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Abstract. Let M be a 4-manifold which admits a free circle action. We use twisted Alexander
polynomials to study the existence of symplectic structures and the minimal complexity of
surfaces in M . The results on the existence of symplectic structures summarize previous results
of the authors in [FV08a, FV08b, FV07]. The results on surfaces of minimal complexity are new.

1. Introduction and main results

1.1. 4-manifolds with free circle action. LetM be a 4-manifold which admits a free circle
action. (Throughout the paper, unless otherwise stated, we will assume that all manifolds
are closed, oriented and connected.) In this paper we will discuss how twisted Alexander
polynomials give information, for this class of manifolds, on two central problems in
4-dimensional topology, namely the study of the existence of symplectic structures, and
the minimal complexity of surfaces in M .

We start by recalling some simple facts about this class of manifolds, as they will
be frequently used in what follows. The existence of a free S1-action on M implies that
M is a principal S1-bundle, so that there is a projection map p : M → N where we
denote by N the orbit space of the free circle action. This principal bundle is determined
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by its Euler class e ∈ H2(N ; Z). Note that e = 0 if and only if M is a product bundle
M = S1 ×N . We have the Gysin sequence

H0(N ; Z)

∼=
��

∪e // H2(N ; Z)

∼=
��

p∗ // H2(M ; Z)

∼=
��

p∗ // H1(N ; Z)

∼=
��

∪e // H3(N ; Z)

∼=
��

H3(N ; Z) ∩e // H1(N ; Z) // H2(M ; Z)
p∗ // H2(N ; Z) ∩e // H0(N ; Z),

(1)

where p∗ : H2(M ; Z)→ H1(N ; Z) denotes integration along the fiber. From this sequence
we can immediately deduce that

b2(M) =
{

2b1(N), if e is torsion,
2b1(N)− 2, if e is non-torsion.

(2)

One can easily see that the intersection form vanishes on the half-dimensional space
Im{H1(N ; Q) → H2(M ; Q)} ⊂ H2(M ; Q). It follows that b+2 (M) = b−2 (M), so that
sign(M) = 0. For sake of simplicity, we will restrict ourselves in this paper to the case
that e is either trivial or non–torsion. Also, we will assume that b+2 (M) > 1, but the
techniques and results presented here extend to the torsion case and, with the usual
caveats, to the case of b+2 (M) = 1. We refer to [FV08a, FV08b, FV07] for the details of
these cases. Finally, note that the long exact homotopy sequence of the fibration shows
that the map p∗ : π1(M)→ π1(N) is an epimorphism.

1.2. Symplectic 4-manifolds and fibered 3-manifolds. Remember that a 4-manifold is
called symplectic if it admits a closed, non-degnerate 2-form ω. Our first goal is to study
the question of which 4-manifolds with free circle actions are symplectic. Let M be a
4-manifold as above. It is well-known that if (N,φ) fibers over S1 for some φ ∈ H1(N,Z)
with φ ∪ e = 0, then M admits a symplectic structure. We refer to [Th76], [Bou88],
[FGM91] and [FV07] for details. (Here we say that (N,φ) fibers over S1 if the homotopy
class of maps N → S1 determined by φ ∈ H1(N ; Z) = [N,S1] contains a representative
that is a fiber bundle over S1.) It is natural to ask whether the converse of this statement
holds true. We point out that the openness of the symplectic condition implies that ifM is
symplectic then M also has a symplectic form representing an integral cohomology class.
We will implicitly make such a choice whenever necessary. Finally, if ω is a symplectic
form it follows immediately from [ω]2 6= 0 ∈ H4(M ; R) that p∗[ω] 6= 0 ∈ H1(N ; R).

The problem of studying the existence of symplectic forms on M can be summarized
in terms of the following conjecture:

Conjecture 1.1. Let M be a 4-manifold with a free circle action with orbit space N . If
M admits a symplectic structure ω with [ω] ∈ H2(N ; Z), then (N, p∗[ω]) fibers over S1.

This problem was first raised in [FGM91], but only since the appearance of Taubes’
results on Seiberg-Witten invariants of symplectic 4-manifolds (see [Ta94, Ta95]) are there
tools at hand to seriously tackle the conjecture. We refer to [Kr98], [Kr99], [McC01],
[Ba01], [Vi03] for results supporting this conjecture.
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1.3. Surfaces of minimal complexity. Given a surface Σ with connected components
Σ1, . . . ,Σk we define its complexity to be

χ−(Σ) =
k∑
i=1

max{−χ(Σi), 0}.

We say that an embedded surface Σ in a (3- or 4-) manifold has minimal complexity if it
minimizes the complexity in its homology class.

Given a 3-manifold N and φ ∈ H1(N ; Z) the Thurston norm on H1(N,Z) is defined
as

χ−N (φ) = χ−(Σ)

where Σ is a surface of minimal complexity dual to φ. Given a 4-manifold M and σ ∈
H2(M ; Z) we also define

χ−M (σ) = χ−(Σ)

where Σ is a surface of minimal complexity dual to φ. (Note that in spite of the similar
definition, the minimal complexity function on 4-manifolds is not known to share the
properties of the Thurston norm, e.g. linearity. We refer to [Kr98, Section 7] for more
related open questions.)

Let M be a 4-manifold with b+2 (M) > 1 and consider a class σ ∈ H2(M ; Z); then the
adjunction inequality says that

χ−M (σ) ≥ σ · σ + σ · κ (3)

for any Seiberg-Witten basic class κ ∈ H2(M ; Z). Even though this inequality gives useful
lower bounds, it is in general not enough to determine the function χ−M : H2(M ; Z)→ N.
In this paper we are interested in the study of this function for 4-manifolds M with a
free circle action. Note that it is not difficult to see, in this case (cf. Section 3.1), that we
can put the absolute value to σ · σ in equation (3).

Given σ ∈ H2(M ; Z) we say that σ has property (∗) if there exists a (possibly dis-
connected) embedded surface Σ ⊂ N and a (possibly disconnected) closed curve c ⊂ N

in general position with the following properties:

1. Σ is a Thurston norm minimizing surface dual to p∗(σ),
2. Given a lift Σ̃ of Σ to M (which by Lemma 2.1 always exists) the singular surface
p−1(c) ∪ Σ̃ represents PD(σ),

3. The geometric intersection number of Σ and c is given by the absolute value of the
algebraic intersection number Σ · c.

Property (∗) is the suitable generalization of the property defined by Kronheimer in
[Kr99] for the product case. We will see in Section 2.1 that property (∗) is fairly common;
in particular, it is satisfied whenever the Alexander polynomial ∆N,p∗(σ) 6= 0 ∈ Z[t±1].
On the other hand we will also see that, for suitable N , there exist σ which do not satisfy
(∗). In Section 2.1 we prove the following lemma (cf. also [Kr99, Section 1.2]).

Lemma 1.2. Let σ ∈ H2(M ; Z) that satisfies (∗). Then

χ−M (σ) ≤ χ−N (p∗(σ)) + |σ · σ|.
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Kronheimer [Kr99, Corollary 2] [Kr98, Corollary 7.6] proved that in the case that M
is a product S1×N , in many cases this is in fact an equality. More precisely, Kronheimer
proved the following result.

Theorem 1.3. Let N be an irreducible 3-manifold whose Thurston norm is not totally
degenerate, M = S1 ×N and σ ∈ H2(S1 ×N ; Z). Then

χ−M (σ) ≥ χ−N (p∗(σ)) + |σ · σ|.

Note that Kronheimer showed that it is not always necessary to assume that N
is irreducible (cf. [Kr99, Theorem 10]) and to assume that the Thurston norm is non-
degenerate (cf. [Kr99, Section 1.2]). It now seems reasonable to pose the following question
(cf. also [Kr98, Question 7.12]).

Question 1.4. Let M → N be a principal S1-bundle. Given σ ∈ H2(M ; Z), does the
inequality

χ−M (σ) ≥ χ−N (p∗(σ)) + |σ · σ|
always hold? Is this an equality even for σ which do not satisfy (∗)?

Note that given σ ∈ H2(M ; Z) we always have the inequality
χ−M (σ) ≥ χ−N (p∗(σ)).

This follows from Gabai’s result [Ga83] that for any singular surface S′ ⊂ N dual to some
φ ∈ H1(N ; Z) we have χ−(S′) ≥ χ−N (φ).

1.4. Statement of the main results. Given a 3-manifold N , φ ∈ H1(N ; Z) and an epimor-
phism α : π1(N)→ G onto a finite group we can define the 1-variable twisted Alexander
polynomial ∆α

N,φ ∈ Z[t±1]. We refer to Section 2.2 for details. Given a non-zero Laurent
polynomial

∑m
i=n ait

i with an 6= 0 and am 6= 0 we define

deg
( m∑
i=n

ait
i
)

= m− n;

furthermore we define deg(0) = −∞. Given an integer n we write −∞ + n = −∞ and
−∞ < n.

We will show that the degrees of twisted Alexander polynomials give lower bounds on
χ−M (σ) for a given σ ∈ H2(M ; Z). Note that if p∗(σ) = 0 ∈ H1(N ; Z), then σ is clearly
dual to a union of embedded tori and hence χ−M (σ) = 0. We therefore restrict ourselves
now to the case that φ = p∗(σ) 6= 0 ∈ H1(N ; Z).

Given φ ∈ H1(N,Z) = Hom(π1(N),Z) and a homomorphism α : π1(N) → G, we
denote by φα its restriction to kerα ⊂ π1(N). Furthermore we denote by div φα the
divisibility of φα, i.e. the largest integer n such that 1

nφα still defines an integral class.
Our main theorem is now the following.

Theorem 1.5. Let M be a 4-manifold admitting a free circle action such that b+2 (M) > 1
and such that either e = 0 or e is non-torsion. Let σ ∈ H2(M ; Z) such that φ = p∗(σ) 6=
0 ∈ H1(N ; Z). Then for any epimorphism α : π1(N)→ G onto a finite group we have

χ−M (σ) ≥ 1
|G|

(deg(∆α
N,φ)− 2 div φα) + |σ · σ|.

Furthermore, if σ is represented by a symplectic form, then ∆α
N,φ is monic.
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Note that the last statement is already contained in [FV08a] and [FV07]. The proof
of the theorem relies on the adjunction inequality and Taubes’ results applied to finite
coverings ofM . The resulting information on Seiberg–Witten invariants can be translated
into information on twisted Alexander polynomials using the results of Meng and Taubes
[MT96], Baldridge [Ba01], [Ba03] and Shapiro’s lemma.

This theorem allows us to study the existence of symplectic structures and the com-
plexity of surfaces using twisted Alexander polynomials. In [FV08a], [FV08b] and [FV07]
the authors showed that twisted Alexander polynomials are very efficient at detecting
fibered 3-manifolds (cf. also [Ch03], [GKM05], [FK06] and [Ki08]). The main result therein
contained is the following.

Theorem 1.6. Let N be a 3-manifold. Let φ ∈ H1(N ; Z) be non-trivial. If ∆α
N,φ 6= 0 for

all epimorphisms α : π1(N)→ G onto finite groups, then N is prime. Furthermore, if N
has either vanishing Thurston norm or is a graph manifold, then (N,φ) fibers over S1.

The primeness conclusion has first been proved by McCarthy [McC01]. In particular
the combination of Theorems 1.5 and 1.6 gives an affirmative answer to Conjecture 1.1 if
the orbit space N has vanishing Thurston norm or if N is a graph manifold. (For the case
of vanishing Thurston norm, a proof of the Conjecture along the same lines is presented
in [Bow07].)

Whereas twisted Alexander polynomials are good at detecting fibered 3-manifolds,
their record at detecting the Thurston norm of a given φ ∈ H1(N ; Z) is rather mixed.
On the one hand we prove in Section 4 the following result.

Theorem 1.7. There exists a 4-manifold M with free circle action with non-torsion
Euler class and σ ∈ H2(M ; Z) where the adjunction inequality is not strong enough to
determine χ−M (σ), but where the bounds from Theorem 1.5 on χ−M (σ) coming from ∆α

N

for an appropriate α : π1(N)→ G determine χ−M (σ).

On the other hand we will see in Lemma 4.2 that if the ordinary Alexander polynomial
∆N,φ vanishes, then all twisted Alexander polynomials ∆α

N,φ vanish as well. Note that
this effect would not happen if we used twisted Alexander polynomials corresponding
to general representations α : π1(N) → GL(C, k) as in [FK06]. Unfortunately these
more general twisted Alexander polynomials seem to have no interpretation in terms of
Seiberg–Witten invariants of covers.

2. Preliminaries

2.1. Surfaces and principal S1-bundles. We first prove the following lemma regarding
surfaces in N and M .

Lemma 2.1. Let M → N be a principal S1-bundle with Euler class e. Let σ ∈ H2(M ; Z)
and Σ ⊂ N an embedded surface dual to p∗(σ). Then Σ lifts to a surface in M .

Proof. Clearly it is enough to show that the principal S1-bundle over N restricted to Σ
is trivial. This in turn is equivalent to showing that e|Σ = 0 ∈ H2(Σ; Z). But since Σ
is dual to p∗(σ), this is equivalent to the condition that p∗(σ) ∪ e = 0, which in turn is
satisfied by the Gysin sequence (1).
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We have the following lemma (cf. also [Kr99]).

Lemma 2.2. Let σ ∈ H2(M ; Z) that satisfies (∗). Then

χ−M (σ) ≤ χ−N (p∗(σ)) + |σ · σ|.

Proof. Let Σ, Σ̃ and c as in the definition of property (∗). At each singular point of
p−1(c) ∪ Σ̃ we can replace a pair of transverse disks with an embedded annulus having
the same oriented boundary. Note that each replacement increases the Euler number by
2. We therefore obtain a smooth surface T representing the class dual to σ with

χ−(T ) = χ−(Σ̃) + χ−(p−1(c)) + 2|Σ · c|.

Note that p−1(c) is a union of tori, hence χ−(p−1(c)) = 0. As 2 Σ · c = σ · σ, we get

χ−(T ) = χ−N (p∗(σ)) + |σ · σ|.

We have the following criterion for σ ∈ H2(M ; Z) having property (∗).

Lemma 2.3. Let σ ∈ H2(M ; Z) and let n = div(p∗(σ)) be the divisibility of p∗(σ) ∈
H1(N ; Z). If there exists a connected Thurston norm minimizing surface dual to the
primitive class 1

np∗(σ), then σ has property (∗).

Proof. Let σ ∈ H2(M ; Z) and write n = div(p∗(σ)). Assume 1
np∗(σ) is dual to a con-

nected Thurston norm minimizing surface Σ′. By [Th86] the union of n parallel copies
of Σ′ is then a Thurston norm minimizing surface dual to p∗(σ). By Lemma 2.1 we can
lift Σ′ to a surface Σ̃′ ⊂ M . It follows from the Gysin sequence (1) that we can find an
embedded curve c ∈ N such that the class dual to σ is given by [nΣ̃′] + [p−1(c)]. We can
assume that c is in general position with nΣ′, hence nΣ̃′ and p−1(c) are in general posi-
tion. Since Σ′ is connected we can choose c such that the geometric intersection number
of Σ′ and c is given by the absolute value of Σ′ · c. (Note that c could be disconnected.)

The following lemma follows easily from [McM02, Proposition 6.1] or [Tu02].

Lemma 2.4. Let φ ∈ H1(N ; Z) and n = div(φ). If ∆N,φ 6= 0, then there exists a connected
Thurston norm minimizing surface dual to the primitive class 1

nφ.

Remark. We now give examples of manifolds of the form M = S1 × N such that not
every σ ∈ H2(M ; Z) has property (∗). For example, let N be the connected sum of
the zero framed surgeries on two non-trivial oriented knots K1 and K2. Let µ1, µ2 ∈
H1(N ; Z) be a basis given by the meridians of K1 and K2. Furthermore let F1, F2 be
the result of capping off two minimal genus Seifert surfaces of K1 and K2. Consider
φ = PD(a1[F1]) + PD(a2[F2]), a1, a2 ∈ Z, then for a1 6= 0 and a2 6= 0 there exists no
connected Thurston norm minimizing surface dual to φ.

We now specialize to a1 = 3 and a2 = 2. Also, let γ = µ1 − µ2. Then γ · φ = 1. But it
is easy to see that there exists no Thurston norm minimizing surface Σ dual to φ and a
curve c representing γ such that the geometric intersection number of Σ and c equals 1.
Now let σ ∈ H2(S1 ×N ; Z) be the element which corresponds to PD(γ) + φ ⊗ 1 under
the Künneth decomposition H2(S1 ×N ; Z) = H2(N ; Z)⊕H1(N ; Z)⊗H1(S1; Z). Then
it is clear that σ does not have property (∗).
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Finally, let γ = µ1 +µ2. Then γ · φ = 5 and we can find a Thurston norm minimizing
surface Σ dual to φ and a curve c representing γ such that the geometric intersection num-
ber of Σ and c equals 5. The corresponding element σ ∈ H2(S1×N ; Z) has property (∗),
but does not satisfy the conditions of Lemma 2.3.

These examples show that in general it is not clear when (∗) is satisfied. Also, there
does not seem to be a good conjecture for what χ−M (σ) should be in the case that (∗)
does not hold.

2.2. Twisted Alexander polynomials. In this section we are going to recall the definition
of the (twisted) Alexander polynomial associated to an epimorphism of the fundamental
group of a compact 3-manifold onto a finite group. Twisted Alexander polynomials were
first introduced for the case of knots by Xiao–Song Lin [Li01] and Lin’s definition was later
generalized to 3-manifolds by Wada [Wa94], Kirk–Livingston [KL99] and Cha [Ch03].

Let N be a compact 3-manifold, φ ∈ H1(N ; Z) = Hom(π1(N),Z) and let α : π1(N)→
G be an epimorphism onto a finite group G. Then α × φ gives an action of π1(N) on
G× Z, which extends to a ring homomorphism from Z[π1(N)] to the Z[t±1]-linear endo-
morphisms of Z[G×Z] = Z[G][t±1]. This induces a left Z[π1(N)]-structure on Z[G][t±1].

Now let Ñ be the universal cover of N . Note that π1(N) acts on the left on Ñ as group
of deck transformation. The chain groups C∗(Ñ) are in a natural way right Z[π1(N)]-
modules, with the right action on C∗(Ñ) defined via σ · g := g−1σ, for σ ∈ C∗(Ñ). We
can form by tensor product the chain complex C∗(Ñ) ⊗Z[π1(N)] Z[G][t±1]. Now define
Hi(N ; Z[G][t±1]) := Hi(C∗(Ñ)⊗Z[π1(N)] Z[G][t±1]), which inherit the structure of Z[t±1]-
modules. These modules are called twisted Alexander modules.

Our goal is to define an invariant out of H1(N ; Z[G][t±1]). First note that by endowing
N with a finite cell structure we can view C∗(Ñ) ⊗Z[π1(N)] Z[G][t±1] as finitely gener-
ated Z[t±1]-modules. The Z[t±1]-module H1(N ; Z[G][t±1]) is now a finitely presented and
finitely related Z[t±1]-module since Z[t±1] is Noetherian. Therefore H1(N ; Z[G][t±1]) has
a free Z[t±1]-resolution

Z[t±1]r S−→ Z[t±1]s → H1(N ; Z[G][t±1])→ 0

of finite Z[t±1]-modules. Without loss of generality we can assume that r ≥ s.
Definition. The twisted Alexander polynomial of (N,α, φ) is defined to be the order of
the Z[t±1]-module H1(N ; Z[G][t±1]), i.e. the greatest common divisor of the s× s minors
of the s × r-matrix S. It is denoted by ∆α

N,φ ∈ Z[t±1], and it is well-defined up to units
of Z[t±1].

If G is the trivial group we will drop α from the notation. With these conventions,
∆N,φ ∈ Z[t±1] is the ordinary 1-variable Alexander polynomial associated to φ. For
example, if X(K) = S3 \ νK is the exterior of a knot K and φ ∈ H1(X(K); Z) is a
generator, then ∆X(K),φ equals the ordinary Alexander polynomial ∆K of a knot.

Finally, given a 3-manifold N we write H = H1(N ; Z)/torsion. Using a similar ap-
proach as above one can define the multivariable Alexander polynomial ∆N ∈ Z[H]. The
following theorem of Meng and Taubes [MT96] states that the multivariable Alexander
polynomial of a 3-manifold N corresponds to the Seiberg–Witten invariants of N .
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Theorem 2.5. Let N be a closed 3-manifold with b1(N) > 1 and let H = H1(N ; Z)/tor-
sion. Then

∆N = ±
∑

ξ∈H2(N)

SWN (ξ) · 1
2
f(ξ) ∈ Z[H],

where f denotes the composition of Poincaré duality with the quotient map f : H2(N) ∼=
H1(N) → H and, as f(ξ) has even divisibility for all 3-dimensional basic classes ξ ∈
suppSWN , multiplication by 1

2 is well-defined.

3. Constraints from Seiberg-Witten theory

3.1. Seiberg-Witten theory for manifolds with circle action. The essential ingredient in
our approach is the fact that the Seiberg-Witten invariants of M are related to the
Alexander polynomial of N . The following theorem combines the results of Meng–Taubes
[MT96] and Baldridge [Ba03, Corollaries 25 and 27] (cf. also [Ba01]), to which we refer
the reader for definitions and results for Seiberg-Witten theory in this set-up:

Theorem 3.1. Let M be a 4-manifold with b+2 (M) > 1 admitting a free circle action with
orbit space N . Let e ∈ H2(N ; Z) be the Euler class. Assume that either e = 0 or e non-
torsion. Then the Seiberg-Witten invariant SWM (κ) of a class κ = p∗ξ ∈ p∗H2(N ; Z) ⊂
H2(M ; Z) is given by the formula

SWM (κ) =
∑

ξ∈(p∗)−1(κ)

SWN (ξ) =
∑

ξ′−ξ≡ 0 (e)

SWN (ξ′) ∈ Z. (4)

Furthermore, SWM (κ) = 0 for any κ 6∈ p∗H2(N ; Z).

In the formula above, SWN (ξ) is the 3-dimensional SW-invariant of a class ξ ∈ H2(N),
and the effect of the twisting of the S1-fibration, measured by the class e ∈ H2(N), is
to wrap up the contribution of all 3-dimensional basic classes of N that have the same
image in H2(M), i.e. that differ by a multiple of e. As usual, we can package the above
invariants in terms of a Seiberg-Witten polynomial.

From the calculation of the Seiberg–Witten invariants of M we obtain immediately
the following corollary.

Corollary 3.2. Let M be a 4-manifold with b+2 (M) > 1 admitting a free circle action
with orbit space N such that the Euler class is either zero or non-torsion. Then

χ−M (σ) ≥ |σ · σ|+ σ · κ (5)

for any Seiberg-Witten basic class κ ∈ H2(M ; Z).

Proof. By (3) we only have to consider the case that σ · σ < 0. Let κ be a basic class
of M . Recall that this implies that −κ is also a basic class. Let ϕ : M → M̂ be the
orientation reversing diffeomorphism given by ϕ(p) = p. Given a, b ∈ H2(M ; Z) we have
ϕ(a) = a, ϕ(b) = b and QM̂ (ϕ(a), ϕ(b)) = −QM (a, b), where for sake of understanding
we write explicitly the intersection forms of each manifold.
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It follows from Theorem 3.1 that a is a basic class for M if and only if ϕ(a) is a basic
class for M̂ . Applying (3) to ϕ(σ) we obtain

χ−M (σ) = χ−
M̂

(ϕ(σ))

≥ QM̂ (ϕ(σ), ϕ(σ)) +QM̂ (ϕ(σ), ϕ(−κ))

= −QM (σ, σ)−QM (σ,−κ)

= |QM (σ, σ)|+QM (σ, κ).

3.2. Twisted Alexander polynomials and SW-invariants. We are in a position now to
prove our main theorem. Note that the second part is already contained in [FV08a] and
[FV07].

Theorem 3.3. Let M be a 4-manifold with b+2 (M) > 1 admitting a free circle action
with orbit space N . Let e ∈ H2(N ; Z) be the Euler class. Assume that either e = 0 or
e non-torsion. Let σ ∈ H2(M ; Z) such that φ = p∗(σ) 6= 0 ∈ H1(N ; Z). Then for any
epimorphism α : π1(N)→ G onto a finite group we have

χ−M (σ) ≥ 1
|G|

(deg(∆α
N,φ)− 2 div φα) + |σ · σ|.

Furthermore, if σ is represented by a symplectic form, then ∆α
N,φ is monic.

Proof. Let M be a 4-manifold admitting a free circle action such that b+2 (M) > 1 and
denote by N its orbit space. It follows from equation (2) and the remarks which follow
(2) that b1(N) ≥ 2. We will first analyze the ordinary 1-variable Alexander polynomial
∆N,φ. By [FV08a] we can write this polynomial as

∆N,φ = (tdiv φ − 1)2 ·
∑
g∈H

agt
φ(g) ∈ Z[t±1], (6)

where H is the maximal free abelian quotient of π1(N) and ∆N =
∑
g∈H ag · g ∈ Z[H] is

the ordinary multivariable Alexander polynomial of N . By Theorem 2.5 we can write

∆N,φ = ±(tdiv φ − 1)2
∑

ξ∈H2(N)

SWN (ξ)t
1
2φ·ξ. (7)

We will use now Equation (4) to write ∆N,φ in terms of the 4-dimensional Seiberg-Witten
invariants of M . In order to do so, observe that for all classes ξ ∈ H2(N) we can write
ξ · φ = ξ · p∗(σ) = p∗(ξ) · σ = κ · σ where κ = p∗(ξ). Grouping together the contributions
of the 3-dimensional basic classes in terms of their image in H2(M), and using (4) we get

∆N,φ = ±(tdiv φ − 1)2
∑

κ∈p∗H2(N)

∑
ξ∈(p∗)−1(κ)

SWN (ξ)t
1
2φ·ξ

= ±(tdiv φ − 1)2
∑

κ∈p∗H2(N)

SWM (κ)t
1
2σ·κ. (8)

Note that κ is a basic class if and only if −κ is a basic class. It now follows that

max{κ · σ|κ basic class of M} = max{κ · σ|κ basic class of M and κ ∈ p∗(H2(N ; Z))}
≥ deg(∆N,φ)− 2 div(φ).

Combining this inequality with the adjunction inequality (5) we get

χ−M (σ) ≥ deg(∆N,φ)− 2 div(φ) + |σ · σ|. (9)
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Now assume that σ is represented by a symplectic form ω. Taubes’ constraints, applied
to the symplectic manifold (M,ω), assert that if K ∈ H2(M) is the canonical class, then
SWM (−K) = 1. Moreover, among all basic classes κ ∈ H2(M), we have

−K · σ ≤ κ · σ, (10)

with equality possible only for κ = −K. It now follows immediately from (8) that ∆N,φ

is a monic polynomial.
Now let α : π1(N) → G be an epimorphism onto a finite group G. We denote by π :

Nα → N the corresponding regular G-cover of N . It is well-known that b1(Nα) ≥ b1(N).
The epimorphism π1(M)→ π1(N)→ G determines a regular G-cover of M that we will
denote (with slight abuse of notation) π : Mα → M . These covers are related by the
commutative diagram

Mα
π−→ M

↓ ↓
Nα

π−→ N

(11)

where the principal S1-fibration pα : Mα → Nα has Euler class eα = π∗e ∈ H2(Nα).
Note that eα = 0 whenever e = 0, and eα is non-torsion if and only if e is non-torsion. In
particular b+2 (MG) ≥ b+2 (M) > 1.

Now let σ ∈ H2(M ; Z) and Σ ⊂ M a surface of minimal complexity representing σ.
Note that π−1(Σ) ⊂Mα is dual to π∗(σ). We have

χ−M (σ) = χ−(Σ) =
1
|G|

χ−(π−1(Σ)) ≥ 1
|G|

χ−Mα
(π∗σ),

σ · σ = Σ · Σ =
1
|G|

(π−1(Σ) · π−1(Σ)) =
1
|G|

(π∗(σ) · π∗(σ)).

(Note that is not known whether or not π−1(Σ) is a surface of minimal complexity.)
Applying (9) to Mα it now follows that

χ−M (σ) ≥ 1
|G|

χ−Mα
(π∗(σ)) ≥ 1

|G|
(deg(∆Nα,φα)− 2 div(φα) + |π∗(σ) · π∗(σ)|)

=
1
|G|

(deg(∆Nα,φα)− 2 div(φα)) + |σ · σ|.

This, together with the relation ∆α
N,φ = ∆Nα,φα from [FV08a] proves the first part of the

theorem.
Now assume that σ is represented by a symplectic structure ω. As (M,ω) is symplectic,

Mα inherits a symplectic form ωα := π∗ω which represents π∗(σ). Clearly φα = p∗(π∗(σ)).
From the above we get that ∆Nα,φα is monic. Again the equality ∆α

N,φ = ∆Nα,φα con-
cludes the proof.

4. Examples

4.1. Applications of Theorem 1.5. Applications of Seiberg–Witten invariants to the ex-
istence of symplectic structures on 4-manifolds with a free circle action have been studied
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by many authors. In the case of trivial Euler class we refer to [Kr98, Kr99, McC01, Vi03,
FV08a], in the case of non-trivial Euler class the first results were obtained by Baldridge
[Ba01]. Furthermore in [FV08a] and [FV07] we give many explicit examples of 4-manifolds
with a free circle action where twisted Alexander polynomials can be used to show that
they do not support a symplectic structure. In this section we therefore concentrate on
examples regarding the minimal complexity of surfaces in 4-manifolds with a free circle
action.

Let T be the 3-torus. Recall that the 3-torus has vanishing Thurston norm and that its
multivariable Alexander polynomial is 1. Let x, y, z ∈ H1(T ; Z) be a basis corresponding
to the three circles of T = S1 × S1 × S1 and let C ⊂ T be a circle representing x.
Throughout this section we denote by φ ∈ H1(N ; Z) the class given by φ(x) = 1, φ(y) =
φ(z) = 0. Pick a meridian µC and a longitude λC for C such that [µC ] = 0 and [λC ] = x

in H1(T ; Z). Next, let K ⊂ S3 be an oriented knot. We denote by µK and λK its meridian
and longitude. Now, splice the two exteriors to form the 3-manifold

TK = (T \ νC) ∪ (S3 \ νK) (12)

where the gluing map on the boundary 2-tori identifies µK with λC and λK with µC .
As the surgery of Equation (12) amounts to the substitution of a solid torus with

a homology solid torus, respecting the boundary maps, and as the class of C is primi-
tive, it is easy to see from the Mayer–Vietoris sequence that the inclusion maps induce
isomorphisms H1(T ; Z)

∼=←− H1(T \ νC; Z)
∼=−→ H1(TK ; Z) which we use to identify these

groups for the remainder of this section. We also identify H1(T ; Z) = H1(T \ νC; Z) =
H1(TK ; Z).

Let e = PD(z) and let MK(e) be the total space of the principal S1-bundle over TK
with Euler class e. We now specialize to the case that K is the Conway knot 11401, its
diagram is given in Figure 1. It is well-known that the genus of the Conway knot is 3

a

b
c

d

e

f

g

h

j

k
i

Fig. 1. The Conway knot 11401 and a Seifert surface of genus 3 (from [Ga84])

and that ∆K = 1. Since ∂(S3 \ νK) is an incompressible torus in TK it follows from the
additivity of the Thurston norm that χ−TK (φ) = 5 + 1 = 6.

According to the following proposition the adjunction inequality does not determine
χ−MK(e), but for certain σ the twisted Alexander polynomials of Theorem 1.5 detect
χ−MK(e)(σ).



54 S. FRIEDL AND S. VIDUSSI

Proposition 4.1. Let K ⊂ S3 be the Conway knot. Then

1. SWMK(e) = 1,
2. For any σ with p∗(σ) = φ ∈ H1(TK ; Z) we have

χ−MK(e)(σ) = χ−TK (p∗(σ)) + |σ · σ| = 6 + |σ · σ|.

Proof. Note that if J is the unknot, then TJ = T . Now we use another Alexander polyno-
mial one knot, namely K to build TK . It is not difficult to see (using e.g. Mayer–Vietoris
sequences) that ∆TK = ∆TJ = ∆T = 1. It follows from Theorem 2.5 and Theorem 3.1
that SWMK(e) = 1.

Now let σ ∈ H2(MK(e); Z) with p∗(σ) = φ ∈ H1(TK ; Z). First observe that by
obstruction theory we can define a proper map T \ νC → S1 × D2 which realizes the
map π1(T \ νC) → H1(T \ νC) → Z = H1(S1 × D2) given by φ ∈ H1(T \ νC; Z) =
Hom(π1(T \ νC),Z) and which extends the diffeomorphism ∂(T \ νC) ∼= S1 × ∂D2 given
by identifying λC and µC with S1 and ∂D2 respectively. Out of this we construct a degree
one map

TK = (T \ νC) ∪ (S3 \ νK)→ (S1 ×D2) ∪ (S3 \ νK) = NK

which induces an epimorphism π1(T 3
K)→ π1(NK). Given an epimorphism α : π1(NK)→

G onto a finite group we obtain a corresponding epimorphism of π1(TK) onto G, which
we denote for simplicity by α as well.

We now get the following Mayer–Vietoris sequence (cf. [FK06])

→ H1(S1 × S1; Z[G][x±1]) → H1(T 3 \ νC; Z[G][x±1])
H1(S3 \ νK; Z[G][x±1])

→ H1(TK ; Z[G][x±1]) →

→ H0(S1 × S1; Z[G][x±1]) → H0(T 3 \ νC; Z[G][x±1])
H0(S3 \ νK; Z[G][x±1])

→ H0(TK ; Z[G][x±1]) →

First note that the maps

φ× α : π1(S1 × S1)→ Z×G
φ× α : π1(T 3 \ νC)→ Z×G

both factor through φ. In particular we get a commutative diagram

Hi(S1 × S1; Z[G][x±1])

∼=
��

ι // Hi(T 3 \ νC; Z[G][x±1])

∼=
��

Hi(S1 × S1; Z[x±1])⊗Z Z[G] ι // Hi(T 3 \ νC; Z[x±1])⊗Z Z[G].

It is now easy to see that the bottom map is an isomorphism for i = 0. Furthermore
H1(S1×S1; Z[x±1]) is given by Zc where c is a curve representing the commutator [y, z].
On the other hand H1(T 3 \ νC; Z[x±1]) is given by Zy ⊕ Zz. We see that the inclusion
induced map H1(S1 × S1; Z[x±1]) → H1(T 3 \ νC; Z[x±1]) is trivial. It follows from this
discussion that the above Mayer–Vietoris sequence descends to a sequence of the form:

0→ Z|G| ⊕ Z|G| ⊕H1(S3 \ νK; Z[G][x±1])→ H1(TK ; Z[G][x±1])→ 0.
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It follows that

deg(∆α
TK ,φ) = rankZ(H1(TK ; Z[G][x±1])) = rankZ(H1(S3 \ νK; Z[G][x±1])) + 2|G|

= deg(∆α
K,φ) + 2|G|.

We now pick a particular epimorphism α : π1(NK) → G. The fundamental group
π1(NK) is generated by the meridians a, b, . . . , k of the segments in the knot diagram of
Figure 1. The relations are

a = jbj−1, b = fcf−1, c = g−1dg, d = k−1ek,

e = h−1fh, f = igi−1, g = e−1he, h = c−1ic,

i = aja−1, j = iki−1, k = e−1ae, a−1 = jfg−1k−1h−1ie−1c−1aie−1.

Using the program KnotTwister [Fr07] we found the homomorphism ϕ : π1(NK) → A5

given by
a 7→ (142), b 7→ (451), c 7→ (451), d 7→ (453),

e 7→ (453), f 7→ (351), g 7→ (351), h 7→ (431),

i 7→ (351), j 7→ (352), k 7→ (321),

where we use cycle notation. Using KnotTwister we compute that the degree of ∆α
K,φ

computed as an element in F53[t±1] equals 209. It follows from [FV08b, Proposition 6.1]
that the degree of ∆α

K,φ computed as an element in Z[t±1] equals at least 209. We also
have div(φα) = 1. It now follows from Theorem 1.5 that

χ−MK(e)(σ) ≥ 1
|A5|

(deg(∆α
TK ,φ)− 2 div φα) + |σ · σ|

=
1
60

(deg(∆α
K,φ) + 2 · 60− 2) + |σ · σ|

≥ 1
60

(209 + 2 · 60− 2) + |σ · σ| = 327
60

+ |σ · σ|.

Lemma 2.2 asserts that χ−MK(e)(σ) ≤ 6+ |σ ·σ|, as χTK (φ) equals 6. The claim now follows
from Lemma 2.2 and the fact that χ−MK(e) is necessarily an integer.

4.2. The limitations of Theorem 1.5. The following lemma says that in many cases all
twisted Alexander polynomials will be zero and therefore Theorem 1.5 will not be able
to give any information on the minimal complexity of surfaces.

Lemma 4.2. Let N be a 3-manifold and φ ∈ H1(N ; Z) such that ∆N,φ = 0. Then ∆α
N,φ =

0 for all epimorphisms α : π1(N)→ G to a finite group G.

As an example, note that for any N which is the direct sum of N1, N2 with b1(Ni) ≥ 1
we have ∆N,φ = 0 for any φ ∈ H1(N ; Z). This can be seen using a straightforward Mayer–
Vietoris argument. Another example is given by any N which is the 0-framed surgery on
a boundary link.

Proof. First note that for an epimorphism β : π1(N) → H to a finite group H we have
∆β
N,φ = 0 if and only if

dimQ(H1(N ; Q[H][t±1])) =∞.
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By Maschke’s theorem (cf. e.g. [Ro96, p. 216]) we have a direct sum decomposition of
Q[G]-modules

Q[G] = Q⊕ V,

where Q is the Q[G]-module with the trivial G-action. It follows that

(H1(N ; Q[G][t±1]) ∼= (H1(N ; Q[t±1])⊕ (H1(N ;V ⊗Q Q[t±1]).

The lemma now follows immediately from the above observation applied to H = e and
H = G.
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