A-variation and write f € PABV if
PAV(f) := AVi(f) + AVa(f) < oo.

IfAx,=1(orif0<c< )\, <C<oo,n=12...) the classes ABV and PABV
coincide with the Hardy class BV and PBYV respectively. Hence it is reasonable to assume
that \,, — oo and since the intervals in E = {I,;} are ordered arbitrarily, we will suppose,
without loss of generality, that the sequence {\,} is increasing. Thus, in what follows we
suppose that

1
< <... i = — = 00.
<A <A<, nh_)rr;o Ap = 00, z:l N 00 (2)
n=
In the case when A\, = n, n = 1,2,..., we say Harmonic Variation instead of

A-variation and write H instead of A (HBV, PHBV, HV (f), etc.).

The notion of A-variation was introduced by Waterman [26] in one-dimensional case
and Sahakian [24] in two-dimensional case. The notion of bounded partial variation (class
PBYV) was introduced by Goginava [10]. These classes of functions of generalized bounded
variation play an important role in the theory of Fourier series.

We have proved in [14] the following theorem.

THEOREM 4 (Goginava, Sahakian). Let A = {\, = ny,} and v, > Yny1 > 0, where
n=12,....

1) If
2 < oo, (3)
n=1
then PABV C HBV.
2) If for some § >0
Yo = O(Ypn+s) as n— 00 (4)
and -
Tn
I )
n; =00, (5)

then PABV ¢ HBV.

Dyachenko and Waterman [8] introduced another class of functions of generalized
bounded variation. Denoting by I' the the set of finite collections of nonoverlapping
rectangles Ay := [ak, Br] X [1&, 0] C T? we define

| (Ak)l
AV(f) = sup —
{Ak}erk: Ak
DEFINITION 5 (Dyachenko, Waterman). Let f be a real function on 2. We say that
fe AN BV if
AV (f) = AVA(f) + AVa(f) + A"V (f) < co.
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In [I5] Goginava and Sahakian introduced a new class of functions of generalized
bounded variation and investigated the convergence of Fourier series of function of this
class.

For the sequence A = {\,}52; we put

i, yi
A#Vi(f) = sup  sup Z'f y”,
{y:}CT {1:}eQ

A#Va(f) = sup  sup Z A mJ’J 3
{z;}CT {J;}eQ
DEFINITION 6 (Goginava, Sahakian). We say that the function f belongs to the class
A#* BV, if
APV (f) = A VA(f) + A*Va(f) < 0.

The following theorem was proved in [15].

THEOREM 7.
a) If
— 1 1
lim Anlog(n +1) < o0, (6)
n—oo n
then
A*BV c HBV.

b) If 2= | 0 and
o An log(n + 1) — oo,

n—oo n
then
A*BV ¢ HBV.

In this paper we introduce new classes of bounded generalized variation.
Let f be a function defined on R? and Il-periodic with respect to each variable.
A1 and A, are said to be partitions with period 1, if

A, <t < tl) <t <<l < t(z)Jrl <., i=1,2,

my

satisfies t\)

ktm; = tkz) +1for k=0,£1,£2,..., where m;, i = 1,2, are positive integers.

DEFINITION 8. Let p(n) be an increasing sequence such that 1 < p(n) 1 p, n — oo, where
1 < p < +oo. We say that a function f belongs to the class BV#(p(n) 1 p) if

o\ 1/p(n) 1
VE(F.pln)1p) = sup supsup{(Zu (nl ™) " i 12 g | < e

{y:¥CIn>1 A,
and
# p(n) 1/p(n) 1
Vi (f,p(n)Tp) := sup supsup (ZIf zj, Jj)| ) Hnf|Jj] 2 o0 0 < oo,
{z;}CIn>1 A,
where

I = (t (1) (1))7 Jj = (t (2) (2)).

1171 Jl’J
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C(I?) and B(I?) are the spaces of continuous and bounded functions given on I?,
respectively.
In this paper we prove inclusion relations between A# BV and BV ¥ (p(n) 1 co) classes.

THEOREM 9. A#*BV C BV#(p(n) 1 o0) if and only if

- mL/p(0) -
im  sup —=m—— < 00.

n— 00 1§m£2n Z]:l(l/)\j)

THEOREM 10. Suppose that > - (1/A\,) = +oco. Then there exists a function

f € BV#(p(n) too) N C(I?) such that f ¢ ABV#.
COROLLARY 11. BV#(p(n)1oo0) C A* BV if and only if A# BV = B(I?).

Proof of Theorem @ Let us take an arbitrary f € A#BV. Following the method of
Kuprikov [20], we can prove that

— 0\ 1/p(n) m1/p(n)
(1w ™) " < AV sup < o0
k=1

1emsan i (1/A)
and

m1/p(n)
< 00.

2 p(n) 1/p(n) #+
(Y1, )P ) T < APV (f) sup
= 1<m<an )i (1/A0)
Therefore, f € A# BV (p(n) 1 00).
Next, we suppose that the condition does not hold. As an example we construct
a function from A# BV which is not in BV#(p(n) 1 o0).
Since
= ml/p(n)
im  Sup —m———
n5oe emben o (1))
there exists a sequence of integers {n), : £ > 1} such that
lim m(nj)' /7

N Sy
e Y im  (A/N)

= +OO,

where
ml/p(n) m(n)/P(n)
sup =

1<m<an i (1/2)) ZT:(?)(UAJ') .

We choose an increasing sequence of positive integers {ny : k > 1} C {n}, : k > 1}
such that

m(ny)t/P(x) A )
SR/

p(nk) 2 Nkg—1, (10)

ng > 3ng_1 + 1 for all k > 2. (11)

If m(ny) < 22™-1 then by condition (§) does not hold. Hence without lost of
generality we can suppose that 227-1 < m(ny) < 2" for every k.
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Two cases are possible:
a) There exists a monotone sequence of positive integers {s, : k > 1} C {ng : k > 1}
such that
221 < m(sy) < 2%k (12)

Consider the function fj, defined by
hi (2% 2 — 25 + 1), x €[(25 —1)/2%,2j5/2%)
—hi(2°rx = 2j — 1), x€[2j/2°%,(2j +1)/2°)

xT) =
filz) for j =m(sp—1),...,m(sk) — 1
0, otherwise
where
m(sk) ~1/2
( Z (1/A; ) .
Let -
)= fel@)fr(y)
k=2
where

fle+lLy+s)=flx,y), l,s=0,£1,£2,....
First we prove that f € A# BV. For every choice of nonoverlapping intervals {I,, : n > 1},
we get

m(s;)

A*Vy(f;p(n) 1 oo) gi J’yﬂ <42h?ZA 4%%:
=1 i=1

Analogously, we can prove that
A*Vo(f;p(n) 1 00) < 4.

Next, we shall prove that f ¢ BV #(p(n) 1 o). By , and from the construction

of the function we get
m(sk)—1
Vi(fip(n) too) > { >
J=m(sk-1)

j=m(sk—1)

2j—1 2j 2 2j
f( 25k ’2Sk)_f(25k’25k)

(1 (55) - 1(5)) 5 (35)

1 s
= hi(m(sk) — m(sp-1)) /o)
m(sy)t/Plsw)
>c
28 0 (1)
Therefore, we get f ¢ BV#(p(n) 1 00).
b) Without lost of generality we can suppose that

gnk—nk-—1—1 - m(ng) < 2™ for all k > ko.

p(sk) }1/P(Sk)

p(sk) }I/P(Sk)

> 2k 5 00 as k — oo.
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Consider the function g defined by

(2o —2j+1),  x€[(2)—1)/2m,2j/2™)
—dp(2M i — 25 — 1), x € [25/2™, (25 +1)/2™)

o+(z) = for j = 2mk—1—mk—2 o gmkmmko—l
0, otherwise
where
m(nyg) —1/2
ae = (23 (1/0)
j=1
Let
9@ y) = Y ge(@)gk(y),
k=ko+2
where

glz+Ly+s)=g(z,y), l,s=0,4+1,42,....

For every choice of nonoverlapping intervals {I,, : n > 1} we get

oni—mni_1—1

|f(Z5,y;) 1
SUalles s @y 5
i=ko+1 j=1

m(n;)

<4 Z dQZ)\—<oo

i1=ko+1 j=1

Analogously, we can prove that
3 (s Il
, Aj
Jj=1

Hence g € A¥ BV.
Next we shall prove that g ¢ BV#(p(n)1 o). By , , and from the con-

struction of the function we get
2j—1 2§ 27 2j
g( on 27k> 79(% w)
ong—ng_1-1

{7 E D - @)

j:2"k—1’"k—2

onk—nk—1-1_1

Vi (g:p(n) 1 00) > { 3

j:2nk,1—nk,2

p(nk) }UP(nk)

p(nk) }1/p(mc)

_ d%(2nk—nk—1—1 _ 2nk—1—"k—2)1/p(nk) > idiQ(nk—nk—l)/l’(”k)
N c2nkip(7;k) . (nk()l/p(”’“) .
22 3TN/ ) 2’“2 D(1/n)

Therefore, we get g ¢ BV#(p(n) 1 oo) and the proof of Theorem 1 is complete. m

2* = 00 as k — oo.
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Proof of Theorem . We choose an increasing sequence of positive integers {l : k > 1}
such that {; = 1 and

p(lg—1) > Ink for allk > 2. (13)
Set for k=1,2,...
2letley (z—1/2%), if 1/20 < g < 3/20+1
re(x) = ¢ —2betley (p — 1/201) if 3/20 ! < p < 1/207 1
0, otherwise
where
ko1 \-1/4
(53
Py
and
r(@,y) =Y re(@)re(y),
k=1
where

re+lLy+s)=r(zy), lL,s=0+£1,4£2, ....

It is easy to show that r € C(I?).

First we show that » € BV#(p(n)1oc). Let {I;} be an arbitrary partition of the
interval I such that inf; |I;| > 1/2!. For this fixed I, we can choose integers lj,_; and Iy
for which I—; < [ < I holds. Then it follows that p(lx—1) < p(l) < p(lx) and
1/2 < 1728 < 1/20-1,

By and from the construction of the function r we obtain

- k 1/p(1)
(Craare)™ =y ¥ e}’
=1

I=1 {2l <y, <27l )
S {

{

{
g{]

Therefore r € BV#(p(n) 1 o0).

IN

M=

7=l nEe b 27l Y2e
3 p() 1/p(1)
T’(Ii72lj+1) ) }
J=t {inne 4,27 T#e}

k p)) /P
(X www)
{i27li<yi<2™li Ty
1 3 3 3 1 3 p(l) l/p(l)
(’r((%’211+1)’211+1)’+‘r((21j+1’2lj—1)’2la‘+1)D }
(2c§)1’(l>}l/p(l) < 2kMPUk—1) < g1/ 0k — 4o

IN

e

Jj=1

-

Il
—
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Finally, we prove that 7 ¢ ABV#. Since ¢, | 0, we get
1/2,3/21H1) —p(3/20 41, 3/2l )|

i
j=1 )‘j
i [(r5(1/2'7) = r;(3/217 1) )y (3/2'+)|

j= Aj
k 2 k k
c? 1 1\1/2
:Zf20i27:<27) —o00o ask — oo,
=1 =17 =

Therefore, we get 7 ¢ ABV# and the proof of Theorem [10|is complete. m

Since ABV# = B(I?) if and only if Z;’il(l/)\j) < oo the validity of Corollary

follows from Theorem [10]
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