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Abstract. Generalizing A. Grothendieck’s (1955) and V. B. Lidskĭı’s (1959) trace formulas, we
have shown in a recent paper that for p ∈ [1,∞] and s ∈ (0, 1] with 1/s = 1 + |1/2−1/p| and for
every s-nuclear operator T in every subspace of any Lp(ν)-space the trace of T is well defined
and equals the sum of all eigenvalues of T . Now, we obtain the analogous results for subspaces
of quotients (equivalently: for quotients of subspaces) of Lp-spaces.

1. Main result. In the note [13], we have proved that if p ∈ [1,∞] and 1/s =
1+ |1/2−1/p|, then for any subspace (or quotient) of an Lp-space and for every s-nuclear
operator T in the space the nuclear trace of T is well-defined and equals the sum of all
eigenvalues of T . The main fact, we are going to obtain here, is

Theorem 1. Let Y be a subspace of a quotient (or a quotient of a subspace) of an
Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y, Y ) (s-nuclear), where 1/s = 1 + |1/2− 1/p|, then

1. the (nuclear) trace of T is well defined,
2.
∑∞
n=1 |λn(T )| <∞, where {λn(T )} is the system of all eigenvalues of the operator T

(written in according to their algebraic multiplicities) and

traceT =
∞∑
n=1

λn(T ).
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Let us mention that in the proof we have to repeat some ideas of proofs from [13] (in
particular, of the proof of main lemma there) as well as, simultaneously, to use the main
lemma of [13] itself (so, we will get a generalization of the lemma by using a part of its
proof and also its statement).

2. Preliminaries. All the terminology and facts we use here can be found in [5]–[8]. Let
X,Y be Banach spaces. For s ∈ (0, 1], denote by X∗⊗̂sY the completion of the tensor
product X∗⊗Y (considered as a linear space of all finite rank operators) with respect to
the quasi-norm

‖z‖s := inf
{( N∑

k=1
‖x′k‖s ‖yk‖s

)1/s
: z =

N∑
k=1

x′k ⊗ yk
}
.

Let Ψp, for p ∈ [1,∞], be the ideal of all operators which can be factored through
a subspace of a quotient of an Lp-space. Put Ns(X,Y ) := image of X∗⊗̂sY in the
space L(X,Y ) of all bounded linear transformations under the canonical factor map
X∗⊗̂sY → Ns(X,Y ) ⊂ L(X,Y ). We consider the (Grothendieck) space Ns(X,Y ) of all
s-nuclear operators from X to Y with the natural quasi-norm, induced from X∗⊗̂sY .

Finally, let Ψp,s be the quasi-normed product Ns ◦ Ψp of the corresponding ideals
(see [6], p. 107, 7.1, about the products of quasi-normed operator ideals) equipped with
the natural quasi-norm νp,s: if A ∈ Ns ◦ Ψp(X,Y ) then A = ϕ ◦ T with T = βα ∈ Ψp,
ϕ = δ∆γ ∈ Ns and

A = δ∆γβα : X → Xp → Z → c0 → l1 → Y,

where Z is a Banach space, all maps are continuous and linear, Xp is a subspace of a
quotient of an Lp-space, constructed on a measure space, and ∆ is a diagonal operator
with the diagonal from ls. Thus, A = δ∆γβα and A ∈ Ns. Therefore, if X = Y , the
spectrum of A, sp(A), is at most countable with only possible limit point zero. Moreover,
A is compact and, therefore, a Riesz operator (see [6], pp. 358–366, for the theory of Riesz
operators) with eigenvalues of finite algebraic multiplicities and sp(A) ≡ sp(B), where
B := αδ∆γβ : Xp → Xp is an s-nuclear operator, acting in a subspace of a quotient of
an Lp-space.

Definition 2. Let Y be a Banach space and s ∈ (0, 1]. We say that Y possesses the
property APs (the approximation property of order s; written down as “Y ∈ APs”) if for
any tensor element z ∈ Y ∗⊗̂sY the operator z̃ : Y → Y , associated with z, is zero iff the
tensor element z is zero as an element of the space Y ∗⊗̂Y .

This is equivalent to the fact that if z ∈ Y ∗⊗̂sY then it follows from

trace z ◦R = 0, ∀R ∈ Y ∗ ⊗ Y

that trace U ◦ z = 0 for every U ∈ L(Y, Y ∗∗). There is a simple characterization of the
condition Y ∈ APs in terms of the approximation of the identity idY on some sequences
of the space Y , but we omit it. We need here only some examples which are crucial for
our note. For giving them, we formulate and prove the following statement, which, we
hope, is interesting by itself.
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Proposition 3. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y , suppose that

(α)
there exists a constant C > 0 such that for every ε > 0, for every natural n

and for every n-dimensional subspace E of Y there exists
a finite rank operator R in Y so that ‖R‖ ≤ Cnα and ‖R|E − idE‖L(E,Y ) ≤ ε.

Then Y ∈ APs.

Proof. Suppose that there is an element z ∈ Y ∗⊗̂sY such that trace z = b > 0, but z̃ = 0.
Consider a representation of z of the kind

z =
∞∑
k=1

µky
′
k ⊗ yk,

where ‖y′k‖, ‖yk‖ = 1 and µk ≥ 0,
∑∞
k=1 µ

s
k < ∞. Without loss of generality, we can

(and do) assume that the sequence (µk) is decreasing and that
∑∞
k=1 µk ≤ 1. In this

situation, µsk = o(1/k), so, there are ck > 0 with ck → 0 and µk ≤ ck/k1/s.
Fix any natural N , large enough, such that for all m ≥ N

m∑
k=1

µk〈y′k, yk〉 ≥ b/2.

For such anm, put E := span{yk}mk=1, and apply the condition (α) to find a corresponding
operator R ∈ Y ∗ ⊗ Y for n = m and ε = b/4.

By our assumption, traceR ◦ z = 0. From this, we get (for all m ≥ N)

0 =
m∑
k=1

µk〈y′k, Ryk〉+
∞∑

k=m+1
µk〈y′k, Ryk〉.

For the first sum
m∑
k=1

µk〈y′k, Ryk〉 ≥
m∑
k=1

µk〈y′k, yk〉 −
∣∣∣ m∑
k=1

µk〈y′k, yk −Ryk〉
∣∣∣ ≥ b/2− b/4 = b/4.

For the second sum∣∣∣ ∞∑
k=m+1

µk〈y′k, Ryk〉
∣∣∣ ≤ Cmα c̃m

∫ ∞
m

x−1/s dx ≤ dmmαm1−1/s = dm,

where 0 ≤ c̃m → 0, and thus 0 ≤ dm → 0.
Now, from the last three relations, we obtain: 0 ≥ b/4− dm.

Let us consider some consequences of the proposition.

Corollary 4. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y , suppose that
there exists a constant C > 0 such that for every natural n and for every n-dimensional
subspace E of Y there exists a finite rank operator R in Y so that ‖R‖ ≤ Cnα and
R|E = idE. Then Y ∈ APs.

Corollary 5. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y , suppose that
there exists a constant C > 0 such that for every natural n and for every n-dimensional
subspace E of Y there exists a finite-dimensional subspace F of Y , containing E and
Cnα-complemented in Y . Then Y ∈ APs.
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Corollary 6. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y , suppose that
there exists a constant C > 0 such that for every natural n and every n-dimensional
subspace E of Y is Cnα-complemented in Y . Then Y ∈ APs. Moreover, every subspace
of the space Y has the APs.

It can be shown (but we do not need this in the note) that Y ∈ APs iff for every
Banach space X the natural mapping X∗⊗̂sY → L(X,Y ) is one-to-one (for other related
results see, e.g., [11], [12]). Thus, taking this into account, we get:

Corollary 7. In all above four assertions, in the case of Y with mentioned properties,
we have the quasi-Banach equality X∗⊗̂sY = Ns(X,Y ), whichever the space X was. In
particular, Y ∗⊗̂sY = Ns(Y, Y ).

Before giving more concrete applications of Proposition 3, let us mention the simplest
example.

Example 8. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/p − 1/2|. Any subspace as well
as any factor space of any Lp-space have the property APs.

We used this example in [13]. The statement of Example 8 follows from Corollary 6
and the results of D. R. Lewis (see [3], Corollary 4).

As a matter of fact, one can get from the work [3] more general facts on comple-
mentability concerning Lp-situation. However, we prefer to consider abstract situations
and to deal with spaces of nontrivial types and cotypes (partially, for using the results to
be obtained in other considerations).

We will apply mainly the results that can be found, e.g., in [1], [6], [8] and [9]. For the
definitions of the notions of type and cotype, see any of these references (Rademacher
type p = Gauss type p and Rademacher cotype q = Gauss cotype q; so, we can ap-
ply results from G. Pisier’s lecture [9], assuming that we are working with Rademacher
notions).

Let us collect the facts we need. Recall that a subspace E of a Banach space X is
b-complemented (b > 0) in X, if there exists a linear continuous projection P from X

onto E such that ‖P‖ ≤ b.

Proposition 9. Let X be a Banach space and 1 < p ≤ 2, 2 ≤ q <∞.

1) If X is of type p (cotype p) then every subspace is of type p (cotype p).
2) [1, Proposition 11.11] If X is of type p then any quotient of X is of type p.
3) [1, Proposition 11.10] If X is of type p then X∗ is of cotype p′.
4) If X∗ is of type p then X is of cotype p′.
5) If X is of type p then any subspace of any quotient (and any quotient of any

subspace) of X is of type p.
6) [1, Corollary 11.9] A Banach space has the same type or cotype as its bidual.
7) [1, Corollary 11.7] Each Lr-space (1 ≤ r < ∞) has type min{r, 2} and cotype

max{r, 2}.
8) [9, see Theorem 4.1 and its Corollaries] If X is of type p and of cotype q then

there is a constant Dp,q > 0 such that every finite-dimensional subspace E of X is
Dp,q (dimE)1/p−1/q-complemented in X.
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Recall also the well known general fact: in any Banach space every n-dimensional
subspace is n1/2-complemented.

We need in this note only the following immediate consequence of Proposition 9 and
Corollary 6:

Corollary 10. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/p−1/2|. If a Banach space Y
is isomorphic to a subspace of a quotient (or to a quotient of a subspace) of an Lp-space
then it has the property APs.

In particular, we get again (cf. [10] and see [2]):

Corollary 11. Every Banach space has the property AP2/3.

3. Main lemma. We are going to formulate and to prove now the main lemma in this
paper. It is interesting to note that in the proof we will use a part of the proof of Lemma
from [13] as well as the statement of that Lemma itself. Let us recall the formulation of
Lemma of [13].

Lemma 12. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/2 − 1/p|. Then the system of all
eigenvalues (with their algebraic multiplicities) of any operator T ∈ Ns(Y, Y ), acting in
any subspace Y of any Lp-space, belongs to the space l1. The same is true for the factor
spaces of Lp-spaces.

The next assertion contains this lemma as a particular case.

Lemma 13. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/2 − 1/p|. Then the system of all
eigenvalues (with their algebraic multiplicities) of any operator T ∈ Ns(Y, Y ), acting in
any subspace Y of any quotient of any Lp-space (equivalently: in any quotient Y of any
subspace of any Lp-space), belongs to the space l1.

Proof. Let p ∈ [1,∞]. Let Y be a subspace of a quotient W (= Lp/V for some V ⊂ Lp)
of an Lp-space and T ∈ Ns(Y, Y ) with an s-nuclear representation

T =
∞∑
k=1

µky
′
k ⊗ yk,

where ‖y′k‖, ‖yk‖ = 1 and µk ≥ 0,
∑∞
k=1 µ

s
k <∞. The operator T can be factored in the

following way:

T = B∆sj∆1−sA : Y −→ l∞ −→ lr ↪→ c0 −→ l1 −→ Y,

where A and B are linear bounded, j is the natural injection, ∆s ∼ (µsk)k and ∆1−s ∼
(µ1−s
k ) are the natural diagonal operators from c0 into l1 and from l∞ into lr, respectively.

Here, r is defined via the conditions 1/s = 1 + |1/p− 1/2| and
∑
k µ

s
k <∞: we need the

convergence of the series
∑
k µ

(1−s)r
k . Therefore, we take r such that 1/r = 1/s − 1, or

1/r = |1/p− 1/2|.
Let Φ : Lp → W be a factor map, so that Y ⊂ W . Denote by Y0, Y0 ⊂ Lp, the

preimage of Y under the map Φ, Y0 := Φ−1(Y ). Consider the operator Φ|Y0 : Y0 → Y (it
is a factor map) and the following diagram:

B∆sj∆1−sAΦ|Y0 : Y0 −→ Y −→ l∞ −→ lr ↪→ c0 −→ l1 −→ Y.
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Φ|Y0 is a factor map, so we can find a lifting Q : l1 → Y with B = Φ|Y0Q : l1 → Y0 → Y .
Now, we get that the operator T can be factored as follows:

T = Φ|Y0Q∆sj∆1−sA : Y −→ l∞ −→ lr ↪→ c0 −→ l1 −→ Y0 −→ Y.

Let U0 := Q∆sj∆1−sA : Y → Y0. Then U0 ∈ Ns(Y, Y0), U := U0Φ|Y0 ∈ Ns(Y0, Y0)
and T = Φ|Y0U ∈ Ns(Y, Y ). By the principle of related operators (see [8], 6.4.3.2),
U and T have the same eigenvalues with the same algebraic multiplicities. But U acts in
a subspace Y0 of an Lp-space, so the main Lemma of [13] can be applied. Therefore, by
Lemma 12, Lemma 13 is proved.
Corollary 14. If s ∈ (0, 1], p ∈ [1,∞] with 1/s = 1+ |1/2−1/p| then the quasi-normed
ideal Ψp,s is of (spectral) type l1.

4. Proof of Theorem 1. We prefer to give here a complete proof although we could
just refer to the proof of the corresponding theorem in [13] with giving some remarks.

Let Y be a subspace of a quotient of an Lp-space and T ∈ Ns(Y, Y ). By Corollary 10,
we may (and do) identify the space Ns(Y, Y ) with the corresponding tensor product
Y ∗⊗̂sY , which, in turn, is a subspace of the projective tensor product Y ∗⊗̂Y . Thus, the
nuclear trace of T is well defined, and we have to show that this trace of T is just the
spectral trace (= spectral sum)

∑∞
n=1 λn(T ).

By Lemma 13, the sequence {λn(T )}∞n=1 of all eigenvalues of T , counting by multi-
plicities, is in l1. Since the quasi-normed ideal Ψp,s is of spectral (= eigenvalue) type l1
(see Corollary 14), we can apply the main result from the paper [14] of M. C. White,
which asserts:

(∗∗)
If J is a quasi-Banach operator ideal with eigenvalue type l1,

then the spectral sum is a trace on that ideal J.
For the sake of completeness and to simplify the understanding, we (as in the pa-

per [13]) give here some information about “trace” on an operator ideal. Namely, recall
(see [8], 6.5.1.1, or Definition 2.1 in [14]) that a trace on an operator ideal J is a class of
complex-valued functions, all of which one writes as τ , one for each component J(E,E),
where E is a Banach space, so that

(i) τ(e′ ⊗ e) = 〈e′, e〉 for all e′ ∈ E∗, e ∈ E;
(ii) τ(AU) = τ(UA) for all Banach spaces F and operators U ∈ J(E,F ) and

A ∈ L(F,E);
(iii) τ(S + U) = τ(S) + τ(U) for all S,U ∈ J(E,E);
(iv) τ(λU) = λτ(U) for all λ ∈ C and U ∈ J(E,E).

Our operator T , evidently, belongs to the space Ψp,s(Y, Y ) and, as was said, Ψp,s is
of eigenvalue type l1. Thus, the assertion (∗∗) implies that the spectral sum λ, defined
by λ(U) :=

∑∞
n=1 λn(U) for U ∈ Ψp,s(E,E), is a trace on Ψp,s.

By the principle of uniform boundedness (see [7], 3.4.6, page 152, or [5]), there exists
a constant C > 0 with the property that

|λ(U)| ≤ ‖{λn(U)}‖l1 ≤ Cνp,s(U)
for all Banach spaces E and operators U ∈ Ψp,s(E,E).



GROTHENDIECK–LIDSKĬI THEOREM 195

Now, remembering that all operators in Ψp,s can be approximated by finite rank
operators and taking into account the conditions (iii)–(iv) for τ = λ, we deduce that the
nuclear trace of our operator T coincides with λ(T ) (recall that the continuous trace is
uniquely defined in such a situation; see [8], 6.5.1.2).
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