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Abstract. The classification of class VII surfaces is a very difficult classical problem in complex

geometry. It is considered by experts to be the most important gap in the Enriques-Kodaira

classification table for complex surfaces. The standard conjecture concerning this problem states

that any minimal class VII surface with b2 > 0 has b2 curves. By the results of [Ka1]–[Ka3], [Na1]–

[Na3], [DOT], [OT] this conjecture (if true) would solve the classification problem completely.

We explain a new approach (based on techniques from Donaldson theory) to prove existence of

curves on class VII surfaces, and we present recent results obtained using this approach.

1. Introduction. By definition, a Kählerian surface is a compact complex surface ad-
mitting a Kähler metric. A fundamental theorem in complex geometry states that a
compact complex surface is Kählerian if and only if b1(X) is even. This follows indi-
rectly from Siu’s result [Si] about the Kählerianity of K3 surfaces and standard results
on the classification of complex surfaces. A direct proof has been given by Buchdahl (see
[Bu2], [BPV]). According to the Enriques-Kodaira classification table [BPV], if X is a
non-Kählerian surface, i.e. its first Betti number b1(X) is odd, then its minimal model
Xmin belongs to one of the following three classes:

1. Primary and secondary Kodaira surfaces,
2. Non-Kählerian properly elliptic surfaces,
3. Minimal class VII surfaces.

A primary Kodaira surface is a topologically non-trivial, locally trivial principal el-
liptic fiber bundle over an elliptic base. Such a surface has b1 = 3. A secondary Kodaira
surface is a surface with b1 = 1 which admits a primary Kodaira surface as unrami-
fied covering. A properly elliptic surface is an elliptic surface with Kodaira dimension
kod(X) = 1. Finally, a class VII surface is a complex surface X having b1(X) = 1 and
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kod(X) = −∞. The condition kod(X) = −∞ implies pg = 0 hence, using standards iden-
tities between analytical and topological invariants of complex surfaces (see Theorem 2.7
p. 139 [BPV]) one obtains b+(X) = 0. Therefore class VII surfaces are interesting from
a differential topological point of view: they are 4-manifolds with b1 = 1 and negative
definite intersection form. The simplest examples of class VII surfaces are primary Hopf
surfaces: a primary Hopf surface is the quotient of the punctured plane C2 \ {0} by an
infinite cyclic group H which acts properly discontinuously by holomorphic transforma-
tions. For instance, one can take H = 〈T 〉, where T (z1, z2) = (α1z1, α2z2) with |αi| < 1.
Any primary Hopf surface is diffeomorphic to S1 × S3. From a historical point of view
these are the first examples of non-Kählerian compact manifolds.

Note that the surfaces in the first two classes of the list above are all elliptic, so they
are well understood and can be classified using classical complex geometric methods.
On the other hand, the third class in the list above – the mysterious class VII – is
not understood yet and, although much progress has recently been obtained, it resists
since many decades to the efforts of the experts. This is considered to be the most
important gap in the Enriques-Kodaira classification table. One can wonder why is the
classification problem for class VII surfaces so difficult. Probably the main source of
difficulty is the lack of lower dimensional complex geometric sub-objects. Indeed, it is
not known (and till recently there was no available method to decide) whether a class
VII surface contains a holomorphic curve or a holomorphic foliation. The classification
problem can be understood in two ways, a weak way and a strong way:

A. Classify class VII surfaces up to deformation equivalence,
B. Classify class VII surfaces up to biholomorphic equivalence, and describe explicitly

the “moduli space” which corresponds to a given deformation class.

Note that such a “moduli space” might be a highly non-Hausdorff holomorphic stack.
The weaker problem A is interesting from a topological point of view, because answering
this problem would solve the following differential topological problem:

What are the possible diffeomorphism types of compact, connected, oriented 4-mani-
folds M with b1(M) = 1 and negative definite intersection form which admit an integrable
almost complex structure?

Interestingly, even the much simpler question “What are the possible isomorphism
types of fundamental groups π1(M) of such 4-manifolds” is a very difficult, still unan-
swered question.

Although very difficult, there is much hope that in fact the classification problem
of class VII surfaces has a simple answer; in other words it is believed that this class
is actually quite small. This guess is supported by the known classification of class VII
surfaces with b2 = 0 (as we will see below) and the remark that, in the Kählerian case
(b1(X) even), the condition kod(X) = −∞ determines the very small class of surfaces
which are rational or ruled.

A class VII surface with b2 = 0 is biholomorphic to either a Hopf surface (i.e. a
compact surface whose universal cover is C2 \ {0}) or an Inoue surface (i.e. a class VII
surface which is the free quotient of C × H by a properly discontinuous affine action).
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This result was first stated by Bogomolov [Bo1], [Bo2], and is usually called Bogomolov’s
theorem, but it appears that the first complete proofs have been given in [Te1] and [LYZ].
Both Hopf and Inoue surfaces are well understood and completely classified.

There are many examples of minimal class VII surfaces with b2 > 0. By results of Kato
[Ka1], [Ka2], [Ka3] and Dloussky [D1] all these surfaces contain a global spherical shell
(a GSS), i.e. an open submanifold Σ which is biholomorphic to a standard neighborhood
of S3 in C2 and does not separate X (i.e. π0(X \U) is trivial). Minimal class VII surfaces
with b2 > 0 containing a GSS (also called GSS surfaces, or Kato surfaces) are well
understood. For instance, an important result of Kato states that

Theorem 1. Every GSS surface contains b2 rational curves and is a global deformation
(a degeneration) of a 1-parameter family of blown up primary Hopf surfaces.

In particular, all GSS surfaces with fixed second Betti number b > 0 are deformation
equivalent, and are diffeomorphic to (S1 × S3)#bP̄2. The biholomorphic classification of
GSS surfaces is also well understood, and certain moduli spaces of such surfaces have
recently been described explicitly [OT]. Therefore the following conjecture formulated by
Nakamura [Na2] would solve in principle the classification problem for class VII surfaces:

GSS conjecture. Every minimal class VII surfaces X with b2(X) > 0 has a GSS, so
it belongs to the list of known class VII surfaces.

If the conjecture is true, all minimal class VII surfaces X with a fixed second Betti
number will be deformation equivalent, and diffeomorphic to (S1×S3)#bP̄2 (so not very
interesting from a differential topological point of view).

Since a spherical shell is a non-compact object, it seems that establishing the existence
of a GSS is a very difficult task. Fortunately, a recent result of Dloussky-Oeljeklaus-Toma
[DOT] reduces the problem to the existence of sufficiently many rational curves.

Theorem 2. If a minimal class VII surface with b2 > 0 has b2 rational curves, then it
is a GSS surface.

Any GSS surface contains exactly b2 rational curves, but the intersection and self-
intersection numbers of these curves are not invariant under deformation. For instance,
there exists a holomorphic family (Xz)z∈D of GSS surfaces with b2 = 1 such that for
z 6= 0 the only irreducible curve of Xz is a homologically trivial singular rational curve
Cz, whereas the only irreducible curve of X0 is a singular rational curve Dz with D2

z = −1.
As z → 0 the volume of Cz tends to infinity, so the closed positive current associated
with Cz does not converge to a current in X0 as z → 0. This shows that in our non-
Kählerian framework existence of curves cannot be established using Gromov-Witten
type invariants. Gromov-Witten theory cannot be extended to the non-Kählerian complex
geometric framework, because on a non-Kählerian manifold the volume of the curves in
a fixed homology class cannot be a priori bounded.

Any GSS surface contains a cycle of rational curves, i.e. an effective divisor
∑k
i=1 Ci

(1 ≤ k ≤ b2), where either k = 1 and C1 is a singular rational curve with a normal
crossing, or k ≥ 2, Ci are smooth rational and

C1 · C2 = . . . = Ck−1 · Ck = Ck · C1 = 1 , Ci · Cj = 0 for j − i 6= ±1 mod k.
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In order to solve the weaker classification problem (up to deformation equivalence) it
suffices to prove the existence of a cycle of rational curves. Indeed, by a theorem of
Nakamura [Na1], one has

Theorem 3. A minimal class VII surface which contains a cycle of rational curves is a
global deformation (a degeneration) of a 1-parameter family of blown up primary Hopf
surfaces.

In conclusion, in order to solve the weak classification problem for class VII surfaces
it suffices to prove

Conjecture A. Any minimal class VII surface X with b2 > 0 has a cycle of rational
curves.

In order to solve the strong classification problem it suffices to prove

Conjecture B. Any minimal class VII surface X with b2 > 0 has b2 rational curves.

In the articles [Te2] and [Te3], we proved that the existence of curves on class VII
surfaces can be established (at least for surfaces with small second Betti number) using a
combination of gauge theoretical and complex geometric techniques. The main idea is to
prove that if a minimal class VII surface with b2 > 0 had no curves, a certain moduli space
of polystable rank 2-bundles (PU(2)-instantons) on X would contain a smooth compact
component consisting of stable bundles (irreducible instantons). The existence of such a
component leads to a contradiction. This method yields the following result which solves
the strong classification problem in the case b2 = 1 and the weak classification problem
in the case b2 = 2.

Theorem 4. Conjecture B is true for b2 = 1. Conjecture A is true for b2 = 2.

The purpose of this article is to explain in a geometric, non-technical way the idea of
the proof, pointing out the role of the topological and gauge theoretical techniques.

2. Instantons on non-Kählerian surfaces. Let E be a Hermitian rank 2-bundle on
a (compact, connected, oriented) Riemannian 4-manifold (M, g). Let D = ∧2E be the
determinant line bundle of E and a a fixed Hermitian connection of D. We denote by
Aa(E) the space of a-oriented connections, i.e. of Hermitian connections A on E which
induce a on the determinant line bundle D. Our gauge group is G := Γ(M,SU(E)). Let

AASD
a (E) := {A ∈ Aa(E)| (F 0

A)+ = 0}

be the subspace of projectively ASD a-oriented connections (or a-oriented instantons),

MASD
a (E) := AASD

a (E)/G

the corresponding moduli space, and MASD
a (E)∗ ⊂ MASD

a (E) the open subspace con-
sisting of orbits of irreducible projectively ASD oriented connections. Denoting by P the
PU(2)-bundle associated with the unitary frame bundle of E, one has obvious identifi-
cations

Aa(E) = A(P ), AASD
a (E) = AASD(P ), G = Γ(M,P ×Ad SU(2)),
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so a-oriented instantons can be regarded as PU(2)-instantons, and the spaces AASD
a (E),

MASD
a (E) are independent of a up to canonical isomorphisms. Note however that in

general the natural morphism G/Z2 → Aut(P ) is not surjective, so our moduli space
MASD

a (E) cannot be identified with the usual moduli space

MASD(P ) = AASD(P )/Aut(P )

of PU(2)-instantons on P . The latter moduli space is the quotient of the former by the
natural action of H1(M,Z2) given by tensoring with flat {±1}-connections.

Remark 1. Put ∆(E) := 4c2(E)− c1(E)2 = −p1(P ). Then MASD
a (E) is

1. empty when ∆(E) < 0,
2. compact when ∆(E) ≤ 3.

Proof. The first statement follows from the well-known identity relating the energy of a
PU(2)-instanton to its Pontrjagin number. The second follows from the first and Uhlen-
beck compactness theorem [DK].

Suppose now that (X, g) is a complex surface endowed with a Gauduchon metric, i.e. a
Hermitian metric g whose associated (1,1)-form ωg satisfies the equation ∂∂̄ωg = 0. Every
conformal class of Hermitian metrics contains a Gauduchon metric which is unique up
to constant factor (see [Gau]), so Gauduchon metrics exist on any surface. A Gauduchon
metric defines a morphism of Lie groups degg : Pic(X)→ R given by

degg(L) :=
∫
X

c1(L, h) ∧ ωg,

where L is a holomorphic line bundle on X, h is any Hermitian metric on L, and c1(L, h)
denotes the Chern form of the Chern connection associated with the pair (L, h). For
instance, if O(D) is the holomorphic line bundle associated with an effective divisor
D ⊂ X, then degg(O(D)) = Volg(D).

If b1(X) is odd, the degree map is not a topological invariant (i.e. it does not vanish on
the connected component Pic0(X) ' H1(X,O)/H1(X,Z) of the zero element in Pic(X)).
For instance, if X is a class VII surface, then one has a canonical isomorphism Pic0(X) '
C∗, and the degree of the line bundle Lz associated with z ∈ C∗ is given by deg(Lz) =
Cg log |z| for a positive constant Cg determined by the metric g.

For a coherent sheaf F on X one defines degg(F) := degg(det(F)). A holomorphic
rank 2-bundle E on X is called stable if degg(L) < 1

2deg(E) for every sheaf monomorphism
L → E with torsion free quotient, and polystable if it is either stable or isomorphic to the
direct sum of two line bundles of the same degree.

Fix now a C∞ Hermitian rank 2-bundle (E, h) on X, and fix a holomorphic structure D
on its determinant line bundle D. We denote byMst

D(E),Mpst
D (E) the moduli sets of sta-

ble (respectively polystable) holomorphic structures E on E which induce D on the deter-
minant line bundle (modulo the equivalence relation defined by the GC := Γ(X,SL(E))-
action on the space of these structures). Mst

D(E) is a Hausdorff open subspace of the
moduli space Ms

D(E) of simple holomorphic structures E on E with det(E) = D, which
has a natural structure of a finite dimensional (in general non-Hausdorff) complex space
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[LO], [LT1]. The Kobayashi-Hitchin correspondence for complex surfaces [Do1], [Bu1],
[LY], [LT1], [LT2] states that

Theorem 5. Let a be the Chern connection associated with the holomorphic structure D
and the Hermitian metric det(h) on D. The assignment A 7→ ∂̄A defines a real analytic
isomorphismMASD

a (E)∗ '→Mst
D(E) which extends to a bijectionMASD

a (E) '→Mpst
D (E).

We will endow Mpst
D (E) with the topology which makes this bijection a homeomor-

phism. This important theorem furnishes a tool to compute moduli spaces of instantons
on complex surfaces using complex geometric methods. The point here is that classify-
ing (poly)stable holomorphic bundles is much easier than classifying the solutions of the
ASD equation (which is a difficult non-linear PDE system). This principle plays a fun-
damental role in Donaldson theory (see [Do1], [DK]) and made possible the first explicit
computations of Donaldson invariants. Unfortunately classifying holomorphic bundles on
non-algebraic surfaces becomes a very difficult (sometimes hopeless) problem. The diffi-
culty (specific to the non-algebraic framework) is the appearance of non-filtrable holo-
morphic bundles [BLP]. A holomorphic rank 2-bundle E is called filtrable if its associated
locally free sheaf (denoted by the same symbol) contains a coherent rank 1-subsheaf or,
equivalently, if it fits in an exact sequence of the form

0→ L → E →M⊗JZ → 0,

where L, M are holomorphic line bundles and Z ⊂ X is a zero-dimensional locally
complete intersection. On algebraic surfaces all bundles are filtrable, so classifying holo-
morphic rank 2-bundles reduces to classifying locally free extensions of M⊗ JZ by L,
where L, M vary in Pic(X), and Z in the Douady space of zero-dimensional locally
complete intersections.

3. Existence of curves on class VII surfaces. Let X be a minimal class VII surface
with b2(X) = b > 0. We get easily c2(X) = e(X) = b and (using Noether’s formula
[BPV]) c1(X)2 = −b. We denote by K the canonical holomorphic line bundle on X, and
by K its underlying differentiable line bundle. In order to avoid technical difficulties, we
make the following simplifying assumptions:

1. π1(X) ' Z,
2. There exists a Gauduchon metric g on X such that degg(K) < 0.

The first assumption will simplify our arguments in the following way: First it guar-
antees that H2(X,Z) is a free Z-module. By Donaldson first theorem [Do2], there exists a
basis (e1, . . . , eb) in H2(X,Z) ' Zb which is orthonormal with respect to the intersection
form qX , i.e. ei · ej = −δij . Taking into account that c1(K)2 = −b and that c1(K) is a
characteristic class, it is easy to see that (replacing some ei’s by their opposite if nec-
essary) this basis can be chosen such that

∑
i ei = c1(K). Second, the first assumption

implies that there exists a unique non-trivial representation ρ : π1(X,x0)→ {±1}, so X
has a unique double cover πρ : X̃ → X.

The second condition is not restrictive: one can prove that if degg(K) > 0 for every
Gauduchon metric g on X, then the Chern class c1(K)BC in Bott-Chern cohomology will
be pseudo-effective; this implies that X has a numerically pluri-canonical divisor, which
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is not possible on minimal class VII surfaces with b2 > 0, by a result of Nakamura (see
[Te3] for details).

Let (E, h) be a Hermitian rank 2-bundle on X with c2(E) = 0, det(E) = K. We are
interested in the moduli space

M :=Mpst
K (E) 'MASD

a (E),

where a is the Chern connection associated with the pair (K,det(h)). Since c1(E) =
−c1(X) we get ∆(E) = b, so the complex expected dimension of our moduli space is b.
Moreover, by Remark 1 one has

Remark 2. M is compact when b ≤ 3.

This result is an easy consequence of the Kobayashi-Hitchin correspondence and Uh-
lenbeck compactness theorem, but it cannot be obtained using complex geometric argu-
ments (although polystable bundles are defined in complex geometric terms).

The idea to consider this moduli space for our purposes might look surprising, because
there is no obvious relation between instantons and holomorphic curves. In order to clarify
in a non-technical way how this moduli space will be used, let us first classify the filtrable
rank 2-bundles E with c2(E) = 0, det(E) = K. Such a bundle fits in an exact sequence
0 → L → E → K ⊗ L−1 ⊗ JZ → 0. Write c1(L) =

∑
niei. The relation c2(E) = 0 gives

|Z|+
∑
i ni(ni − 1) = 0, which shows that Z = ∅ and c1(L) = eI :=

∑
i∈I ei for a subset

I ⊂ I0 := {1, . . . , b}. Therefore for every such index set I ⊂ I0 we get a class of extensions
of the form

0→ L j→E q→K⊗L−1 → 0(1)

with c1(L) = eI . We will call them extensions of type I. We have proved that any filtrable
rank 2-bundle with c2(E) = 0, det(E) = K is the central term of such an extension.
Unfortunately, in general, the same filtrable bundle can be written as an extension in
many different ways, so it is not clear at all which bundles obtained in this way are
stable. An important example is obtained taking I = I0 and L = K. For this choice there
exists an (essentially unique) non-trivial extension

0→ K i→A p→O → 0,(2)

because Ext1(O,K) = H1(K) ' H1(O)∨ ' C, by Serre duality and Riemann-Roch
theorems. If the central term A can be written as an extension in a different way, we get
a bundle monomorphism v : L → A whose image is not contained in K. Thus v defines
a sheaf monomorphism p ◦ v : L → O which cannot be an isomorphism, because, if it
were, v would define a splitting of (2). Therefore the image (p ◦ v)(L) can be identified
with the ideal sheaf O(−C) of a non-empty effective divisor C. A careful examination of
the possible cases which can occur [Te3] shows that C contains either an elliptic curve
(in which case X is a GSS surface by Nakamura’s results) or a cycle of rational curves.
Therefore

Theorem 6. If X does not contain a cycle of rational curves, the bundle A (defined as
the essentially unique non-trivial extension of O by K) cannot be written as an extension
in a different way. If, moreover, degg(K) < 0, the unique line subbundle K of A does not
destabilize A, so A is stable.
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It is easy to see that (under our assumptions) there are two non-trivial extensions of
type I0:A, andA′ := A⊗Lρ, where Lρ is the flat line bundle defined by the representation
ρ. The line bundle Lρ is a non-trivial square root of the trivial line bundle O.

We have seen that an easy way to construct holomorphic rank 2-bundles is to look
at extensions of line bundles. But there is another simple, classical method: taking the
push-forward of a line bundleN defined on a double cover π : X̃ → X. One has an obvious
isomorphism π∗(π∗(N )) ' N ⊕ ι∗(N ), where ι : X̃ → X̃ denotes the canonical involution
of the double cover X̃. Note that the two summands N , ι∗(N ) have the same degree with
respect to a pull-back Gauduchon metric π∗(g), so degg(π∗(N )) = degπ∗(g)(N ). It follows
easily that the push-forward bundle π∗(N ) is polystable with respect to any Gauduchon
metric g on X, and is stable when N 6∈ π∗(Pic(X)).

The irreducible instanton A corresponding to a stable bundle π∗(N ) obtained in this
way will be irreducible, but its pull-back to X̃ is reducible. Its orbit [A] ∈MASD

a (E) is a
fixed point of the involution defined by tensoring with the flat {±}-connection associated
with the double cover π. Such instantons are called sometimes twisted reductions (see
[KM]). Note that in many cases the stable bundles obtained in this way are non-filtrable.

In our case, by our first simplifying assumption, we have a unique (up to isomorphism)
double cover πρ : X̃ → X, and one can easily classify the line bundles N ∈ Pic(X̃) for
which c2(π∗(N )) = 0, det(π∗(N )) ' K. One finds in this way 2b−1 isomorphism classes
of stable bundles (irreducible instantons), which are precisely the fixed points of the
involution ⊗Lρ acting on our moduli space M. A natural question is whether these
bundles are filtrable. Equivalently, one can ask if, for a given index set I ⊂ I0, the
(isomorphism class of the) central term of an extension of type I can be a fixed point of
the involution ⊗Lρ. For instance, if A is such a fixed point, one gets a diagram

0→ K i→ A p→ O → 0
'↓ψ

0→ K⊗Lρ
i′→ A⊗Lρ

p′→ Lρ → 0

with ψ an isomorphism. If p′ ◦ ψ ◦ i vanished, it would follow that ψ(K) ⊂ K ⊗ Lρ; but
Hom(K,K ⊗ Lρ) = H0(Lρ) = 0, because Lρ is a non-trivial holomorphic line bundle
of degree 0. Therefore, one would get ψ K = 0, which is not possible, because ψ is
an isomorphism. This means that p′ ◦ ψ ◦ i 6= 0, so one gets a nontrivial section s ∈
H0(K∨ ⊗ Lρ), whose vanishing locus would be a numerically anticanonical divisor, and
X will be a GSS surface by the main result in [D2]. Therefore

Proposition 1. If A is a fixed point of the involution ⊗Lρ then X is a GSS surface.

3.1. The case b = 1. In the case b = 1, we get a compact moduli space M of complex
dimension 1, which contains the following remarkable subspaces:

1. The subspace R of reductions. The reductions inM correspond to split polystable
bundles of the form L⊕(K⊕L∨) with L ∈ Pic0(X) ' C∗ and degg(L) = 1

2degg(K).
Taking into account the explicit form of the degree map degg Pic0(X) explained
above, we see that R is a circle.
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2. The subspace of stable type ∅-extensions, i.e. of stable extensions of the form

0→ L → E → K⊗L−1 → 0,

with L ∈ Pic0(X). The stability condition implies degg(L) < 1
2degg(K), and one

can prove easily as in the proof of Theorem 6 that, for every line bundle L ∈
Pic0(X) with degg(L) < 1

2degg(K) there exists an essentially unique extension EL
of this type, which is stable. Moreover, using that X is minimal, one can prove that
the assignment L 7→ EL is injective. The subspace of these stable bundles can be
identified with a punctured disk D•.

3. A push-forward bundle B = [πρ]∗(N ), which is the unique fixed point of the invo-
lution ⊗Lρ.

We know thatM must be compact and thatMst =M\R is a 1-dimensional complex
space. Using a well-known smoothness criterion for the universal deformation of a simple
bundle, it follows easily that the complex space Mst is smooth. On the other hand the
general deformation theory for instantons [DK] shows that M has the structure of a
Riemann surface with boundary at the points of R.

One can ask now what are the incidence relations between the three subspaces listed
above. It is easy to see that the circle R compactifies D• towards its outer end, whereas
{B} compactifies D• towards the origin. Indeed, the only way to compactify a closed
punctured disk to get a smooth Riemann surface with boundary is to add a point at the
place of the missing origin. This point must be a fixed point of ⊗Lρ by Browder fixed
point theorem (because ⊗Lρ acts freely on D•∪R), so it must coincide with B. Therefore
the first three pieces of our moduli space fit together in the obvious way and form a closed
disk M0 bounded by the circle of reductions R. M0 is a connected component of M.

We want to prove that X has a cycle. If not, by Theorem 6, we get two new points in
M, namely the stable filtrable bundles A and A′. A, A′ and EL (degg(L) < 1

2degg(K)) are
the only filtrable stable bundles in our moduli space. I came to the idea to use instantons
in order to prove new properties of class VII surfaces as I was trying to understand how
these points fit in the moduli space M.
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Obviously, one of the following must hold:

1. A ∈ D• ∪ {B},
2. The connected component of A is a closed Riemann surface Y ⊂Mst, and all the

points of Y \ {A,A′} correspond to non-filtrable bundles.

Note that K 6∈ Pic0(X), so A ∈ D• would imply that the bundle A has another
representation as an extension. Therefore the first case implies the existence of a cycle by
Theorem 6 and Proposition 1. On the other hand the second case leads to a contradiction
by the following

Theorem 7. Let X be a surface with algebraic dimension a(X) = 0, E a differentiable
rank 2-bundle on X, D a holomorphic structure on det(E), and Y a Riemann surface.
There exists no holomorphic map ψ : Y → Ms

D(E) whose image contains both filtrable
and non-filtrable bundles.

Proof. The first step in the proof of this result is to remark that a holomorphic map
ψ : Y → Ms(E) defined on a Riemann surface is induced by a holomorphic family
(Fy)y∈Y of rank 2-bundles on X parameterized by Y , i.e. a universal rank 2-bundle F
on Y ×X. In general there might be an obstruction in H2(O∗Y ) to the existence of such a
universal bundle, but this group vanishes for a Riemann surface Y (see [Te2] for details).
Next, one uses the fact that X has no non-constant meromorphic functions (so it is
“very” non-algebraic), whereas Y is a compact, complex curve, so it is algebraic. This
“incompatibility” between the two factors implies that very few holomorphic bundles on
their product can exist. In order to see this, we will switch the roles of the two factors,
namely we regard F as a family (Fx)x∈X of bundles on Y parameterized by X.

We explain now the proof of the theorem in a particular case which illustrates very well
how this “incompatibility” between the algebraicity properties of the two factors is used.
Suppose that Fx is stable on Y for generic x ∈ X. In this case one gets a meromorphic
map u : X 99K Msst in a moduli space of semistable bundles over Y , and this moduli
space is a projective variety. Therefore, since a(X) = 0, this meromorphic map must be
constant, so there exists a stable bundle F0 on Y such that Fx ' F0 for every x in a
non-empty Zariski open subset X0 ⊂ X. The sheaf T := (pX)∗(p∗Y (F0)∨ ⊗ F) is a rank
1-sheaf on X and comes with a tautological morphism τ : p∗X(T ) ⊗ p∗Y (F0) → F which
is an isomorphism on Y ×X0. The restriction to a fiber {y}×X ' X yields a morphism
T ⊗ F0(y) ' T ⊕ T → Fy whose restriction to X0 is an isomorphism. Thus all bundles
Fy admit rank 1-subsheaves, so they are filtrable.

3.2. The case b = 2. The moduli spaceM is again compact, but this time its complex di-
mension is 2. We use a similar strategy, which begins with the description of the geometry
of the componentM0 of the moduli spaceM consisting of reductions, stable filtrable bun-
dles defined by extensions of type I⊂

6=
I0, and twisted reductions. This is the “known” com-

ponent of the moduli space. Under our simplifying assumptions we have two circles or re-
ductions R′, R′′, a 2-dimensional family of extensions of type ∅, two 1-dimensional families
of extensions of type {e1} and {e2}, and two twisted reductions B1, B2. However this time,
it is much more difficult to understand (and prove!) how these strata fit together [Te3],
and to see why their union is a connected component of the moduli space, as claimed.
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As in the case b2 = 1 we ask whether the type I0 extension A belongs to the known
component M0 component or not. If it does, we get a cycle in X, by Theorem 6 and
Proposition 1. If not, we get a smooth compact surface Y ⊂Mst such that all the points
of Y \ {A,A′} correspond to non-filtrable bundles. Unfortunately this time we cannot
get a contradiction as in the case b2 = 1, because Y might be non-algebraic. The proof
uses a long and difficult analysis of the properties of the surface Y (e.g. its intersection
form, Chern classes) in the case when, by reductio ad absurdum, A did not belong toM0.
Using the classification of complex surfaces, one eliminates one by one all the possibilities
[Te3].
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