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Abstract. These notes are devoted to the analysis on a capacity space, with capacities as
substitutes of measures of the Orlicz function spaces. The goal is to study some aspects of the
classical theory of Orlicz spaces for these spaces including the classical theory of interpolation.

1. Introduction. The purpose of this paper is to present some basic developments
connected with properties of the capacitary Orlicz function spaces, defined on a capacity
space instead of a measure space, and their interpolation theory. We also extend briefly
the classical theory of Calderén products. It is our feeling that these developments deserve
to be widely known. On the one hand they relate to important aspects of mathematical
analysis and on the other hand they have a simple and basic character.

One of the main problems that we have when dealing with capacities is that we are
forced to work with a non-additive integral, the Choquet integral, so that some basic
properties, such as the dominated convergence theorem or Fubini’'s Theorem are not
longer available.

In the literature, a capacity on a space €2 is usually supposed to be an increasing set
function C' : ¥ — [0, 0], with different properties depending on the context, and the
Choquet integral is defined as

[ 1ac = /OOOC{f>t}dt (f > 0),

where {f >t} € X for every ¢ > 0.
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In many important examples of capacities the domain ¥ is a o-algebra. This is the case
of the variational capacity, and those of the Fuglede [Fu] and Meyers [Me] of potential
theory. They are countably subadditive set functions which include the Riesz and the
Bessel capacities.

Orlicz spaces appear naturally. They have been recently studied in connection with
potential theory, harmonic analysis, risk measures theory, variational problems, unilateral
problems, PDE; etc. (see [A], [Ax], [BY], [Ci], et al.) Therefore, these new Orlicz spaces
are of interest.

The organization of the paper is as follows: Section 2 is devoted to recall some basic
facts and to study the quasi-normed capacitary function spaces, a new class of function
spaces that extends the usual quasi-normed function spaces.

In Section 3 we study Calderén products of quasi-normed capacitary function spaces.
In particular, we show that under quite general assumptions on the capacity, the Calderén
product of a pair of capacitary Lebesgue spaces is a capacitary Lebesgue space.

Sections 4 and 5 are devoted to extend the classical theory of Orlicz spaces. First
we define the capacitary Orlicz function spaces as usual but replacing the underlying
measure by a capacity. Then, we study some of their properties as function spaces and,
in particular, we show that the concavity of C' and the continuity of ¢ give a Banach
function space L¥(C) with the usual Luxemburg functional. Finally, in Section 5, we
study their interpolation properties extending the interpolation method developed by
Gustavsson and Peetre [GP).

As usual, f < g means that f < cg for a certain constant ¢ > 0, and f ~ g means
that f Sg < f-

2. Capacitary function spaces. Let (£2,%) be a measurable space. Sets will always
be assumed to be in ¥ and functions in L (£2), the set of all (equivalence classes of) real
valued measurable functions on €, and Lo(Q2)" the positive ones. As in [Cel [CMS], by a
capacity C' we mean a set function on ¥ satisfying the following properties:

—
4
Q

—~
=

=
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=

If ¢ = 1, we say that the capacity is subadditive.

By (©,%,C) we denote a capacity space. It plays the role of a measure space in
the theory of Banach function spaces. In this setting, a property is said to hold quasi-
everywhere (C-q.e. for short) if the exceptional set has zero capacity.

The relation {f + ¢ >t} C {f > t/2} U{g > t/2} shows that the Choquet integral,
defined on nonnegative functions, is quasi-subadditive with constant 2c,

/(f+g)dC’S2c</de+/gdC’).



CAPACITARY ORLICZ SPACES AND INTERPOLATION 217

The Choquet integral is subadditive on sets,

/(XA-I—XB)dCS/XAdC-F/XBdQ

if and only if
C(AUB)+C(ANB) < C(A)+ C(B).

Then the Choquet integral is also subadditive on nonnegative simple functions as it was
proved by Choquet in [Ch| (see also [CCM] or [Ce] for a direct elementary proof). In this
case C' is called concave.

From now on, let (2,3, C) be the underlying capacity space. Let Lo(C) be the real
vector space of all measurable functions, two functions being equivalent if they coincide
C-q.e., endowed with the topology of the convergence in capacity on sets of finite capacity
and with the lattice structure given by f < g meaning that f(z) < g(x) C-q.e.

A set X C Lo(C) is a quasi-normed capacitary function space if X = {f € Lo(C) :
o(f) < oo}, where o : Lo(2)t — [0, 00| satisfies:

e o(f) =0 f=0qe, of +9) < k(o(f) + olg)) and o(af) = ao(f) for every
acRT,

e f<g (C-qe.) implies o(f) < o(9),

e C(A) < oo implies p(xa) < oo and there exists ka > 0 such that [ xpdC <
kao(xp) for every B C A, and

e if o(f) < oo, then {f > 0} is C-sigma-finite, that is, {f > 0} = U;—; Q& with
C(Q) < oo (keN).

We endow X with || f|lx := o(]f]), that does not depend on the representative. Then,
X is Fatou if it satisfies (a) and (b) in Theorem

THEOREM 2.1. Let X be a quasi-normed capacitary function space. The following con-
ditions are equivalent:

(a) Ifsup, || follx =M < o0, fn = f C-qe., then f € X and || f||x <liminf, ||fn]x-
(b) If 0 < fu t f C-q.e., then lim, o(fn) = o(f)-

Proof. To prove that (a) implies (b), take 0 < f,, T f C-q.e. If o(f) < oo, then o(f) =

[fllx < limy [[fallx = o(fn) by (a) and o(fn) < o(f) (n € N). So lim,, o(fy) = o(f). If
o(f) = oo, since f,, 1 f C-q.e., necessarily lim,, o(f,,) = oo because sup,, o(fn) = M < 0o

would imply f € X by (a).
To prove the converse, suppose that (b) holds and that sup,, || fullx = M < oo and

fn = f C-q.e. Define g,, := inf,,>p, | fin| (n € N), s0 g, T |f] C-q.e. and || fl|x = o(|f]) =
lim,, o(gn). Since g, < |fm| for every m > n, it follows that o(g,) < inf,,>, o(|fm|) and

then Hf”X < lim,, infmZn Q(|fm|) = liminf,, ||anX L

Conditions (a) and (b) are called the Fatou conditions. If they hold, then we say that
X has the Fatou property.

THEOREM 2.2. Any quasi-normed capacitary function space X on (Q,%,C) is continu-
ously imbedded in Lo(C').



218 P. SILVESTRE

Proof. Tt is sufficient to prove that the condition || f,||x — 0 for {f,}neny C X implies
frn — 0 in capacity on any set 2y of finite capacity.

Assume the contrary, so that there exist a set 2y with 0 < C(Q) < oo and a positive
number ¢ such that for some subsequence f,,, the inequality |fy, (t)| > € is satisfied on
a set Q) C Qg with capacity C'(;) > 6 > 0, for all k =1,2,... Then exq, (t) < |fn, (?)]
and s0 e||xa, |lx < || fa.llx. Since C(Qg) < oo we have

9
oo [ xeudC <oy <[ lx.
X

and if k — oo, it follows that limy C'(2) = 0, which is impossible. Hence f,, — 0 in
capacity on any set of finite capacity. m

3. Calderén products of quasi-normed capacitary function spaces. From now
on, let Xy and X; be quasi-normed capacitary function spaces and o € (0,1). The
Calderdn product of Xy and X1, denoted by X = XéfanX, is the class of all f € Ly(C)
such that
FOI < Afo@ 1AM (teQ) (1)

for some A > 0, and each fo € Xo and f; € X3 with || follx, <1, ||f1llx, < 1.

We endow X with [|f||x := inf A, where the infimum runs over all X satisfying (T]).
Note that {f # 0} is C-sigma-finite and if

] fllx i feX,
0a(f) = {OO it f X, (2)

then X = {f € Lo(C) : 0a(f) < c0}. We can also write for f > 0,
0a(f) =If{A>0: f <M ff £i 20, [Ifillx, <1, 0=0,1},

and note that o, satisfies all the required properties to define a quasi-normed capacitary
function space with || f|lx = 0a(]f])-

Indeed, we just follow the usual arguments but recalling that given sequences con-
vergent to zero in Xg and Xy, respectively, by Theorem and [CMS| Theorem 5] they
converge to zero in capacity on any A C {f # 0} of finite capacity. Hence, by passing
to subsequences, they can be supposed to be convergent to zero C-q.e. on A. Then the
proof follows.

We may canonically associate to X a couple of spaces in the following way:

(a) XoN X; consists of the elements common to Xy and X;. The quasi-norm is intro-
duced by

”fHXoﬁXl :maX{Hf”Xoa”f”Xl} (IL‘GXoﬂXl),

(b) Xo + X1 denotes the set of elements of the form z = u + v, where u € Xy, v € X;,
and it is equipped with the quasi-norm

]l x4, = nf{{Jullx, + [[vllx,},

where the infimum is taken over all elements u € Xy, v € X; whose sum is equal
to x.
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PROPOSITION 3.1. X}~ *X{ satisfies

XoNX; = X3 XY — Xo+ X1
Proof. The first embedding follows as usual.

Let f € X3~ *X{. Then, if |f(£)] < Al fo(®)|* | f1(t)|*, with fo, fi and X > 0 satisfy-

ing the required conditions, then

@) < MO = a)lfo(@)] + alf1(£)]}
and then

1l x0+x0 S MQ =)l follxo+x, + allfillxosx,} < A

which implies that f € Xo 4+ X1 and || f]|xo+x, S Hf”Xé_"Xf' "
THEOREM 3.2. The space Xé_o‘Xla is complete.

Proof. Let {fn}nen be a Cauchy sequence satisfying > | fnllx < co. Given € > 0, we
can find A\, > 0, fo.n € Xo and f1,, € X7 with norms less than one, and A\, < || fn|lx + 5=
such that [ fn(t)] < Anlfon (6"~ f1,n(t)|*. Then

Zlfn <A Z( | fon() )l_a(%|f17n(t)\)“, where A = 3" A,

By Corollary 1.2.10 of [9] (see [CMS], Theorem 2]) applied with % =1—c«aand % =«
to f = %|f0,n| and g, := (%|f1,n|)a7

Z ] < EA - (Zﬁf)l/p(ZgZ)l/q
—k-A- (zn: /Xl|fo7n|)1a<zn: /\Xn”l’"')a'

As the functions in brackets are defined C-q.e. belonging to Xo and X, then )" |f,| € X.
If fi=32, fa, then f € X, [[fllx < k>, [ fnllx.

Applying this inequality to f(-) — ZnNzl fu(:) = 2N 41 fa(-) and letting N — oo, we
see that limpy_ oo Z 1 fn=fC-qe m

THEOREM 3.3. Let 0 < po,p1 < oo, a € (0,1) and % = 1;0" + p%, Then

L (C) LI (C)* = L¥(C)
with equivalent quasi-norms (or equal norms in the normed case).
Proof. Let X; = LP/(C) (i = 0,1) and f € Xj °X{, and suppose that |f(t)] <
A fo®) =% f1(t)|* as in . By applying Corollary 1.2.10 of [S] with conjugate expo-

nents (167&);) and g—;, it follows that

n

/ fPdC < / NP|fol =] £y P dc
Q

11—« «
SN foll oo PIAIE < A,

from which we obtain LPo(C)!=*LP1(C)® — LP(C). The opposite embedding follows
trivially. m
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Recall that the distribution function C; (see [CMS]) of f € Lo(Q2) is defined by
Ci(t)=C{Ifl >t} (t>0)
and the decreasing rearrangement f¢. of f as
fo(@)=inf{t >0:C{|f| >t} <z}  (z>0).

Define f** :=1 fo f&(s) ds, which is decreasing and f§& < f** (see [9)]).

Then, two functlons g and g are called equicapacitable on  if

Clz e Q:|gx)]| > A} =C{z e Q:|g(z)| > A} (A>0).
For a quasi-Banach lattice X, we define

Xt ={feLC): f"eX},  |flx-=I/"lx
Then X* is a vector space and f, T f C-q.e. implies || fu|lx+ T || fllx*-

In this capacitary setting the relation between (Xg)!=%(X})® and X* = (Xj *X{)*
for 0 < a < 1, Xy and X; be Banach lattices can be partially analyzed. Let f €
(X3)1=*(X7)*. The embedding

(X)X = (X2 X7)*
follows as usual.

The proof of (X§~*X{)* «— (X&) ~*(X{)* can be done under some additional con-
ditions. The function f§ is related to C(¢) as follows:

Celfe@] =t felCr@)] 2t (E>0). (3)
Then
fEACHIF @)} > |f(a (4)
Consider the Hardy operators P and @ defined as

(P11 /f Vds, (Qf)(t /f

If g > 0, then it is well-known that

Q(Pg)(t) = (Pg)(t) + (Qg)(t)  (t>0).
On the other hand, if g1, g2 > 0, then by the Hoélder inequality,

Q91798 < 2c(Qa1)' ™ *(Qg2)™-
Now we are ready to show that if f € X with finite norm and P and @) are bounded

in Xy and X7, then the desired result holds. Indeed, let ¢ be a bound for the norms of P
and @ in X and X;. Suppose that f**(-) < Ag1(-)}7%g2(-)® for f € X. Define

1 1
= Qo1 b= —5 Qaa. hi0) = 00, hy(+00) = lim hi(t) (i =1,2).

Then f& < Qf** < /\Q( 1mage) < 203)\h1 “hg since f** = Pfc*;

Define now f;(-) := hl{Cf |F())} and fa(-) == ho{C¢(|f(-)]) } Since | f| and f¢ are
equicapacitable, then fi is equicapacitable with h {Cr(f&)} (i = 1,2). Hence, (fi)e =
hi{Cs(f&)} at all points of continuity of (f;)g. and the non-increasing character
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of h; imply (fi)& < hy, except perhaps at the discontinuity points of (f;)&. Then
fx < C%PQgi. The boundedness of P and @) gives f; € X ,i=1,2, but

£ < 2N {CHIFNY T ha{Cr{IFI}}" = 2°A8 15 by @)
Then, the conclusion follows.
REMARK 3.4. In particular, for 1/p = (1 — «)/po + /p1,
LP(C) = (L)) (L (€)))" = (Lo (€)' =L (C)°)',
where LPo(C)1=@LP1(C)* = LP(C) (see Theorem [3.3)).
4. Capacitary Orlicz spaces. From now on, ¢ : [0,00) — [0,00] is an unbounded

increasing function, ¢(0) = 0, which is neither identically zero nor identically infinite.
Define the Orlicz class Po(p) as the set of all f € Ly(£2) for which

M?(f) = Pg:(f)Z/Qw(lfl)dC<oo.

Then
LA(C) = {f € Lo(Q) : [| ]l < o0},

where
[ £lly :=inf{A >0: M?(A\"1f) <1}.

The space L?(C) is called a capacitary Orlicz function space.

DEFINITION 4.1. A function H on [0,00) (or on a linear space) is called quasi-convex
with constant g > 1, if

HAz+ (1 - A)y) < B{AH(z)+ (1 —AN)H(y)} for0<A<1andz,y>0.

Let us observe that the quasi-subadditivity of the Choquet integral implies that M¥
is quasi-convex when ¢ is. We say that ¢ satisfies the Ag-condition if there exist sg,c > 0
such that

v(2s) < cp(s) < oo (59 <5< 00).

Let C be a finite capacity and ¢ a quasi-convex function with the As-condition. Then,
as usual, Po(¢p) is a linear subspace of Lo (£2).

PROPOSITION 4.2. f=0 C-qe. & M?(kf) <1 (k>0).

Proof. If f =0 C-q.e., then M?(kf) =0 (k > 0). Conversely, suppose that M?(kf) <1
(k > 0), but for some € > 0, |f| > € on E C Q with C(F) > 0. Then

M#(kf) = [ blf)dC > [ plek) dC = C(E)o(eh).
Since ¢(s) T 0o as s T 0o, we obtain a contradiction. m

Note that LP(C) is an Orlicz space since, if ¢(t) = ¥, then

1
£l = inf {3 > 0: 57 [ 1f@)lrac <1}
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and L¥(C) = LP(C) with || f|lzecy = | fllr(cy, for any p € (0,00). It is complete also
when 0 < p < 1 although in that case ¢ is not convex. It is a p-convex function, where a
function ¢ : [0, 00) — [0, 00) is called s-convez (resp. (s)-conver) (0 < s < 1) if

plat; + fta) < a’p(tr) + B°¢(t2) for each t1,ts € [0, 00)

and all a, 8 > 0 such that a® + 8% =1 (resp., such that a + 8 = 1).

Any convex function is 1-convex and every (s)-convex function is s-convex. The con-
verse is false, ¢(t) =7 (0 < p < 1) is not (p)-convex.

From now on, if nothing else is said, ¢ will be any s-convex function and 0 < s < 1.
Define

Ly(C) =1+ lim py(Af) = 0}.

Trivially, L,(C) C L¥(C).

Modular spaces were first defined by H. Nakano in 1950 (see [Nak|) on vector lattices.
Independently, another version was introduced by J. Musielak and W. Orlicz around 1959
(see [MO1] and [MQO]).

Let X be a real vector space on Lo (€2). A functional p : X — [0, 00] is called a modular
if it satisfies the following conditions:

(a) plx) =0 <=z =0,
(b) p(—z) = p(z) for each = € X,
(¢) plaz+ By) < p(x) + p(y) for z,y € X, a, 8 > 0 such that o + 8 = 1.

It is a pseudo-modular if p(0) = 0 and it satisfies (b) and (c), and the pseudo-modular p
is said to be s-convez if p is an s-convex function.

ProrosITION 4.3. If C is a concave capacity, then p, is an s-convex pseudo-modular on
Lo(©).
Proof. By observing that ¢ is an s-convex function and C concave. m

THEOREM 4.4. If p is an s-convex pseudo-modular in L,(C), then L,(C) = L¥(C) and
a norm can be defined on L,(C) as follows

s . f
”thp,s = 1nf{/\ >0: p@<m) < 1}-
Proof. 1If f € L¥(C), then p,(Aof) < oo for some Ao > 0. Hence, if 0 < A < Ao, then
A A A AN
= —_— = D P — < -
Pw()‘f) Pw()\o /\Of) Pw(AO ()‘Of)+<1 \ )0) > <)\0) Pq:()\of) >0

0
as A — 0, so that f € L,(C).

Now, let us show that [ - ||, s is a norm. By a direct proof || f||, s = 0 if and only if
[ =0C-qge. and |[|Afllps = |A°[|fllg,s for all A € R.

Let u,v > 0 such that || f|[,s < u, [|g]le,s < v. It follows that

f+g Ul/s f Ul/s g
po( 10 ) = e +
(u+v)l/s (U+U)1/S ul/s (U+U)1/S pl/s

u f v g )
< — ) <1
_u+vp¢(u1/s)+u+vp¢(v1/s -

and thus, [|f "’gHLp,s < ”f”w,s + ||g||«p,s- u
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Thus, if C' is concave, then L, (C) = L¥(C) and || - ||4,s is @ norm. In this case, L,(C)
is called a capacitary s-conver Orlicz function space.

REMARK 4.5. ||f|ly,s = || fI|3, since

inf{ (u!/*)* > 0. pw(#> <1} =[mt{r>0: p¢<§) <1} =1l

By Theorem and Remark if p is an s-convex pseudo-modular in L, (C), then
Il - |l is a quasi-norm in L¥(C') since, for f,g € Lo(12),

1F +glle = (1f + gllo.s)* < 225 + gllys) =21 f e + Nlglle)-
PROPOSITION 4.6. | - ||, is a quasi-norm on L¥(C').
Proof. Observe that, since ¢ is s-convex, we have
o(a'/*t) = <p(a1/st +(1- a)l/SO) <ap(t) 0<a<l)

and hence, p(At) < Xp(t) (A € (0,1)). Then, the first two properties of a quasi-norm
follow.
Moreover, let f,g € L?(C) and take u'/* > |(2¢)'/* f||, and v'/* > ||(2¢)'/*g||,,. B
u+v’

the quasi-subadditivity, we have for 6 :=
MQ(M) S/Q@‘p( |{/|s) + ( 1/s>>
1/s )L/
§A<i¢<<2031/5'f'> o) ac
(2¢

<o (B20) 4 o (B12) 1

The assertion follows since ||f + g||, < (u+v)1/s <2V (ul/s +01/%). u

THEOREM 4.7. Under the same conditions,

. k—o k: ©
(i) Ilfx = Fll.s =30 if and only if ppo(A(fi- = f)) =50 (A > 0).
(ii) {fe}x is a Cauchy sequence in L¥(C) with respect to || - |l,,s if and only if

k,l—o00

peA(fx — 1)) == for all A > 0.

Proof. If py(Afi) — "22%° 0, then there exists ky € N such that
( Tk
Pe ()\—s)l/s

Hence, || fx|lp,s < 5 for all k > kx, A > 0, and so || fi ||y, 2.
k—>oo

)§1 for each k£ > k) and A > 0.

Conversely, if || fxllo,s
pga(Af") <1 for all k > ky  and

po0fe) = [ (e (3))ac
< [ (o3 + 1= 000) do = en, (3).

Hence, p,(Afr) = 0as k — 0 forany A > 0. m

0, then given ¢ > 0, there exists k). € N such that
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THEOREM 4.8. Let C be a concave capacity and ¢ an increasing convex function. Then
(L¥(C), || - llp) is a Banach function space.

Proof. Let {fn}nen be a Cauchy sequence for || - ||, and zo := sup{z € R : ¢(z) = 0}.
Then, 0 < xg < oo since {¢ = 0} is relatively compact.

Since by Remark [4.5|it follows that Theorem (4.7 holds also for || - ||, then there exists
kmn > 0 such that

First note that A,,, = {kmn\fn — fml| > xo} € X is at most o-finite. Indeed, defining
By, = {k:mn|fn — fml > xo +k‘_1} (k € N), we have A, = Uz, Bk, where C(By) < 0o
for all k£ since

C(Belan +h7) = [

oo+ k1) dC < / o(Fmnlfn — fiul) dC < 1.
By

By,
Therefore, each A,,, is o-finite and so is A := Um’n>1 Apn-

On A, kmn|fn — fm| < xo and then |f, — fil =0 uniformly. Hence, there exists
go € Lo(A°) such that f,, — go and |go| < xg on A°.

Temporarily, write Q for A. If B satisfies C(B) < oo, then

1 1
C(BAIfa— ful = ) € —p—s [ @llunlf = fu) dC < e

Since kyp,n, — o0 and € > 0 is fixed, { f,, }nen is a Cauchy sequence in capacity on B. Then,
by [CMS| Theorem 5], there is a subsequence pointwise convergent on B to some f, and
on |J,, By since C(By) < oo (k € N). Then, there exists {fy, }sen such that f,, — f
C-q.e.

Let f := fxa + goxac. Hence, fn; = [ C-q.e., and by Cauchy, || fn|l, — p. Then, by
the Fatou property, f € L?(C) and by continuity,

O(Ifns = fr;1k) = o(|f = fu,k) C-qee. as i — oo (k>0).

Then, if ng > 1 is chosen such that n;,n; > no implies ky,,n; > k,

[ k15 = ) dC < [ ol = £, 1) dC < 1.
Letting n; — oo, we have ||f — f,, ||, < k™' and the result then follows. m

In general, the continuity property of an s-convex function is needed for the complete-
ness of the capacitary s-convex Orlicz function space because s-convex functions are not
always continuous.

EXAMPLE 4.9. Let 0 < s <1 and k > 1. Define for u € Ry,
flu) = {u/C= i 0 <u <1, e/ if u > 13,
Then f > 0, discontinuous at u = 1, s-convex not (s)-convex.

THEOREM 4.10. Let ¢ be a continuous s-convex, or an increasing convex function. Then
(LL(C), || - lp) is a quasi-Banach function space.
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Proof. For all A\,n > 0, there exists N € N such that

pcp()‘(fn - fm)) < n (m’n 2 N)
Thus, defining A,, ,,, := {x € QA fu(x) = frm(x)] > e} (e > 0) we have

C(An,m)w(e) < pt,a()‘(fn - fm)) <n (m,n > N)

Then, by [CMS| Theorem 5], {\f,, }nen is convergent in capacity to a function \f and
contains a subsequence {Afy, }ren convergent to Af C-q.e. in Q. By continuity,

Pl fn(@) = fri (2)]) = (Al fnl(z) — f(2)]) C-q.e. in O
and, by the Fatou property, it follows that

peMfn — 1)) <Hminf po(Af — fu,)) <1 (0> N).
Thus ||f, — fll, = 0asn — oo, and f € L¥Y(C). =

EXAMPLE 4.11. Let (,X, 1) be a measure space, and t(t) := t'7 (0 < p < 1) which
is concave and continuous. Then Cy(A4) := ¥(u(A)) defines a concave Fatou capacity
(see [Cel). Hence, if for instance ¢(t) = t2, then L¥(Cy) is a Banach function space
with |- |-

Nevertheless, if ¢(t) := ¥, then L¥?(C) defined by the condition |/ f|l, < oo is a
capacitary p-conver Orlicz function space.

5. Interpolation of capacitary s-convex spaces

DEFINITION 5.1. Let ¢ be a positive function on Ry such that, for every A € R, there
exists a constant C' = C'()\) such that p(Az) < Cp(z). Then, ¢ is of lower type py and
upper type p1 when

e(Az) < Cmax(\P, \P1) ().

Assume further that ¢ is continuous increasing with (R, ) = R so that, o1

exists

and is continuous increasing too. Then, if ¢ is of type (po, p1) with po > 0, then ¢~ ! is

of type (pl_l,pal) (see [GPI).
Every s-convex function is of positive lower type since for all « > 0, if we take
B =(1-a*)t*andy =0, it follows that
plax) = p(az + B0) < a’p(x) + f°¢(0) = o’ p(z).
A positive function p on Ry is quasi-concave Whel} it is equivalent to a concave one,
and it is pseudo-concave if and only if for a suitable C
p(Az) < C'max(1,X)p(z). (5)
The class of functions satisfying (5) will be denoted by B(C) (see [Pe]).
REMARK 5.2. Let us introduce R(z,y) = xp(y/z). Then p € B(1) if and only if
R is non-decreasing in each variable separately. In fact, it fulfils in the strong sense
x<a' and y <y = R(z,y) < R(z',y).
Given p € B(1), it follows for any positive sequences {x,,}», {yn}n,

ZR(xmyn) < QR(Z L, Z%})
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DEFINITION 5.3. A function p : X — [0,00] is called a quasi-modular if it satisfies the
following properties:

(a) plx) =0 =z =0,

(b) p(Az) < pla) i A < 1, p(—2) = p(a),

(¢) limy_o p(Ax) =0 if p(z) < oo,

(d) p((x+y)/h) < k(p(x) + p(y)) for certain constants h and k.

From now on, let ¢, o and 7 be continuous increasing functions on R, such that
©,i((0,00)) = (0,00), i = 0,1, and ¢(0) = 0. It follows by similar techniques to the
ones in Theorem that (L¥(C),| - ||,) is a quasi-Banach function space when ¢ is of
positive lower type.

PROPOSITION 5.4. Assume that ¢ is of positive lower type and it can be expressed by

—1
T Spo_lp(%) with p quasi-concave. If
0

. |ai|
/Qcpz(|az|)d0 <C;, 1=0,1, la] < |a0|p(|a0|),

then
/ o(la]) dC < 2¢(Cy + C4),
Q

where ¢ is the subadditivity constant associated with the capacity.
Proof. Following [GP], put b; := ¢;(|a;]), i = 0,1, and b = by + by. We see that ¢y ', o7
are increasing, by < b and b; < b. So that ¢y (bo) < gt (b), 1 (b1) < @y (b) and by
Remark

lal < Rlaol, la1]) = R(iwg " (bo), o1 (1)) < R(eg ' (b), 01" (b)) = 7 (B).
The positive lower type of ¢ and the quasi-subadditivity,

/Qcp(|a|)dC < 2c{/ﬂ<po(|a0|)d0+/Qgpl(|a1|)d0} < 2¢(Cy + Cy). .

REMARK 5.5. Let us interpret the last proposition. Let Xy, X; be two rearrangement
invariant (r.i. for ShOI‘t)E quasi-Banach function spaces, a capacity space (Q,%,C), and
p be a quasi-concave function. Introduce X = Xop(%) as the space of those h € Ly(£2)
for which one can find C' and ag € Xy and a7 € X7 such that

~ a
] < laolo([21).

We equip X with [| - [[x = infz C'. Then, it follows similarly to Theorem that
Il - |x is a quasi-norm and X is a quasi-Banach space.

If p = po in , then X is the Calderén product Xéfo‘Xf‘ in .

Let ¢; be continuous increasing functions on R and X; = L% (C), i = 0, 1. It follows
that

L*"1(0)>

L*(C)( Lo G

1
— L¥(C), ¢ '= @alp(%)- (6)
Yo

!X is r.i. if the following is satisfied: for every f € X if g measurable with uf = p,, then
g€ X and |[fllx = lgllx, where iy (A) i= pufa : [f(2)] > A}, A > 0.
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At this point it is natural to study the converse embedding.
Consider the same interpolation method as in [GP]. Let X = (Xo,X1) be a quasi-
Banach couple and p a quasi-concave function.

(X0, X1,0) = {a € 2(X) : there exists u = {u, },ez, u, € A(X)
such that and are satisfied},
where for an absolute constant C ,

a= Z u,, with convergence in ¥(X), (7)
VEZ
for all finite F' C Z and every real sequence {&,},cr, |€] < 1 we have

Sty 2YE,uy
H; p(27) ‘; p(27)

We equip (X, p) = (Xo, X1, p) with the quasi-norm

<. (8)
X1

<C,
Xo

lal .,y =inf C.
Then, if p is of lower type 0 and upper type 1, (X, p) is complete.
From now on, assume that o and ¢ have positive lower type. If p € B(1) and ¢ is
defined by ' = ¢y !p( z; ), then L?(C), L¥°(C) and L¥*(C) are quasi-Banach spaces
(see [GP)).

THEOREM 5.6. If one of the functions @q, p1, say o, has finite upper type and p € B(1),
1

then ¢ defined by ' = 5 p( i;) satisfies LY (C) — (L¥(C), p).
0

Proof. Tt follows similarly to [GPl Theorem 7.1]. m

The converse is unknown for us. Let us just comment that we do not have a capacitary
version of Fubini’s theorem.

THEOREM 5.7. Under the same conditions L¥(C) — L¥° (C)p(iiéiggg)

Proof. Let f € L¥(C) with norm less than one and ¥(t) := @0(%) - @1(%). By
hypothesis, ¥ is decreasing, continuous, lim; ot (t) > 0 and lim;_ o, 1¥(t) < 0. Thus,

there exists a unique ¢ such that ¢ (t) = 0. Let us denote this unique ¢ by the same

symbol ¢. Defining z = % and y = %, since 1(t) = 0, we have go(z) = ¢1(y).
Moreover, = (¢o(z)) = |f|. Thus

[eo(5)ac= [ wimac <1

and we can write |f| as an element in L“"O(C)p(%). n

In particular, @ together with Theorem recover Theorem [3.3

-1

)

COROLLARY 5.8. Assume that po and @1 have finite upper type. Define ¢~

=05 '

for p being a quasi-concave function in B(1). Then
L#(C)

LWO(C))

1#(C) = L#(C)p( = (L#(0). ).
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THEOREM 5.9. Let oo be of finite upper type such that ¢o((0,00)) = (0,00). Define
ol = cpo_lp(wl_l) for p € BT(1) being quasi-concave. Then

0

L(C) = L (Ol ) = (L7 (C).L¥(C)op)

Proof. See [GPlL Theorem 9.1]. m
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