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Abstract. In this paper we deal with the energy functionals for the elastic thin film ω ⊂ R2

involving the bending moments. The effective energy functional is obtained by Γ-convergence and
3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film
energy functional. These results are proved in the case when the energy density function has the
growth prescribed by an Orlicz convex function M . Here M is assumed to be non-power-growth-
type and to satisfy the conditions ∆2 and ∇2 (that is equivalent to the reflexivity of Orlicz and
Orlicz–Sobolev spaces generated by M). These results extend results of G. Bouchitté, I. Fonseca
and M. L. Mascarenhas for the case M(t) = |t|p for some p ∈ (1,∞).

1. Introduction. The mathematical theory of nonlinear elasticity has a long history
with major contributions from L. Euler, J. Bernoulli, A. Cauchy, G. Kirchhoff, A. E. Love,
T. von Karman and many modern authors (see [28, 6, 10, 18]). One of main problems in
this research is to understand relations between three-dimensional and two-dimensional
theories for thin domains.

We consider an elastic thin film as a bounded open subset ω ⊂ R2 with Lipschitz
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boundary. The set Ωε := ω × (− ε2 ,
ε
2 ) ⊂ R3 for a small thickness ε is considered as an

elastic cylinder approximate to the film ω. A three-dimensional deformation Uε : Ωε → R3

defined on the thin cylinder Ωε has the re-scaled elastic total energy represented by the
difference of the re-scaled bulk and surface energies

1
ε

∫
Ωε

W (DUε) dx−
1
ε
Qε(Uε).

The purpose of this type of research is to investigate the limiting energies as ε → 0 of
the sequence of the above re-scaled elastic total energies and to understand the behavior
as ε→ 0 of minimizers subject to appropriate boundary conditions.

Let the energy density function W : R3 × R3 → R have the growth prescribed by an
Orlicz convex functionM . We assume thatM is non-power-growth-type and satisfies the
conditions ∆2 and ∇2 (that is equivalent to the reflexivity of Orlicz and Orlicz–Sobolev
spaces generated by M).

In our previous paper [26] we extend to the Orlicz–Sobolev space setting results
established by H. Le Dret and A. Raoult in 1995 [27, Theorem 2, Theorem 8] (cf. [6,
Theorem 12.2.1]) for the case of the above re-scaled total energy and thin films in the
reflexive Sobolev space setting with M(t) = |t|p for some p ∈ (1,∞). In the famous
case considered by H. Le Dret and A. Raoult the density function of the re-scaled surface
energy 1

εQε(Uε) of the re-scaled total energy is a function of the variable Uε (independent
on the scaled factor 1

ε ).
In the case considered in the recent work of G. Bouchitté, I. Fonseca and

M. L. Mascarenhas in 2004 [7], the density function of the re-scaled surface energy
1
εQε(Uε) is a function of the variable 1

εUε (dependent explicitly in this way on the scaled
factor 1

ε ), and this generates the bending moment of the film. Therefore, the different
type of the limiting effective energy functional is obtained in [7].

The main purpose of the present paper (see Theorem 4.1 and Corollary 4.2) is to
extend the results established by G. Bouchitté, I. Fonseca and M. L. Mascarenhas in 2004
[7, Theorem 1.2, Corollary 1.3] for the case of the above re-scaled total energy and thin
films in the reflexive Sobolev space setting with M(t) = |t|p for some p ∈ (1,∞).

In Theorem 4.1, the effective energy functional for the thin film ω is obtained, by
Γ-convergence and 3D-2D dimension reduction techniques applied to the sequence of the
re-scaled total energy integral functionals of the elastic cylinders Ωε as the thickness ε goes
to 0. In Corollary 4.2, the existence of minimizers of the energy functional for the thin film
is established by showing that some sequence of re-scaled minimizers weakly converges
in an appropriate Orlicz–Sobolev space to a minimizer of the film energy functional.

In Section 5, we give the proofs of Theorem 4.1 and Corollary 4.2. Our proof scheme
extends the proof scheme of G. Bouchitté, I. Fonseca and M. L. Mascarenhas [7]. For
these proofs we apply also results: for Orlicz convex functions [22, Proposition 4], for
the Orlicz–Sobolev spaces [24, Theorem 5, Theorem 7] (cf. [13]), [19, Proposition 2.1], for
differentiability properties of the Orlicz–Sobolev functions [3, Lemma 3.1, Lemma 3.2], for
the sub-differential operator in Orlicz spaces [36, Lemma 1] and for quasiconvex integral
functionals and quasiconvexification in the Orlicz–Sobolev space setting [16].
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Recall that various concrete examples of M with M ∈ ∆2 ∩ ∇2 can be found in
[25, Theorem 7.1, pp. 58–59] and [29, 30]. Furthermore, the assumption M ∈ ∆2 ∩∇2 is
indispensable in the regularity study of minimizers of multiple variational integrals with
the M -growth on Orlicz–Sobolev spaces (see discussions and references for many other
concrete examples in [15]).

2. Some terminology and notation. From now on, unless stated to the contrary,
M : R→ [0,∞) is assumed to be a non-power-growth-type Orlicz N -function (i.e., even
convex function satisfying limt→0

M(t)
t = 0 and limt→+∞

M(t)
t = +∞).

We assume M ∈ ∆2 ∩ ∇2. Here the condition M ∈ ∆2 means that M(2t) ≤
cM(t) (t ≥ t0) for some t0 ∈ [0,∞) and c ∈ (0,∞). The condition M ∈ ∇2 means
that ∃ l > 1, ∃ t∗ ∈ [0,∞) such that M(t) ≤ 1

2lM(lt) for all t ≥ t∗.
Let M∗ be the complementary (conjugate) Orlicz N -function of M defined by

M∗(τ) := sup{tτ −M(t) : t ∈ R}.

It is known that the condition M ∈ ∇2 is equivalent to the condition M∗ ∈ ∆2.
Denote by |v| the Euclidean norm of v and by (u, v) the scalar product. Given an

open bounded subset G ⊂ RN with Lipschitz (e.g., C2-smooth) boundary ∂G equipped
with the (N−1)-dimensional Hausdorff measure HN−1. Denote by LM (G;Rm) the Orlicz
space of all (equivalent classes of) measurable functions u : G → Rm equipped with the
Luxemburg norm

‖u‖LM (G;Rm) := inf
{
λ > 0 :

∫
Ω
M(|u(x)|/λ) dx ≤ 1

}
.

It is known that M ∈ ∆2 ∩∇2 is equivalent to the reflexivity of LM (G;Rm).
Recall that the Orlicz–Sobolev space W 1,M (G;R3) is defined as the Banach space of

R3-valued functions u of LM (G;R3) with the Sobolev–Schwartz distributional derivative
Du ∈ LM (G;R3×N ) equipped with the norm

‖u‖W 1,M (G;R3) := ‖u‖LM (G;R3) + ‖Du‖LM (G;R3×N ) <∞.

The subspace W 1,M
0 (G;R3) is defined as the closure in ‖ · ‖W 1,M (G;R3)-norm of the set

C∞0 (G;R3) of C∞-smooth R3-valued functions with compact support in G. Since ∂G is
Lipschitz and M,M∗ ∈ ∆2, by [17, Theorems 2.1, 2.3] there exists the bounded linear
trace operator

Tr : W 1,M (G;R3)→ LM (∂G;R3)

such that: (i) Tr(u) = u|∂G (∀u ∈ C∞(G)) and (ii) u ∈ W 1,M
0 (G;R3) if and only if

Tr(u) = 0. So, for the simplicity of notation we will write “u(x) = ϕ(x) on A” for
u ∈W 1,M (G;R3) and ϕ ∈ LM (∂G;R3) and A ⊂ ∂G if Tr(u)(x) = ϕ(x) for almost every
x ∈ A. Due to this reason, we also write “u on A” for “Tr(u) on A”, etc.

By [2, Proof of Theorem 3.9] and [21, Proof of Lemma 2.2], given a normed subspace
(X, ‖ · ‖W 1,M (G;R3)) and Λ ∈ X∗, there exist h0, h1, . . . , hN ∈ LM

∗(G;R3) such that

Λ(u) =
∫
G

(h0, u) dx+
N∑
i=1

∫
G

(
hi,

∂u

∂xi

)
dx (u ∈ X). (1)
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Conversely, every functional Λ defined by (1) in the case h0, h1, . . . , hN ∈ LM
∗(G;R3), is

an element of X∗.

3. Setup. Define I := (− 1
2 ,

1
2 ), Ω := ω × I, S± := ω × {± 1

2}, Γ := ∂ω × I, and for each
ε > 0, S±ε := ω × {± ε2}, Γε := ∂ω × εI. Greek indexes will be used to distinguish the
first two components of a vector, for instance (xα) and (xα, x3), designates (x1, x2) and
(x1, x2, x3), respectively. We denote by R3×3 and R3×2 the vector spaces of respectively
3 × 3 and 3 × 2 real-valued matrices. Given F̄ ∈ R3×2 and b ∈ R3, denote by (F̄ |b) the
3 × 3 matrix whose first two columns are those of F̄ and the last column is b. By the
analogous way, set eα := (e1 |e2) ∈ R3×2 where {e1, e2, e3} is the standard basis of R3.
Set DαU := ( ∂U∂x1

| ∂U∂x2
), D3U := ∂U

∂x3
, DU := (DαU |D3U) for an R3-valued function U .

Denote by C, C̃ generic positive constants that may vary from line to line.
Let W : R3×3 → R be a continuous function satisfying the M -growth-type and

coercivity conditions:
1
C

(M(|F |)− 1) ≤W (F ) ≤ C(1 +M(|F |)) (∀F ∈ R3×3) (2)

for some C ∈ (0,∞).
Set

Ψ̃ε :=
{
U ∈W 1,M (Ωε;R3) : U(x̃) = x̃ on Γε

}
.

We consider the variational integral functional J̃ε : Ψ̃ε → R, where J̃ε(U) (the re-
scaled total energy of the elastic cylinder Ωε under a deformation U : Ωε → R3) is
represented by the difference of the re-scaled bulk and surface energies:

J̃ε(U) := 1
ε

∫
Ωε

W (DU) dx̃− 1
ε

∫
Ωε

(fε, U) dx̃

−
∫
S+

ε

(g+
0 + 1

ε
g, U) dH2 +

∫
S−ε

(
g−0 + 1

ε
g, U

)
dH2. (3)

Here, fε := f
(
x̃α,

x̃3
ε

)
, f ∈ LM∗(Ω;R3), g±0 , g ∈ LM

∗(ω;R3) and H2 denotes the 2-dimen-
sional Hausdorff measure in R3. Set

Ψ0 :=
{
ū ∈W 1,M (ω;R3) : ū(xα) = (xα, 0) on ∂ω

}
.

Let J0 : Ψ0 × LM (ω;R3)→ R be defined by

J0(ū, b̄) :=
∫
ω

Q∗W (Dαū | b̄) dxα − P0(ū, b̄), (4)

where

Q∗W (F̄ , z) := inf
{∫

Q

W (F̄ +Dαϕ |λD3ϕ) dx : λ ∈ R, ϕ ∈W 1,M (Q;R3),

ϕ(·, x3) is Q′-periodic L1 a.e. x3 ∈ I, λ
∫
Q

D3ϕdx = z
}

(5)

for every F̄ ∈ R3×2, z ∈ R3, with Q′ := I2, Q := I3 and

P0(ū, b̄) :=
∫
ω

(f̄ , ū) dxα +
∫
ω

(g+
0 − g

−
0 , ū) dxα +

∫
ω

(g, b̄) dxα,

with f̄(xα) :=
∫
I
f(xα, x3) dx3.
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4. The formulation of main results. Let Z be the space of membrane deformations
defined by

Z =
{
z ∈W 1,M (Ω;R3) : D3z = 0, z(x) = (xα, 0) on Γ

}
. (6)

Observe that Z is canonically isomorphic to Ψ0 [31, Theorem 1.1.3/1]. Let z̄ denote the
element of Ψ0 that is associated with z ∈ Z through this isomorphism:

z(xα, x3) = z̄(xα) a.e. (7)

Since we want to identify the sequence convergence with the thickness of our domain
tending to zero, for simplicity we assume this thickness parameter ε takes its values in a
sequence εn → 0.

Theorem 4.1. Let J̃ε be defined by (3) and J0 be defined by (4). Assume M ∈ ∆2 ∩∇2.
Assume that the continuous function W : R3×3 → R satisfies the conditions (2). Let
{Uε} ∈ Ψ̃ε. For each ε > 0 and x̃ = (x̃α, x̃3) ∈ Ωε we associate x = (xα, x3) :=(
x̃α,

1
ε x̃3
)
∈ Ω and we set zε(xα, x3) := Uε(x̃α, x̃3).

Then the sequence J̃ε converges to J0 in the following sense:

(i) (lower bound) if zε ⇀ z weakly in W 1,M (Ω;R3), ‖zε‖W 1,M (Ω;R3) < +∞ and z ∈ Z
with z(xα, x3) = z̄(xα) through the isomorphism (7) and 1

ε

∫
I
D3zε dx3 ⇀ b̄ weakly

in LM (ω;R3) and ‖ 1
εD3zε‖LM (Ω;R3) < +∞, then

lim inf
ε→0

J̃ε(Uε) ≥ J0(z̄, b̄);

(ii) (upper bound) for every pair (z̄, b̄) ∈ Ψ0 × LM (ω;R3), there exists a sequence Uε ∈
W 1,M (Ω;R3) such that zε ⇀ z weakly in W 1,M (Ω;R3), ‖zε‖W 1,M (Ω;R3) < +∞ and
z ∈ Z with z(xα, x3) = z̄(xα) through the isomorphism (7) and 1

ε

∫
I
D3zε dx3 ⇀ b̄

weakly in LM (ω;R3) and ‖ 1
εD3zε‖LM (Ω;R3) < +∞ and

lim
ε→0

J̃ε(Uε) = J0(z̄, b̄).

Consider the asymptotic behavior of Uε ∈ Ψ̃ε such that

J̃ε(Uε) ≤ inf
U∈Ψ̃ε

J̃ε(U) + γ(ε), (8)

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 4.2 (The minimization problem). Assume that Uε ∈ Ψ̃ε satisfies (8). Let
the functions M , W and zε, z̄ be such as in Theorem 4.1. Then:

(i) the sequence
(
zε,

1
ε

∫
I
D3zε dx3

)
is relatively weakly compact in W 1,M (Ω;R3) ×

LM (ω;R3);
(ii) the set Cfilm of cluster points of the sequence

(
zε,

1
ε

∫
I
D3zε dx3

)
in the weak topology

is a non-empty subset of Z × LM (ω;R3);
(iii) any point (z∞, b̄) of Cfilm can be identified with (z̄∞, b̄) ∈ Ψ0 × LM (ω;R3) by the

3D-2D dimension reduction isomorphism (7) and (z̄∞, b̄) is a solution of the min-
imization problem

inf
ū∈Ψ0

{
J0(ū, b̄) : b̄ ∈ LM (ω;R3)

}
. (9)
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5. The proofs of Theorem 4.1 and Corollary 4.2. We will reformulate Theorem
4.1 and Corollary 4.2 by the use of the following equivalent functionals J̄∗ε and J∗0 (see
the re-formulation in Theorem 5.1 and Corollary 5.2). Define

u0,ε(x) := (xα, εx3), u0,0(x) := (xα, 0). (10)
Notice that after the change of variables as in Theorem 4.1 with the association

x = (xα, x3) :=
(
x̃α,

1
ε
x̃3

)
, u(xα, x3) := U(x̃α, x̃3), (11)

the re-scaled energy J̃ε(U) in (3) can be rewritten in the equivalent form

Jε(u) =
∫

Ω
W
(
DαU

∣∣ 1
ε
D3u

)
dx−

∫
Ω

(f, u) dx−
∫
S+

(g+
0 , u) dH2

+
∫
S−

(g−0 , u) dH2 −
∫
ω

(
g,
u+ − u−

ε

)
dxα

=
∫

Ω
W
(
DαU

∣∣ 1
ε
D3u

)
dx−

∫
Ω

(f, u) dx−
∫
S+

(g+
0 , u) dH2

+
∫
S−

(g−0 , u) dH2 −
∫
ω

(
g,

1
ε

∫
I

D3u dx3

)
dxα,

(12)

where u±(xα) := TrS±(u)(xα) and u is an element of
Ψε :=

{
u ∈W 1,M (Ω;R3) : u(x) = u0,ε(x) on Γ

}
.

In order to individualize the new sequence 1
ε

∫
I
D3u dx3 it is needed to consider the

new functional J̄ε : W 1,M (Ω;R3)× LM (ω;R3)→ R ∪ {+∞} defined by

J̄ε(u, b̄) :=
{∫

ΩW (Dαu | 1εD3u) dx− Pε(u) if 1
ε

∫
I
D3u dx3 = b̄(xα) and u ∈ Ψε

+∞ otherwise,
(13)

where

Pε(u) :=
∫

Ω
(f, u) dx−

∫
S+

(g+
0 , u) dH2 +

∫
S−

(g−0 , u) dH2 +
∫
ω

(
g,

1
ε

∫
I

D3u dx3

)
dxα.

Observe that the re-scaled displacement v = u− u0,ε belongs to the set
V = W 1,M

Γ (Ω;R3) :=
{
v ∈W 1,M (Ω;R3) : v(x) = 0 on Γ

}
and

Jε(v + u0,ε) =
∫

Ω
W
(
eα +DαV

∣∣ e3 + 1
ε
D3v

)
dx−

∫
Ω

(f, v + u0,ε) dx

−
∫
S+

(g+
0 , v + u0,ε) dH2 +

∫
S−

(g−0 , v + u0,ε) dH2 −
∫
ω

(
g,

1
ε

∫
I

(D3v + ε · e3) dx3

)
dxα.

Define J̄∗ε : W 1,M (Ω;R3)× LM (ω;R3)→ R ∪ {+∞} by

J̄∗ε (v, b̄) :=


∫

ΩW (eα +Dαv |e3 + 1
εD3v) dx− Pε(v + u0,ε)

if 1
ε

∫
I
D3v dx3 + e3 = b̄(xα) and v ∈ V,

+∞ otherwise.
(14)

Let V be the space of membrane displacements defined by
V =

{
v ∈W 1,M (Ω;R3) : D3v = 0, v(x) = 0 on Γ

}
⊂ V. (15)
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Similarly as in (6)–(7), V is canonically isomorphic toW 1,M
0 (ω;R3) [31, Theorem 1.1.3/1].

Let v̄ denote the element of W 1,M
0 (ω;R3) that is associated with v ∈ V through the

isomorphism
v(xα, x3) = v̄(xα) a.e. (16)

Analogously for v ∈ V and b̄ ∈ LM (ω;R3) define the functional

J∗0 (v + u0,0, b̄) :=
∫
ω

Q∗W (eα +Dαv̄ | b̄− e3) dxα − P0(v̄ + u0,0, b̄+ e3). (17)

In this notation we have for Uε ∈ Ψ̃ε

J̃ε(Uε) = Jε(uε) = Jε(vε + u0,ε),

where uε ∈ Ψε, vε ∈ V with uε = vε + u0,ε and

J0(z̄, b̄) = J∗0 (v + u0,0, b̄) (v ∈ V, z̄ = v̄ + u0,0 ∈ Ψ0).

Recall [12], [9, Definition 7.1] that a sequence of functions Iε from a topological space
X to R is said to Γ-converge to I0 for the topology of X if the following conditions are
satisfied for all x ∈ X: {

∀xε → x, I0(x) ≤ lim inf Iε(xε),
∃yε → y, Iε(yε)→ I0(y).

(18)

Theorem 5.1. Let J̄∗ε be defined by (14) and J∗0 be defined by (17). AssumeM ∈ ∆2∩∇2.
Suppose that the continuous function W : R3×3 → R satisfies the conditions (2). Then
the sequence J̄∗ε Γ-converges to J∗0 in the weak topology of W 1,M (Ω;R3)×LM (ω;R3), as
ε→ 0.

Consider the asymptotic behavior of uε ∈ Ψε such that

Jε(uε) ≤ inf
u∈Ψε

Jε(u) + γ(ε), (19)

where γ is a positive function such that γ(ε)→ 0 as ε→ 0.

Corollary 5.2 (The minimization problem). Assume that uε ∈ Ψε satisfies (19). Let
the functions M and W be such as in Theorem 5.1. Then:

(i) the sequence
(
uε,

1
ε

∫
I
D3uε dx3

)
is relatively weakly compact in W 1,M (Ω;R3) ×

LM (ω;R3);
(ii) the set Cfilm of cluster points of the sequence

(
uε,

1
ε

∫
I
D3uε dx3

)
in the weak topology

is a non-empty subset of Z × LM (ω;R3);
(iii) any point (u∞, b̄) of Cfilm can be identified with (ū∞, b̄) ∈ Ψ0 × LM (ω;R3) by the

3D-2D dimension reduction isomorphism (7) and (ū∞, b̄) is a solution of the min-
imization problem

inf
ū∈Ψ0

{
J0(ū, b̄) : b̄ ∈ LM (ω;R3)

}
.

We start the proofs of Theorem 5.1 and Corollary 5.2, with Lemmas 5.3–5.4.
We consider the condition

∃ i(M) ∈ [1,∞), ∃ c ∈ (0,∞) such that M(at) ≤ c ai(M)M(t) (∀t ≥ 0, ∀a ≤ 1), (20)
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which is equivalent to the condition

∃ i(M) ∈ [1,∞), ∃ c ∈ (0,∞) such that 1
c
bi(M)M(s) ≤ M(bs) (∀s ≥ 0, ∀b ≥ 1). (21)

Lemma 5.3 is a re-formulation of a part of [22, Proposition 4].

Lemma 5.3. Assume the dual Orlicz N -function M∗ satisfies the condition ∆glob
2 , i.e.

M∗(2τ) ≤ KM∗(τ) for all τ ∈ [0,∞) and for some K ∈ (0,∞).
Then M satisfies the condition (20) for some i(M) ∈ (1,∞).

Lemma 5.4 (Compactness). Let M and W be such as in Theorem 5.1, let
vε ∈W 1,M (Ω;R3) and b̄ε ∈ LM (ω;R3) be a sequence such that

sup
ε∈(0,1)

J̄∗ε (vε, b̄ε) ≤ d < +∞. (22)

Then there exist d̄1 > 0 and d̄2 > 0 such that

(i) sup
ε∈(0,1)

‖vε‖W 1,M (Ω;R3) ≤ d̄1 < +∞ (23)

and
sup

ε∈(0,1)

∥∥∥1
ε
D3vε

∥∥∥
LM (Ω;R3)

≤ d̄2 < +∞ (24)

and the sequence (vε, 1
ε

∫
I
D3vε dx3) is relatively weakly compact in W 1,M (Ω;R3)×

LM (ω;R3);
(ii) the set of cluster points of the sequence (vε, 1

ε

∫
I
D3vε dx3) in the weak topology of

W 1,M (Ω;R3)× LM (ω;R3) is a non-empty subset of V × LM (ω;R3).

Proof. We divide the proof into six steps, where in Steps 2–5 we assume additionally
M∗ ∈ ∆glob

2 .
Step 1. By (22) and (14) for J̄∗ε , vε ∈ V for all ε > 0. Let uε = vε + u0,ε. We claim

that∫
Ω
M
(∣∣∣(Dαuε

∣∣ D3uε
ε

)∣∣∣) dx ≤ C1

+ C1

((
‖f‖LM∗ (Ω;R3) + (‖g+

0 ‖LM∗ (S+;R3) + ‖g−0 ‖LM∗ (S−;R3))‖Tr ‖L
)
‖Duε‖LM (Ω;R3×3)

)
+ C1‖g‖LM∗ (ω;R3)

∥∥∥1
ε
D3uε

∥∥∥
LM (Ω;R3)

(25)

for some C1 ∈ (0,+∞) and for all ε ∈ (0, 1). Here ‖Tr ‖L := N+ + N−, where N+

(resp., N−) denotes the operator norm of the linear trace operator Tr : W 1,M (Ω;R3)→
LM (S+;R3) (resp., Tr : W 1,M (Ω;R3)→ LM (S−;R3)).

For this, by the coercivity condition (2) together with (22), we infer that

1
C

(∫
Ω
M
(∣∣∣(Dαuε |

D3uε
ε

)∣∣∣) dx− |Ω|) ≤ d+
∣∣∣∫

Ω
(f, uε) dx

∣∣∣+
∣∣∣∫
S+

(g+
0 , uε) dH2

∣∣∣
+
∣∣∣∫
S−

(g−0 , uε) dH2
∣∣∣+
∣∣∣∫
ω

(
g,
u+
ε − u−ε
ε

)
dxα

∣∣∣ = d+
∣∣∣∫

Ω
(f, uε) dx

∣∣∣
+
∣∣∣∫
S+

(g+
0 , uε) dH2

∣∣∣+
∣∣∣∫
S−

(g−0 , uε) dH2
∣∣∣+
∣∣∣∫
ω

(
g,

1
ε

∫
I

D3uε dx3

)
dxα

∣∣∣.
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By the generalized Hölder inequality (see, e.g., [33, Theorems 13.13, 13.11], [25, 38]) and
Fubini Theorem, we deduce that

1
C

(∫
Ω
M
(∣∣∣(Dαuε

∣∣ D3uε
ε

)∣∣∣) dx− |Ω|)
≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3)

+ 2
(
‖g+

0 ‖LM∗ (S+;R3)‖u+
ε ‖LM (S+;R3) + ‖g−0 ‖LM∗ (S−;R3)‖u−ε ‖LM (S−;R3)

)
+ 2‖g‖LM∗ (ω;R3)‖

1
ε
D3uε‖LM (Ω;R3)

≤ d+ 2‖f‖LM∗ (Ω;R3)‖uε‖LM (Ω;R3)

+ 2
(
‖g+

0 ‖LM∗ (S+;R3) + ‖g−0 ‖LM∗ (S−;R3)
)
‖Tr ‖L

(
‖uε‖LM (Ω;R3) + ‖Duε‖LM (Ω;R3×3)

)
+ 2‖g‖LM∗ (ω;R3)

∥∥∥1
ε
D3uε

∥∥∥
LM (Ω;R3)

.

(26)

By the W 1,M -generalization (see [24, Theorems 5 and 7] together with [13, Theo-
rem 3.9], [20, Lemma 4.14], [19, Proposition 2.1]) for the Poincaré–Sobolev-type inequality
(see [32, Theorem 3.6.4]), there exists C̃ ∈ (0,∞) such that

‖uε‖LM (Ω;R3) ≤ C̃
(
‖Duε‖LM (Ω;R3×3) +

∫
Γ
|uε| dH2

)
= C̃

(
‖Duε‖LM (Ω;R3×3) +

∫
Γ
|u0,ε| dH2

)
≤ C̃

(
‖Duε‖LM (Ω;R3×3) +H2(Γ) sup

x∈Ω
|x|
)
<∞ (∀ε ∈ (0, 1)).

(27)

Then (26)–(27) imply (25).

Step 2. By the additional assumption M∗ ∈ ∆glob
2 , we may apply Lemma 5.3, and so

M satisfies the condition (20) for some i(M) ∈ (1,∞).
We claim that

‖Duε‖LM (Ω;R3×3) ≤ C2 <∞ (∀ε ∈ (0, 1)), (28)
‖uε‖LM (Ω;R3) ≤ C3 <∞ (∀ε ∈ (0, 1)), (29)∥∥∥1

ε
D3uε

∥∥∥
LM (Ω;R3)

≤ C4 <∞ (∀ε ∈ (0, 1)), (30)∫
Ω
M
(∣∣∣(Dαuε

∣∣ D3uε
ε

)∣∣∣) dx ≤ C5 <∞ (∀ε ∈ (0, 1)) (31)

for some C2, C3, C4, C5.
For this, by (25) we infer that

1
1 + ‖Duε‖LM (Ω;R3×3) + ‖ 1

εD3uε‖LM (Ω;R3)

∫
Ω
M
(∣∣∣(Dαuε

∣∣ 1
ε
D3uε

)∣∣∣) dx ≤ C6 <∞ (32)

for all ε ∈ (0, 1) and for some C6.
Consider the case when ‖Duε‖LM (Ω;R3×3)/2 ≥ 1 > 0 and ‖ 1

εD3uε‖LM (Ω;R3)/2 ≥ 1 > 0.
Since

0 <
‖Duε‖LM (Ω;R3×3)

2 < ‖Duε‖LM (Ω;R3×3)
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and

0 <
‖ 1
εD3uε‖LM (Ω;R3)

2 <
∥∥∥1
ε
D3uε

∥∥∥
LM (Ω;R3)

by the definition of the Luxemburg norm and by (20), we deduce that

1 <
∫

Ω
M
( |Duε|
‖Duε‖LM (Ω;R3×3)/2

)
dx

≤
( 2
‖Duε‖LM (Ω;R3×3)

)i(M) ∫
Ω
M(|Duε|) dx (∀ε ∈ (0, 1))

(33)

and

1 <
∫

Ω
M
( 1

ε |D3uε|
‖ 1
εD3uε‖LM (Ω;R3)/2

)
dx

≤
( 2
‖ 1
εD3uε‖LM (Ω;R3)

)i(M) ∫
Ω
M
(∣∣∣1
ε
D3uε

∣∣∣) dx (∀ε ∈ (0, 1]).
(34)

Obviously∫
Ω
M(|Duε|) dx+

∫
Ω
M
(∣∣∣1
ε
D3uε

∣∣∣) dx
≤ 2

∫
Ω
M
(∣∣∣(Dαuε

∣∣ 1
ε
D3uε

)∣∣∣) dx (∀ε ∈ (0, 1]). (35)

Therefore, (32), (33)–(34) and (35) imply

A
(
‖Duε‖LM (Ω;R3×3),

∥∥∥1
ε
D3uε

∥∥∥
LM (Ω;R3)

)
≤ C6 <∞ (36)

whenever ‖Duε‖LM (Ω;R3×3) ≥ 2 and ‖ 1
εD3uε‖LM (Ω;R3) ≥ 2. Here

A(s, t) := 1
2 ·

si(M) + ti(M)

2i(M)(1 + s+ t)
.

Since i(M) > 1, A(s, t)→ +∞ as s→ +∞, t→ +∞ and so there exists C7 ∈ (0,∞)
such that A(s, t) > C6 (∀s, t > C7). Hence, (36) implies the claims (28) and (30), where
C2 = C4 := max{C7, 2} (∀ε ∈ (0, 1)). By (27) and (25) we deduce the claims (29)
and (31).

Step 3. Obviously,

C7 := sup
ε∈(0,1)

‖u0,ε‖W 1,M (Ω;R3) < +∞.

Therefore, (28)–(29) imply (23):

sup
ε∈(0,1)

‖vε‖W 1,M (Ω;R3) ≤ d̄ := C2 + C3 + C7 <∞. (37)

Step 4. We claim that
lim
ε→0
‖D3uε‖LM (Ω;R3) = 0. (38)

For this, by the convexity of M and M(0) = 0,

M(t) = M
(ε−1t

ε−1

)
≤ 1
ε−1M(ε−1t) (∀ε ∈ (0, 1)).
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Since |(zα |ε−1z3)| ≥ ε−1|z3|, we deduce, by (31) that

0 ≤
∫

Ω
M(|D3uε|) dx ≤ ε

∫
Ω
M
(
ε−1|D3uε|

)
dx

≤ ε
∫

Ω
M
(
|(Dαuε |ε−1D3uε)|

)
dx ≤ ε · C4 <∞ (∀ε ∈ (0, 1)).

Hence
lim
ε→0

∫
Ω
M(|D3uε|) dx = 0. (39)

It is known in the case of M ∈ ∆2 (see, e.g., [25, 33]) that (39) implies (38).
Step 5. It is known (see, e.g., [21, Theorems 1.1, 3.3]) thatW 1,M (Ω;R3) is a separable

reflexive Banach space as M,M∗ ∈ ∆2. By the reflexivity and separability of the closed
subspace V = W 1,M

Γ (Ω;R3) of W 1,M (Ω;R3), the Alaoglu–Bourbaki theorem together
with [23, Theorem V.7.6] imply that any closed ball of V equipped with the weak topology
is compact and metrizable. Similarly, any closed ball of LM (ω;R3) equipped with the weak
topology is compact and metrizable. Therefore, (23) and (24) imply the existence of some
cluster point of the sequence (vε, 1

ε

∫
I
D3vε dx3) in the weak topology of V ×LM (ω;R3).

Now, let v be a cluster point in the weak topology σ(V, V ∗). Analogously,
(28)–(29) imply that there exist u ∈ W 1,M (Ω;R3) and a subsequence (not relabeled)
of the sequence uε such that uε converges weakly to u in W 1,M (Ω;R3). Then it is easy
to check by the representation (1) that vε = uε − u0,ε converges weakly to u − u0,0 in
W 1,M (Ω;R3). Therefore, u− u0,0 = v and D3uε converges to D3u in the weak topology
σ(LM (Ω;R3), LM∗(Ω;R3)). By (38) and the generalized Hölder inequality [33, Theorems
13.13, 13.11], for every y ∈ LM∗(Ω;R3) we deduce that∣∣∣∫

Ω
(y,D3u) dx

∣∣∣ = lim
ε→0

∣∣∣∫
Ω

(y,D3uε) dx
∣∣∣ ≤ lim

ε→0
2‖y‖LM∗ (Ω;R3)‖D3uε‖LM (Ω;R3) = 0.

Therefore,
∫

Ω(y,D3u) dx = 0 for every y ∈ LM
∗(Ω;R3), and so D3u = 0 a.e. Since

D3u0,0 = 0, D3v = 0 follows, and so v ∈ V.
Step 6. Now consider the general assumption M,M∗ ∈ ∆2. By [25, (4.5) in p. 24],

there exists some Orlicz N -function N1 ∈ ∆glob
2 such that

N1(τ) = M∗(τ) (∀τ ≥ τ0)
for some τ0 ∈ (0,∞). Let M1 := N∗1 . By known results of the theory of N -functions and
Orlicz spaces [25, 37, 33], we deduce the following assertions: (M∗)∗ = M ,M∗1 = (N∗1 )∗ =
N1 ∈ ∆glob

2 , LM∗ = LN1 and LM = L(M∗)∗ ∼= (LM∗)∗ = (LN1)∗ ∼= LN∗1 with equivalent
norms, LM = LN∗1 = LM1 and M1 = N∗1 ∈ ∆2 and (LM )∗ = (LM1)∗ ∼= LM∗ = LM∗1 with
equivalent norms.

So, M1 ∈ ∆2, M∗1 ∈ ∆glob
2 , W 1,M

0 (Ω;R3) = W 1,M1
0 (Ω;R3) and W 1,M (Ω;R3) =

W 1,M1(Ω;R3) with equivalent norms.
Furthermore, we deduce that the continuous function W : R3×3 → R satisfying the

conditions (2) with respect to M , satisfies the conditions (2) with respect to M1:
1
C ′

(M1(|F |)− 1) ≤W (F ) ≤ C ′(1 +M1(|F |)) (∀F ∈ R3×3)

for some C ′ ∈ (0,∞).
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Therefore, we can apply the results of Steps 1–5 with respect to M1 in place of M .
Then by the above assertions for relations between M,M∗ and M1,M

∗
1 , we deduce all

assertions of Lemma 5.4 with respect toM under the general assumptionM,M∗ ∈ ∆2.

Remind that the quasiconvex envelope Qg : Rm×n → R of a continuous function
g : Rm×n → R is defined (see [9, Definition 6.3], [11, Theorem 6.9]) by

Qg(E) := inf
{ 1
meas(B)

∫
B

g(E +Dϕ) dx : ϕ ∈ C∞0 (B;Rm)
}

for all E ∈ Rm×n where B is the open unit ball of Rn.

Proposition 5.5. Let Q∗W be defined by (5) and let W : R3×3 → R be a continuous
function satisfying the condition (2). Then

Q∗QW (F̄ |z) = Q∗W (F̄ |z), (40)

where QW denotes the quasiconvex envelope of W .

Proof. The proof of (40) is the same such as in [7, Proposition 1.1]. It suffices to apply
also the following facts. Obviously

CW ≤ QW ≤W,

where CW denotes the convex envelope of W . Therefore, by convexity of M the function
QW satisfies the growth and coercivity conditions (2). By Focardi [16, Proposition 3.2]
QW is M -Lipschitz continuous in the sense

|QW (F1)−QW (F2)| ≤ const
(
1 + h(|F1|) + h(|F2)

)
|F1−F2| (∀F1, F2 ∈ R3×3), (41)

where h denotes the right derivative of M . By (41), |QW (F )| ≤ const
(
1 + h(|F |) · |F |

)
for all F ∈ R3×3. By the Płuciennik–Tian–Wang Lemma (see [36, Lemma 1]), for
u ∈ LM (Q;R3×3), h(|u|) ∈ LM

∗(Q) and so h(|F |)|F | ∈ L1(Q) by the LM -Hölder in-
equality [25]. QW is continuous, hence (see e.g. [25], [34]), the superposition operator
NQW mapping LM (Q,R3×3) into L1(Q) is continuous.

Let A(ω) be a family of all open subsets of ω. According to (13) define the functional
Eε : W 1,M (Ω;R3)× LM (ω;R3)×A(ω)→ R ∪ {+∞} by

Eε(u, b̄, A) =
{∫

A×IW (Dαu | 1εD3u) dx if 1
ε

∫
I
D3u dx3 = b̄(xα) and u ∈ Ψε

+∞ otherwise.

Denote by E0 : Z × LM (ω;R3) × A(ω) → R ∪ {+∞} the Γ-lower limit (see [12]) of Eε,
i.e.

E0(u, b̄, A) := inf
{

lim inf
n→+∞

∫
A×I

W (Dαun |λnD3un) dx : un ⇀ u

weakly in W 1,M (A× I;R3), λn

∫
I

D3un dx3 ⇀ b̄ weakly in LM (A;R3)
}
, (42)

where λn := (εn)−1.
Later on, we say that un → u in LMloc(A × I;R3) if un → u in LM (D × I;R3)-norm

for any D b A.
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Lemma 5.6. Let the functions M and W be such as in Theorem 5.1 and E0 be defined
by (42). Then for any sequence λn → 0, there exists a subsequence λnk

such that for
each (u, b̄) ∈ Z × LM (ω;R3), the set function E0(u, b, ·) is a trace of a Radon measure,
absolutely continuous with respect to the 2-dimensional Lebesgue measure.

The proof of Lemma 5.6 is the same as that of Lemma 2.1 in [7].

Lemma 5.7. Let the functions M and W be such as in Theorem 5.1. Let A ∈ A(ω),
L ∈ R, u ∈ Z and consider the sequences un ∈ W 1,M (A × I;R3) and λn ∈ R such that
un → u in LMloc(A× I;R3)-norm, λn

∫
I
D3un dx3 ⇀ b̄ weakly in LM (A;R3) and

lim
n→+∞

∫
A×I

W
(
Dαun |λnD3un

)
dx = L.

Then there exist a subsequence λnk
of λn and a sequence ũk ∈W 1,M (A×I;R3) such that

ũk = u on Θk(∂A)× I for some neighborhood Θk(∂A), ũk → u in LMloc(A× I;R3)-norm,
λn
∫
I
D3ũk dx3 ⇀ b̄ weakly in LM (A;R3) and

lim sup
k→+∞

∫
A×I

W (Dαũk |λnD3ũk) dx ≤ L.

The proof of Lemma 5.7 is the same as that of Lemma 2.2 in [7].

Lemma 5.8. The infimum in (42) for E0 remains unchanged if we replace W by its
quasiconvex envelope QW .

Proof. Fix (u, b̄, A) ∈ Z × LM (ω;R3)×A(ω) and define

Q̂E0(u, b̄, A) := inf
{

lim inf
n→+∞

∫
A×I
QW (Dαun |λnD3un) dx : un ⇀ u

weakly in W 1,M (A× I;R3), λn

∫
I

D3un dx3 ⇀ b̄ weakly in LM (A;R3)
}
.

Since W (F̄ |z) ≥ QW (F̄ |z) for all F̄ ∈ R3×2 and z ∈ R3, E0(u, b̄, A) ≥ Q̂E0(u, b̄, A).
To prove the opposite inequality, fix δ > 0 and let un ∈W 1,M (A×I;R3) be such that

un ⇀ u weakly in W 1,M (A× I;R3), λn
∫
I
D3un dx3 ⇀ b̄ weakly in LM (A;R3) and

Q̂E0(u, b̄, A) ≥ lim
n→+∞

∫
A×I
QW (Dαun |λnD3un) dx− δ. (43)

By [7, (2.2) in Proof of Proposition 1.1] and by the Focardi W 1,M -generalization in [16,
Theorem 3.1] of the Acerbi–Fusco weak l.s.c. theorem together with the Acerbi–Fusco
W 1,∞-relaxation theorem [1], for each n, there exists a sequence {un,k} converging to un
weakly in W 1,M (A× I;R3) such that∫

A×I
Q̂W (Dαun |λnD3un) dx = lim

k→+∞

∫
A×I

W (Dαun,k |λnD3un,k) dx. (44)

From (43) and (44) we have

Q̂E0(u, b̄, A) ≥ lim
n→+∞

lim
k→+∞

∫
A×I

W (Dαun,k |λnD3un,k) dx− δ. (45)
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Since W 1,M (A × I;R3) ↪→↪→ LMloc(A × I;R3) compactly (see Donaldson–Trudinger [13,
Theorem 3.9] together with Gossez [20, Proposition 4.3]), un,k → un in LMloc(A× I;R3)-
norm,

lim
n→+∞

lim
k→+∞

‖un,k − u‖LM (D×I;R3) = 0 (∀D b A) (46)

and for the weak topology of LM (A;R3),

lim
n→+∞

lim
k→+∞

λn

∫
I

D3un,k dx3 = b̄. (47)

By (43) together with the coercivity condition (2) for QW , we have

sup
n,k

∥∥∥λn ∫
I

D3un,k dx3

∥∥∥
LM (A;R3)

< +∞. (48)

It is known (see, e.g., [21]) that W 1,M (Ω;R3) is separable and reflexive for the case
when M,M∗ ∈ ∆2. By the reflexivity and separability of W 1,M (Ω;R3), the Alaoglu–
Bourbaki theorem together with [23, Theorem V.7.6] imply that any closed ball equipped
with the weak topology is compact and metrizable. By (45), (46), (47), (48) and by
using the Moore Lemma [14, Lemma I.7.6] (on double limits of sequence with respect
metrizable topologies) we can find a subsequence un,kn

of un,k satisfying un,kn
→ u in

LM (Dq × I;R3)-norm for any fixed sequence Dq with Dq b Dq+1 and
⋃
q∈N = A (and so

in LMloc(A × I;R3)-norm), λn
∫
I
D3un,kn

dx3 ⇀ b̄ weakly in LM (A;R3) and realizing the
double limit in the right hand side of (45). Consequently we have

Q̂E0(u, b̄, A) ≥ lim
n→+∞

∫
A×I

W
(
Dαun,kn

|λnD3un,kn

)
dx− δ ≥ E0(u, b̄, A)− δ.

Letting δ → 0, we obtain the conclusion.

Notice that by Proposition 5.5 and Lemma 5.8 we may assume without loss of gen-
erality that W is quasiconvex. Therefore by the condition (2), M ∈ ∆2, together with
Focardi [16, Proposition 3.2], W satisfies

|W (ξ1)−W (ξ2)| ≤ C
(
1 + h(1 + |ξ1|+ |ξ2|)

)
|ξ1 − ξ2| (49)

for some C ∈ (0,+∞) and for all ξ1, ξ2 ∈ R3×3, where h denotes the right derivative
of M . Define

Wλ(F̄ |b) := inf
{∫

Q

W (F̄ +Dαϕ |λD3ϕ) dx : ϕ ∈W 1,M (Q;R3),

ϕ(·, x3) is Q′-periodic L1 a.e. x3 ∈ I, λ
∫
Q

D3ϕdx = b
}

(50)

and
Wk(F̄ |b) := inf

|λ|≤k
Wλ(F̄ |b), (51)

where λ ∈ R and (F̄ , b) ∈ R3×2 × R3.
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Proposition 5.9. Assume that a quasiconvex function W : R3×3 → [0,+∞) satisfies the
conditions (2) and M ∈ ∆2. Then the functions Wλ, Wk and Q∗W satisfy the condition:

|Wλ(F̄ |b)−Wλ(F̄ ′ |b′)|, |Wk(F̄ |b)−Wk(F̄ ′ |b′)|, |Q∗W (F̄ |b)−Q∗W (F̄ ′ |b′)|
≤ h∗

(
|F̄ |+ |b|+ |F̄ ′|+ |b′|

)
· (|F̄ − F̄ ′|+ |b− b′|) (∀ (F̄ |b), (F̄ ′ |b′) ∈ R3×2 × R3)

for some nondecreasing function h∗ : [0,+∞)→ [0,+∞).

Proof. Fix (F̄ , b), (F̄ ′, b′) ∈ R3×2 × R3. Let ϕn be a infimizing sequence in the definition
of Wλ(F̄ |b), and consider the sequence ψn := ϕn +

(
b′−b
λ

)
x3. We may assume that∫

Q

W
(
F̄ +Dαϕn |λD3ϕn

)
dx ≤Wλ(F̄ , b) + 1 ≤W (F̄ , b) + 1. (52)

Since ψn(·, x3) is Q′-periodic L1 a.e. x3 ∈ I and λ
∫
Q
D3ψn dx = b′, ψn is an admissible

function in the definition of Wλ(F̄ ′ |b′).
By the condition (49) and by the Hölder inequality in Orlicz spaces (see [25]) we

deduce that∣∣∣∫
Q

W (F̄ ′ +Dαψn |λD3ψn) dx−
∫
Q

W (F̄ +Dαϕn |λD3ϕn) dx
∣∣∣

≤ C
∫
Q

(
1 + h

(
1 +

∣∣(F̄ ′ +Dαψn |λD3ψn)
∣∣+
∣∣(F̄ +Dαϕn |λD3ϕn)

∣∣))
·
∣∣(F̄ ′ +Dαψn |λD3ψn)− (F̄ +Dαϕn |λD3ϕn)

∣∣ dx
≤ 2C

∥∥1 + h(1 + |(F̄ ′ +Dαϕn |D3ϕn + b′ − b)|+ |(F̄ +Dαϕn |λD3ϕn)|
∥∥
LM (Q)

·
∥∥(|F̄ ′ − F̄ |+ |b′ − b|)

∥∥
LM∗ (Q).

(53)

By the coercivity condition in (2), (52) implies that

∞ > W (F̄ , b) + 1 ≥
∫
Q

W (F̄ +Dαϕn |λD3ϕn) dx

≥ 1
C2

(∫
Q

M(|F̄ +Dαϕn |λD3ϕn|) dx− 1
)

for some C2 ∈ (0,+∞) and so

sup
n

∫
Q

M
(
|(F̄ +Dαϕn |λD3ϕn)|

)
< C2(W (F̄ |b) + 1) + 1.

Hence
sup
n

∥∥(F̄ +Dαϕn |λD3ϕn)
∥∥
LM (Q;R3) ≤ C2(W (F̄ |b) + 1) + 1 (54)

and∥∥1 +
∣∣(F̄ ′ +Dαϕn |D3ϕn + b′ − b)

∣∣+
∣∣(F̄ +Dαϕn |λD3ϕn)

∣∣∥∥
LM (Q)

≤ C3
(
1 + |F̄ ′|+ |F̄ |+ |b|+ |b′|

)
+ 2
(
C2(W (F̄ |b) + 1) + 1) =: C4(b, b′, F̄ , F̄ ′),

(55)

where C3 := ‖1‖LM (Q) < +∞. By the Płuciennik–Tian–Wang Lemma (see [36, Lemma 1])
for M ∈ ∆2, there exists a function r : [0,+∞) → [0,+∞) such that ‖z‖LM (Q) ≤ a ⇒
‖h(|z|)‖LM∗ (Q) ≤ r(a). Define

rM (a) = sup
{
‖h(|z|)‖LM∗ (Q) : ‖z‖LM (Q) ≤ a

}
. (56)
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Then 0 ≤ rM (a) ≤ r(a) < +∞ and rM is nondecreasing. Therefore (53) and (55) imply
that∣∣∣∫

Q

W (F̄ ′ +Dαψn |λD3ψn) dx−
∫
Q

W (F̄ +Dαϕn |λD3ϕn) dx
∣∣∣

≤ 2C
(
C5 + rM (C4(b, b′, F̄ , F̄ ′))

)
· (|F̄ ′ − F̄ |+ |b′ − b|) < +∞, (57)

where C5 := ‖1‖LM∗ (Q) < +∞. By the upper bound condition in (2) for W ≥ 0 and
M ∈ ∆2,

W (F̄ , b) ≤W (F̄ , b) +W (F̄ ′, b′)
≤ C6(1 +M(|F̄ |) +M(|b|) +M(|F̄ ′|) +M(|b′|))

(58)

for some C6 ∈ (0,+∞) and for all (F̄ , b), (F̄ ′, b′) ∈ R3×2 × R3. Hence (57), (58) and the
definition C4 in (55) imply the existence of some nondecreasing function h∗ : [0,+∞)→
[0,+∞) such that∣∣∣∫

Q

W (F̄ ′ +Dαψn |λD3ψn) dx−
∫
Q

W (F̄ +Dαϕn |λD3ϕn) dx
∣∣∣

≤ h∗
(
|F̄ |+ |b|+ |F̄ ′|+ |b′|

)
· (|F̄ − F̄ ′|+ |b− b′|) =: C̃(b, b′, F̄ , F̄ ′) (59)

for all (F̄ |b), (F̄ ′ |b′) ∈ R3×2 × R3. By the definition of Wλ(F̄ ′ |b′), (59) implies that

Wλ(F̄ ′ |b′) ≤
∫
Q

W (F̄ ′ +Dαψn |λD3ψn) dx

≤
∫
Q

W (F̄ +Dαϕn |λD3ϕn) dx+ C̃(b, b′, F̄ , F̄ ′),
(60)

and letting n→ +∞, we infer that

Wλ(F̄ ′ |b′) ≤Wλ(F̄ |b) + C̃(b, b′, F̄ , F̄ ′). (61)

Using the same arguments for the pair (F̄ ′ |b′) in place of (F̄ |b), we deduce that

Wλ(F̄ |b)| ≤Wλ(F̄ ′ |b′) + C̃(b, b′, F̄ , F̄ ′). (62)

Taking infimum over |λ| ≤ k in (61), (62), we infer that

Wk(F̄ ′ |b′) ≤Wk(F̄ |b) + C̃(b, b′, F̄ , F̄ ′),

Wk(F̄ |b) ≤Wk(F̄ ′ |b′) + C̃(b, b′, F̄ , F̄ ′).
(63)

Since Wk(F̄ |b) ↑ Q∗W (F̄ |b) as k → +∞, (63) implies that

|Q∗W (F̄ ′ |b′)−Q∗W (F̄ |b)| ≤ C̃(b, b′, F̄ , F̄ ′).

Lemma 5.10. Let W be a quasiconvex continuous function satisfying (2) and
M ∈ ∆2 ∩∇2. Consider the Γ-lower limit E0 defined in (42). Then

E0(u, b̄, A) ≥
∫
A

Q∗W (Dαu | b̄) dxα (64)

for all (u, b̄, A) ∈ Z × LM (ω;R3)×A(ω).

Proof. By Proposition 5.9, Q∗W (Dαu | b̄) : A→ [0,+∞) is measurable.
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Step 1. Let A = Q′ and u(x) := F̄ xα + u0 with F̄ ∈ R3×2 and u0, b̄ ∈ R3. Assume
that

E0(u, b̄, Q′) < +∞.
By Lemma 5.7 we may restrict ourselves, in (42) to sequences having the same trace as
their limit. Consider the sequence

ψn(x) := ϕn + (F̄ xα + u0),
where ϕn ∈W 1,M (Q;R3) is such that ϕn = 0 on ∂Q′×I, ϕn ⇀ 0 weakly inW 1,M (Q;R3)
(so ϕn is bounded in W 1,M (Q;R3)) and λn

∫
I
D3ϕn dx3 ⇀ b̄ weakly in LM (Q′;R3) and

lim
n→+∞

∫
Q

W (Dαϕn |λnD3ϕn) dx < +∞. (65)

Define
ϕ̃n := ϕn + x3

( b̄

λn
−
∫
Q

D3ϕn dx
)
.

By (65) and the coercivity condition in (2), we deduce that, by the same arguments for
proving (54),

sup
n

∥∥(Dαϕn |λnD3ϕn)
∥∥
LM (Q;R3) < +∞ (66)

and so by the Hölder inequality,

sup
n

∣∣∣∫
Q

λnD3ϕn dx
∣∣∣ ≤ 2 sup

n
‖λnD3ϕn‖LM (Q;R3) · ‖1‖LM∗ (Q) < +∞.

Hence, we deduce that ϕ̃n is bounded in W 1,M (Q;R3), λn
∫
Q
D3ϕ̃n dx3 = b̄, Dαϕn =

Dαϕ̃n and
sup
n

∥∥(Dαϕ̃n |λnD3ϕ̃n)
∥∥
LM (Q;R3) < +∞ (67)

and since ϕn = 0 on ∂Q′ × I, ϕ̃n(·, x3) is Q′-periodic. Thus ϕ̃n are admissible functions
for the definition of Q∗W and we have∫

Q

W (F̄ +Dαϕ̃n |λnD3ϕ̃n) dx ≥ Q∗W (F̄ | b̄). (68)

On the other hand, by the weak continuity of the Lebesgue integral,

lim
n→+∞

∥∥(F̄ +Dαϕn |λnD3ϕn)− (F̄ +Dαϕ̃n |λnD3ϕ̃n)
∥∥
L∞(Q;R3)

= lim
n→+∞

∣∣∣∫
Q

λnD3ϕn dx− b̄
∣∣∣ = lim

n→+∞

∣∣∣∫
Q′

(∫
I

λnD3ϕn dx− b̄
)
dxα

∣∣∣ = 0. (69)

Since W satisfies (49), we have∣∣(W (F̄ +Dαϕn |λnD3ϕn)−W (F̄ +Dαϕ̃n |λnD3ϕ̃n))
∣∣

≤ C
(
1 + h

(
1 + |(F̄ +Dαϕn |λnD3ϕn)|+ |(F̄ +Dαϕ̃n |λnD3ϕ̃n)|

))
·
∣∣(F̄ +Dαϕn |λnD3ϕn)− (F̄ +Dαϕ̃n |λnD3ϕ̃n)

∣∣. (70)
By (66), (67) we deduce, by the Płuciennik–Tian–Wang Lemma (see [36, Lemma 1]) the
existence of C ∈ (0,+∞) such that

sup
n

∥∥h(1 + |(F̄ +Dαϕn |λnD3ϕn)|+ |(F̄ +Dαϕ̃n |λnD3ϕ̃n)|
)∥∥
LM∗ (Q) ≤ C. (71)
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By the boundedness of the embedding LM∗(Q) ↪→ L1(Q) (see, e.g., [25]), (71) implies
that

sup
n

∥∥h(1 + |(F̄ +Dαϕn |λnD3ϕn)|+ |(F̄ +Dαϕ̃n |λnD3ϕ̃n)|
)∥∥
L1(Q) < +∞. (72)

By (69), (70) and (72), we deduce that
0 ≤ lim sup

n→+∞

∣∣(W (F̄ +Dαϕn |λnD3ϕn)−W (F̄ +Dαϕ̃n |λnD3ϕ̃n)
)∣∣

≤ 2C lim sup
n→+∞

∥∥(F̄ +Dαϕn |λnD3ϕn)− (F̄ +Dαϕ̃n |λnD3ϕ̃n)
∥∥
L∞(Q;R3)

· sup
n

∥∥h(1 + |(F̄ +Dαϕn |λnD3ϕn)|+ |(F̄ +Dαϕ̃n |λnD3ϕ̃n)|
)∥∥
L1(Q;R3) = 0.

(73)

From (68) and (73), we infer that

lim inf
n→+∞

∫
Q

W (F̄ +Dαϕn |λnD3ϕn) dx ≥ Q∗W (F̄ | b̄). (74)

We complete the proof of (64) for the case in Step 1 by taking the infimum over all
admissible sequences in (74), and then we get the inequality

E0(F̄ xα + u0, b̄, Q
′) ≥

∫
Q′
Q∗W (F̄ | b̄) dxα = L2(Q′) · Q∗W (F̄ | b̄) = Q∗W (F̄ | b̄). (75)

Step 2. Fix (u, b̄, A) ∈ Z×LM (ω;R3)×A(ω). Let un ∈W 1,M (A×I;R3) be such that
un ⇀ u weakly in W 1,M (A× I;R3), λn

∫
I
D3un dx3 ⇀ b̄ weakly in LM (A;R3) and

+∞ > E0(u, b̄, A) = lim
n→+∞

∫
A×I

W (Dαun |λnD3un) dx. (76)

Define the sequence of measures

µn :=
(∫

I

W (Dαun |λnD3un) dx3

)
L2bA.

By (76) and [4, Theorem 1.59]) we can find a subsequence (not relabeled) {µn} weakly∗
converging to some nonnegative measure µ. Denote by ρ the density of the absolutely
continuous part of µ with respect to the 2-dimensional Lebesgue measure. In order to
prove (64) it suffices to show that, for a.e. x0 ∈ A,

ρ(x0) ≥ Q∗W (Dαu(x0) | b̄(x0)). (77)

By the Besicovitch derivation theorem [4, Theorem 2.22], for a.e. x0 ∈ A,

ρ(x0) = lim
ε→0

µ(x0 + εQ′)
ε2 . (78)

By [3, Lemma 3.1, Lemma 3.2] we deduce that for a.e. x0 ∈ A,

0 = lim
ε→0

1
ε2

∫
x0+εQ′

M
(∣∣∣u(x)− u(x0)− 〈∇u(x0), x− x0〉

ε

∣∣∣) dxα
= lim
ε→0

∫
Q′
M
(∣∣∣u(x0 + εyα)− u(x0)− ε〈∇u(x0), yα〉

ε

∣∣∣) dyα (79)

and

0 = lim
ε→0

1
ε2

∫
x0+εQ′

M(|b̄(x)− b̄(x0)|) dxα = lim
ε→0

∫
Q′
M(|b̄(x0 + εy)− b̄(x0)|) dyα. (80)
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Fix x0 satisfying (78), (79), (80) and let ε→ 0 be a sequence such that

µ(∂(x0 + εQ′)) = 0 (81)

for all ε > 0 (this sequence exists due to [4, Proposition 1.62, Example 1.63]). ByM ∈ ∆2
and [25], (79), (80) imply that

lim
ε→0

∫
Q′
M
(
d
∣∣∣u(x0 + εyα)− u(x0)− ε〈∇u(x0), yα〉

ε

∣∣∣) dyα = 0 (∀d ∈ (0,+∞)) (82)

and ∥∥b̄(x0 + ε(·))− b̄(x0)
∥∥
LM (Q′;R3) → 0 (ε→ 0). (83)

Using (78), (81) and the definition of µ, we infer that

ρ(x0) = lim
ε→0

lim
n→+∞

1
ε2

∫
(x0+εQ′)×I

W (Dαun |λnD3un) dx

= lim
ε→0

lim
n→+∞

∫
Q

W
(
Dαun(x0 + εyα, y3) |λnD3un(x0 + εyα, y3)

)
dy

= lim
ε→0

lim
n→+∞

∫
Q

W (Dαun,ε |λnεD3un,ε) dy,

(84)

where

un,ε(y) := un(x0 + εyα, y3)− u(x0)
ε

.

Since W 1,M (Ω;R3) ↪→↪→ LM (Ω;R3) compactly (see Donaldson–Trudinger [13, Theo-
rem 3.9] together with Gossez [20, Proposition 4.13]), un → u in LMloc(A× I;R3), and so
un → u in LM ((x0 + εQ′)× I;R3) for x0 + εQ′ b A. By the convexity of M and M ∈ ∆2,
we have∫

Q

M(|un,ε(y)− 〈∇u(x0), yα〉|) dx

=
∫
Q

M
( |un(x0 + εyα, y3)− u(x0)− ε〈∇u(x0), yα〉|

ε

)
dx

= 1
ε2

∫
(x0+εQ′)×I

M
( |un(x)− u(x0)− 〈∇u(x0), xα − x0〉|

ε

)
dx

≤ 1
ε2 ·

1
2

∫
(x0+εQ′)×I

M
(

2 |un(x)− u(x)|
ε

)
dx

+ 1
ε2 ·

1
2

∫
(x0+εQ′)×I

M
(

2 |u(x)− u(x0)− 〈∇u(x0), xα − x0〉|
ε

)
dx.

(85)

By (82) and (85)

lim
ε→0

lim
n→+∞

∫
Q

M(|un,ε(y)− 〈∇u(x0), yα〉|) dx = 0.

By M ∈ ∆2 together with [25], we infer that

lim
ε→0

lim
n→+∞

∥∥un,ε(y)− 〈∇u(x0), yα〉
∥∥
LM (Q;R3) = 0. (86)
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By (83) and the Hölder inequality for any ϕ ∈ LM∗(Q′;R3),

lim
ε→0

∣∣∣∫
Q′

(b̄(x0 + εyα)− b̄(x0))ϕ(yα) dyα
∣∣∣

≤ lim
ε→0

2
∥∥b̄(x0 + ε(·))− b̄(x0)

∥∥
LM (Q′;R3)‖ϕ‖LM∗ (Q′;R3) = 0.

Hence by λn
∫
I
D3un dx3 ⇀ b̄ weakly in LM (A;R3), we infer that, for ϕ ∈ LM∗(Q′;R3),

lim
ε→0

lim
n→+∞

∫
Q

λnεD3un,ε(y)ϕ(y) dy

= lim
ε→0

lim
n→+∞

1
ε2

∫
(x0+εQ′)×I

λnD3un(x)ϕ
(xα − x0

ε

)
dx

= lim
ε→0

1
ε2

∫
(x0+εQ′)×I

b̄(xα)ϕ
(xα − x0

ε

)
dxα

= lim
ε→0

∫
Q′
b̄(x0 + εyα)ϕ(yα) dyα =

∫
Q′
b̄(x0)ϕ(yα) dyα.

(87)

By the Moore Lemma (see [14, Lemma I.7.6]) from (84), (86) and (87), we construct
ũk := uεk,nk

and λnk
such that

ũk(x)→ Dαu(x0)(x) in LM (Q;R3),

where Dαu(x0)(x) := Dαu(x0)xα and

λnk

∫
I

εkD3ũk dy3 ⇀ b̄(x0) weakly in LM (A;R3)

and
ρ(x0) = lim

k→+∞

∫
Q

W (Dαũk |λnk
εkD3ũk) dy.

By the definition of E0,

lim
k→+∞

∫
Q

W (Dαũk |λnk
εkD3ũk) dy ≥ E0

(
Dαu(x0)(·), b̄(x0), Q′

)
, (88)

and so the claim (77) follows from inequality (88) and the inequality (75) proved in
Step 1.

Lemma 5.11. Under the hypothesis of Lemma 5.10, we have

E0(u, b̄, A) ≤
∫
A

Q∗W (Dαu | b̄) dxα (89)

for all (u, b̄, A) ∈ Z × LM (ω;R3)×A(ω).

Proof. By Proposition 5.9, Q∗W (Dαu | b̄) : A→ [0,+∞) and Wk(Dαu | b̄) : A→ [0,+∞)
are measurable.

We claim that for each fixed k ∈ N and for all (u, b̄, A) ∈ Z × LM (ω,R3)×A(ω),

E0(u, b̄, A) ≤
∫
A

Wk(Dαu | b̄) dxα. (90)

This claim will be proven in two steps.
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Step 1. Let u be an affine function, i.e. u = F̄ xα and b ∈ R. Let ϕ be admissible for
the definition of Wλ(F̄ |b) in (50). Extending Q′-periodically the Q′-periodic function ϕ,
we define ϕn : R2 × I → R3 by

ϕn(x) := λ

λn
ϕ
(λn
λ
xα, x3

)
.

Then, ϕn ∈W 1,M (A× I;R3) and ϕn → 0 in LM (A× I;R3)-norm.
The function yα 7→ λ

∫
I
D3ϕdx3 is Q′-periodic and belongs to LM (Q′;R3), since by

the Jensen inequality and M ∈ ∆2∫
Q′
M
(∣∣∣∫

I

D3ϕ(yα, x3) dx3

∣∣∣) dyα ≤ ∫
Q′
M
(∫

I

|D3ϕ(yα, x3)| dx3

)
dyα

≤
∫
Q′

∫
I

M
(
|D3ϕ(yα, x3)|

)
dx3 dyα <∞.

By the LM (Q′)-generalization (see [35, Homogenization Theorem 7.1, Remark p. 121])
for the Riemann–Lebesgue Lemma in Lp(Q′)-spaces (see, e.g., [11]) we infer that

λn

∫
I

D3ϕn dx = λ

∫
I

D3ϕ
(λn
λ
xα, x3

)
dx3

⇀ λ

∫
I

∫
Q′
D3ϕ(yα, x3) dyα dx3 = b̄ weakly in LM (Q′,R3).

Define
H(xα, x3) :=

(
F̄ +Dαϕ(xα, x3) |λD3ϕ(xα, x3)

)
,

W̃ (xα) :=
∫
I

W (H(xα, x3)) dx3.

Since H ∈ LM (Q;R3) and M ∈ ∆2, by the condition (2)∫
Q′
|W̃ (xα)| dxα ≤

∫
Q

C(1 +M(H(xα, x3))) dxα dx3 <∞

and so W̃ ∈ L1(Q′;R3). Using the L1(Q′) Riemann–Lebesgue Lemma (see, e.g., [11]), we
deduce that

E0(u, b̄, A) ≤ lim
n→+∞

∫
A×I

W (F̄ +Dαϕn |λD3ϕn) dx = lim
n→+∞

∫
Q′

1A(xα) ·W̃
(λn
λ
xα

)
dxα

=
∫
Q′

1A(xα)
(∫

Q′
W̃ (yα) dyα

)
dxα = L2(A)

∫
Q

W (F̄ +Dαϕ |λD3ϕ) dx. (91)

Taking the infimum over all admissible ϕ and |λ| ≤ k, we obtain

E0(u, b̄, A) ≤ L2(A)Wk(F̄ |b) =
∫
A

Wk(F̄ |b) dxα.

Step 2. Let u be a piecewise affine function and b̄ be a piecewise constant. Let
{Ai}i=1,...,l ⊂ A(ω) be a finite and measurable partition of A such that u and b̄ are
affine and constant, respectively on each Ai, i = 1, . . . , l. By Step 1 for all i = 1, . . . , l

E0(u, b̄, Ai) ≤
∫
Ai

Wk(Dαu | b̄) dxα.
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By Lemma 5.6, E0(u, b̄, ·) is a measure and so

E0(u, b̄, A) =
l∑
i=1

E0(u, b̄, Ai) ≤
l∑
i=1

∫
Ai

Wk(Dαu | b̄)dxα =
∫
A

Wk(Dαu | b̄) dxα.

Step 3. Let (u, b̄, A) ∈ W 1,M (ω;R3) × LM (ω;R3) × A(ω) and let {(un, b̄n)} be a se-
quence such that un are piecewise affine functions, b̄n are piecewise constants and un → u

in W 1,M (A;R3)-norm and a.e., b̄n → b̄ in LM (A;R3)-norm and a.e. Since E0(·, ·, A) is a
l.s.c. function, we have

E0(u, b̄, A) ≤ lim inf
n→+∞

E0(un, b̄n, A) ≤ lim inf
n→+∞

∫
A

Wk(Dαun | b̄n) dxα. (92)

Since Wk is continuous (see Proposition 5.9) and satisfies 0 ≤ Wk(F ) ≤ W (F ) ≤
C(1 + M(|F |)), the superposition operator NWk

: LM (Ω;R3) → L1(Ω;R3) is continu-
ous (see, e.g., [5, Theorem 3], [34, Theorem 3.2]), and so

lim
n→+∞

∫
A

Wk(Dαun | b̄n) dxα =
∫
A

Wk(Dαu | b̄) dxα.

Therefore, (92) implies that

E0(u, b̄, A) ≤
∫
A

Wk(Dαu | b̄) dxα (∀k ∈ N).

By Lemma 5.6, E0(u, b̄, ·) is a measure which is absolutely continuous with respect
to the 2-dimensional Lebesgue measure, and so by the Radon–Nikodym theorem, we can
write E0(u, b̄, ·) = ρL2bω for some ρ ∈ L1(ω). Let x0 ∈ ω be a Lebesgue point for ρ, Dαu

and b̄. Then from the definition of Q∗W and Wk,
Q∗W (Dαu(x0) | b̄(x0)) = lim

k→+∞
Wk(Dαu(x0) | b̄(x0)).

By (90) and by the Radon–Nikodym theorem for k ∈ N, we infer that
ρ(xα) ≤Wk(Dαu(xα) | b̄(xα)) for L2 a.e. xα ∈ ω and for all k ∈ N. (93)

Therefore,
ρ(x0) ≤ Q∗W (Dαu(x0) | b̄(x0)) for L2 a.e. x0 ∈ ω

and so
E0(u, b̄, A) =

∫
A

ρ(xα) dxα ≤
∫
A

Q∗W (Dαu(xα) | b̄(xα)) dxα.

Proof of Theorem 5.1. Let uε ∈ Ψε be such that uε ⇀ ū weakly in W 1,M (Ω;R3),
1
ε

∫
I
D3uε dx3 ⇀ b̄ weakly in LM (ω;R3). It is easy to check by the representation (1), the

isomorphism (16) and by the Fubini theorem that Pε(uε)→ P0(ū, b̄) and Pε(vε+u0,ε)→
P0(v̄+ u0,0, b̄+ e3) as ε→ 0, with uε = vε + u0,ε and ū = v̄+ u0,0, where vε ∈ V . By the
Kuratowski Compactness Theorem (see [12]) in order to show that J̄ε Γ-converges to J0 it
is enough to prove that the Γ-lower limit E0 of any subsequence of Eε coincides with J0.
Therefore the assertions of Theorem 5.1 follow from Lemmas 5.10 and 5.11 applied to
the sequence uε = vε + u0,ε.
Proof of Corollary 5.2. Observe that vε := uε − u0,ε belongs to V . By (19),

Jε(uε) = Jε(vε + u0,ε) ≤ inf
v∈V

Jε(v + u0,ε) + γ(ε). (94)
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Therefore
J̄∗ε (vε, b̄ε) ≤ inf

v∈V
J̄∗ε (v, b̄) + γ(ε), (95)

where 1
ε

∫
I
D3vε dx3 + e3 = b̄ε(xα) and 1

ε

∫
I
D3v dx3 + e3 = b̄(xα). It is easy to check that

Jε(u0,ε) =
∫

Ω
W (eα |e3) dx−

∫
Ω

(f, u0,ε) dx−
∫
S+

(g+
0 , u0,ε) dH2

+
∫
S−

(g−0 , u0,ε) dH2 −
∫
ω

(
g,

1
ε

∫
I

ε · e3

)
dxα ≤ C < +∞

for some C and for all ε ∈ (0, 1). Hence (95) implies that supε∈(0,1) J̄
∗
ε (vε, b̄ε) < +∞.

Therefore by Lemma 5.4 the sequence (vε, b̄ε) is bounded, weakly compact in
W 1,M (Ω;R3)× LM (ω;R3) and any cluster point (v∗, b̄∗) belongs to V × LM (ω;R3).

Fix ṽ ∈ W 1,M (Ω;R3), b̃ ∈ LM (ω;R3) and J∗0 (ṽ + u0,0, b̃) < +∞. By Theorem 5.1
there exists a sequence ṽε = ũε − u0,ε ∈ W 1,M (Ω;R3) such that ṽε ⇀ ṽ = ũ − u0,0
weakly in W 1,M (Ω;R3) and b̃ε = 1

ε

∫
I
D3ṽε dx3 + e3 ⇀ b̃ weakly in LM (ω;R3) and

J̄∗ε (ṽε, b̃ε) → J∗0 (ṽ + u0,0, b̃). Therefore, applying Theorem 5.1, (18) and the assumption
γ(ε)→ 0 as ε→ 0, we infer that

J0(u∗, b̄∗) = J∗0 (v∗ + u0,0, b̄∗) ≤ lim inf
ε→0

J̄∗ε (vε, b̄ε)

≤ lim inf
ε→0

(J̄∗ε (ṽε, b̃ε) + γ(ε)) = J∗0 (ṽ + u0,0, b̃) = J0(ũ, b̃),

where u∗ = v∗+u0,0. Using the isomorphism (16) and the representation (1), we re-write
the statements obtained above for vε and v∗. By this way, we deduce all statements of
Corollary 5.2.

Let us inform that we have recently obtained results in the setting of the Orlicz–
Sobolev spaceW 1,M that extend other known results for thin films in the caseM(t) = |t|p
for some p ∈ (1,∞). In particular, our results extend the results obtained in 2009 by
G. Bouchitté, I. Fonseca and M. L. Mascarenhas [8] for thin films with bending moment
depending also on the third thickness variable. Their proofs require other techniques and
we will discuss these issues in our forthcoming papers.

References

[1] E. Acerbi, N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational
Mech. Anal. 86 (1984), 125–145.

[2] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2 ed., Pure Appl. Math. (Amsterdam)
140, Academic Press, Amsterdam 2003.

[3] A. Alberico, A. Cianchi, Differentiability properties of Orlicz–Sobolev functions, Ark. Mat.
43 (2005), 1–28.

[4] L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford Math. Monogr., Oxford Univ. Press, New York 2000.

[5] J. Appell, H. T. Nguyêñ, P. P. Zabrejko,Multivalued superposition operators in ideal spaces
of vector functions, II, Indag. Math. (N.S.) 2 (1991), 397–409.

http://dx.doi.org/10.1007/BF00275731
http://dx.doi.org/10.1007/BF02383608
http://dx.doi.org/10.1016/0019-3577(91)90026-4


166 W. LASKOWSKI AND H. T. NGUYÊÑ

[6] H. Attouch, G. Buttazzo, G. Michaille, Variational Analysis in Sobolev and BV Spaces:
Applications to PDEs and Optimization, MPS/SIAM Ser. Optim. 6, SIAM, Philadelphia,
2006.

[7] G. Bouchitté, I. Fonseca, M. L. Mascarenhas, Bending moment in membrane theory,
J. Elasticity 73 (2004), 75–99.

[8] G. Bouchitté, I. Fonseca, M. L. Mascarenhas, The Cosserat vector in membrane theory: a
variational approach, J. Convex Anal. 16 (2009), 351–365.

[9] A. Braides, A. Defranceschi, Homogenization of Multiple Integrals, Oxford Lecture Ser.
Math. Appl. 12, Oxford University Press, Oxford 1998.

[10] P. G. Ciarlet, Mathematical Elasticity, II. Theory of Plates, Stud. Math. Appl. 27, North-
Holland, Amsterdam 1997.

[11] B. Dacorogna, Direct Methods in the Calculus of Variations (2nd revised edition), Appl.
Math. Sci. 78, Springer, New York 2008.

[12] G. Dal Maso, An Introduction to Γ-Convergence, Progr. Nonlinear Differential Equations
Appl. 8, Birkhäuser, Boston 1993.

[13] T. K. Donaldson, N. S. Trudinger, Orlicz–Sobolev spaces and imbedding theorems,
J. Functional Analysis 8 (1971), 52–75.

[14] N. Dunford, J. T. Schwartz, Linear Operators, Part I: General Theory, Pure Appl.
Math. 7, Interscience, New York 1957.

[15] A. Fiorenza, M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math.
Univ. Carolin. 38 (1997), 433–451.

[16] M. Focardi, Semicontinuity of vectorial functionals in Orlicz–Sobolev spaces, Rend. Istit.
Mat. Univ. Trieste 29 (1997), 141–161.

[17] A. Fougères, Théoremès de trace et de prolongement dans les espaces de Sobolev et Sobolev–
Orlicz, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A181–A184.

[18] G. Friesecke, R. D. James, S. Müller, A theorem on geometric rigidity and the derivation
of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55
(2002), 1461–1506.

[19] M. García-Huidobro, V. K. Le, R. Manásevich, K. Schmitt, On principal eigenvalues for
quasilinear elliptic differential operators: an Orlicz–Sobolev space setting, NoDEA Nonlin-
ear Differential Equations Appl. 6 (1999), 207–225.

[20] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or
slowly) increasing coeffcients, Trans. Amer. Math. Soc. 190 (1974), 163–205.

[21] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for gener-
alized Orlicz–Sobolev spaces W k

M (Ω), Comment. Math. Prace Mat. 21 (1980), 315–324.
[22] A. Kamińska, B. Turett, Type and cotype in Musielak–Orlicz spaces, in: Geometry of

Banach Spaces (Strobl, 1989), London Math. Soc. Lecture Note Ser. 158, Cambridge
Univ. Press, Cambridge 1990, 165–180.

[23] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon Press, Oxford, NY 1982.
[24] V. S. Klimov, On imbedding theorems for anisotropic classes of functions, Mat. Sb. (N.S.)

127(169) (1985), 198–208; English transl.: Math. USSR-Sb. 55 (1986), 195–205.
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