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Abstract. We show that coefficients of residue formulas for characteristic numbers associated
to a smooth toral action on a manifold can be taken in a quotient field Q(X1, . . . , Xr). This
yields canonical identities over the integers and, reducing modulo two, residue formulas for Stiefel
Whitney numbers.

1. Introduction. The classical formulas of Baum and Cheeger, [2], and Bott, [5], give
the Pontrjagin or Chern numbers as a sum of residues at the zeros of a Killing or holomor-
phic vector field. In this paper we substitute these residues by elements of the quotient
field Q(X1, . . . , Xr) of the polynomial ring Z[X1, . . . , Xr], r being the dimension of the
torus acting on the manifoldM.My motivation for doing this work was actually trying to
get rational numbers as residues. In case M is a compact Riemannian manifold and v is
a Killing vector field on M, we substitute v by the corresponding action of the associated
torus G: if ϕt are the isometries of M induced by v, then G is the closure of the one
parameter subgroup ϕt in the compact group of all isometries of M. We observe that as
v changes in the Lie algebra of G the Baum-Cheeger residues of v factorize through a
unique residue in Q(X1, . . . , Xr).

Residue formulas for Killing vector fields or toral actions and Pontrjagin classes have
been given by N. Alamo and F. Gómez [1], P. Baum and J. Cheeger [2], R. Bott [5],
F. Gómez [7], D. Lehmann [9]; for holomorphic vector fields and Chern classes by P. Baum
and R. Bott [3], R. Bott [4]; for toral actions and Stiefel Whitney classes by J. Daccah
and A. Wassermann [6].

We consider the following situation: G is a torus of dimension r acting smoothly on a
compact connected oriented smooth manifold M of dimension 2m, FG is the fixed point
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set of the action of G on M. By a theorem of Kobayashi [8], each connected component
F of FG is a submanifold.

We distinguish two cases:

(a) τM has a complex structure which is preserved by the action of G, and
(b) the dimension of M is 4k.

In case (a), suppose that I = (i1, . . . , im) with i1 +2i2 + · · ·+mim = m and denote by
cI(M) =

∫
M
ci11 . . . cimm the Chern number corresponding to I, where ci is the ith Chern

class of τM .
In case (b), suppose that I = (i1, . . . , ik) with i1 + 2i2 + · · ·+ kik = k and denote as

usual by pI(M) =
∫
M
pi11 . . . pikk the Pontrjagin number corresponding to I, where pi is

the ith Pontrjagin class of τM .

Theorem. We associate canonically to the G-vector bundle τM |F a residue class ResI(F )
in the cohomology of F with coefficients in the quotient field Q(X1, . . . , Xr) such that
the Chern number cI(M), resp. the Pontrjagin number pI(M), is given by the sum∑
F

∫
F
ResI(F ).

2. Residues. The canonical decomposition for the representations of G on the tangent
space of M at the points of F clearly induces a canonical G-vector bundle decomposition

τM |F = νF0 ⊕ νF1 ⊕ · · · ⊕ νFs(F )

where νF0 = τF is the tangent bundle to F and νF = νF1 ⊕· · ·⊕νFs(F ) is the normal bundle
of the inclusion F ↪→M. It is well known that each νFj admits a complex structure, unique
up to conjugation, and corresponding integer vectors nFj ∈ Zr, j = 1, . . . , s(F ), so that
the action of G on τM |F is given by

a.(v0 ⊕ v1 ⊕ · · · ⊕ vs(F )) = v0 ⊕ an
F
1 .v1 ⊕ · · · ⊕ an

F
s(F ) .vs(F ),

where, if a = (a1, . . . , ar) ∈ G and n = (n1, . . . , nr) ∈ Zr, an means an1
1 . . . anrr ∈ S1.

Set X = (X1, . . . , Xr) and consider the linear polynomials

〈nFj , X〉 =
r∑

k=1

njkXk ∈ Z[X1, . . . , Xr],

j = 1, . . . , s(F ).
Set rank(νF ) = 2mF , rank(νFj ) = 2mF

j , j = 1, . . . , s(F ).
In case (a), suppose that I = (i1, . . . , im) with i1 + 2i2 + · · · + mim = m and con-

sider the symmetric polynomial in m variables cI(Y1, . . . , Ym) = σ1(Y1, . . . , Ym)i1 . . .
σm(Y1, . . . , Ym)im .

Define the residue at F associated to I, ResI(F ), by

cI(cF01 + 〈nF0 , X〉, . . . , cF0mF0 + 〈nF0 , X〉; . . . ; cFs(F )1+ 〈nFs(F ), X〉, . . . , c
F
s(F )mF

s(F )
+ 〈nFs(F ), X〉)∏s(F )

i=1 (
∏mFi
j=1(cFij + 〈nFi , X〉))

,

where nF0 = 0 and cFi1, . . . , c
F
imFi

, i = 0, . . . , s(F ), are formal variables of degree two so
that σλ(cFi1, . . . , c

F
imFi

) is the λth Chern class of νFi .
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Explicitly the numerator of ResI(F ) is given by

m∏
λ=1

( ∑
α0+···+αs(F )=λ

0≤αi≤mFi

cα0(F )
s(F )∏
i=1

( ∑
α+β=αi

(
mF
i − β
α

)
〈nFi , X〉αcβ(νFi )

)iλ)

and the denominator by
s(F )∏
i=1

∑
λ+µ=mFi

〈nFi , X〉λcµ(νFi ),

where cµ(νFi ) is the µth Chern class of νFi .
Observe that, since all the nFi are nonzero, for i 6= 0, it makes sense to consider the

inverse
1∑

λ+µ=mFi
〈nFi , X〉λcµ(νFi )

=
1

〈nFi , X〉m
F
i

1
1 + c̃j

, i = 1, . . . , s(F )

where

c̃i = 1 +
c1(νFi )
〈nFi , X〉

+
c2(νFi )
〈nFi , X〉2

+ · · ·+
cmFi (νFi )

〈nFi , X〉m
F
i

and
1

1 + c̃i
= 1− c̃i + c̃2i − c̃3i + · · · .

Therefore
1∏s(F )

i=1 (
∑
λ+µ=mFi

〈nFi , X〉λcµ(νFi ))

=
1

〈nF1 , X〉m
F
1 · · · 〈nFs(F ), X〉

mF
t(F )

1
(1 + c̃1) · · · (1 + c̃s(F ))

.

In case (b), suppose that I = (i1, . . . , ik) with i1 + 2i2 + · · · + kik = k and con-
sider the symmetric polynomial in m variables pI(Y1, . . . , Ym) = σ1(Y 2

1 , . . . , Y
2
m)i1 . . .

σk(Y 2
1 , . . . , Y

2
m)ik .

Define the residue at F associated to I, ResI(F ), by

pI(cF01 + 〈nF0 , X〉, . . . , cF0mF0 + 〈nF0 , X〉; · · · ; cFs(F )1+ 〈nFs(F ), X〉, . . . , c
F
s(F )mF

s(F )
+ 〈nFs(F ), X〉)∏s(F )

i=1 (
∏mFi
j=1(cFij + 〈nFi , X〉))

,

where nF0 = 0 and cFi1, . . . , c
F
imFi

, i = 0, . . . , s(F ), are formal variables of degree two so
that σλ((cF01)2, . . . , (cF

0mF0
)2) is the λth Pontrjagin class of νF0 , and σλ(cFi1, . . . , c

F
imFi

) is
the λth Chern class of νFi , for 1 ≤ i ≤ s(F ).

Explicitly the numerator of ResI(F ) is given by

k∏
λ=1

( ∑
α0+···+αs(F )=λ

0≤αi≤mFi

pα0(F )
s(F )∏
i=1

Φ̃αi
)iλ

,
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with

Φ̃αi = Φαi

( ∑
α+β=1

(
mF
i − β
α

)
〈nFi , X〉αcβ(νFi ), . . . ,

∑
α+β=mFi

(
mF
i − β
α

)
〈nFi , X〉αcβ(νFi )

)
where Φt is given by the formula

σt(Y 2
1 , . . . , Y

2
m) = Φt(σ1(Y1, . . . , Ym), . . . , σm(Y1, . . . , Ym)).

The denominator is given, as in case (a), by
s(F )∏
i=1

( ∑
λ+µ=mFi

〈nFi , X〉λcµ(νFi )
)
,

where cµ(νFi ) is the µth Chern class of νFi .
Observe that actually, in both cases,

〈nF1 , X〉2m
F
1 · · · 〈nFs(F ), X〉

2mFs(F )ResI(F ) ∈ Z[X1, . . . , Xr]⊗Z H
∗(F ; Z).

If F is not reduced to a single point, endow F with the orientation so that the given
orientation on τM |F is the direct sum of the orientations on τF and νF . It is obvious that∫
F
ReI(F ) ∈ H∗(F ; Q(X1, . . . , Xr)) is independent of the choice of the complex structure

and corresponding orientation on νF .
In case F is one point, ResI(F ) ∈ Q(X1, . . . , Xr) and we define then

∫
F
ResI(F )

= εF .ResI(F ), where εF = 1 or −1 according to whether the complex orientation on
νF = τM|F agrees or not with the given orientation on τM|F .

Again,
∫
F
ResI(F ) is independent of the choices.

To prove our theorem, replace the variables X1, . . . , Xr by real numbers linearly inde-
pendent over Q, choose a G-invariant Riemannian metric on M and consider the Killing
vector field whose flow is given by ϕt(x) = (e2πtX1 , . . . , e2πtXr )x. Then, we follow the
standard procedure of Bott, Baum, Cheeger of choosing G-invariant tubular neighbour-
hoods of F and convenient Baum-Cheeger connections.

Corollary. If none of the integer vectors nFi is of the form 2n̄Fi , with n̄Fi ∈ Zr, we
derive from our main theorem a residue formula for the Stiefel Whitney numbers, by
simply reducing modulo 2.

3. Examples and remarks. 1) As an illustration we consider the following action of
the 2-dimensional torus S1 × S1 on CP 2 :

(a, b).〈z0, z1, z2〉 = 〈z0, an11bn12z1, a
n21bn22z2〉

where we suppose |n11.n22 − n12.n21| = 1.
The three fixed points are 〈1, 0, 0〉, 〈0, 1, 0〉 and 〈0, 0, 1〉.
The representation at 〈1, 0, 0〉 is given by

(a, b).
〈

1,
z1
z0
,
z2
z0

〉
=
〈

1, an11bn12
z1
z0
, an21bn22

z2
z0

〉
.

The representation at 〈0, 1, 0〉 is

(a, b).
〈
z0
z1
, 1,

z2
z1

〉
=
〈
a−n11b−n12

z0
z1
, 1, an21−n11bn22−n12

z2
z1

〉
.
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The representation at 〈0, 0, 1〉 is

(a, b).
〈
z0
z2
,
z1
z2
, 1
〉

=
〈
a−n21b−n22

z0
z2
, an11−n21bn12−n22

z1
z2
, 1
〉

The Pontrjagin number σ1(CP 2), which, of course, we know to be 3, is given by the
formula

σ1(CP 2) =
(n11X1 + n12X2)2 + (n21X1 + n22X2)2

(n11X1 + n12X2)(n21X1 + n22X2)

+
(−n11X1 − n12X2)2 + ((n21 − n11)X1 + (n22 − n12)X2)2

(−n11X1 − n12X2)((n21 − n11)X1 + (n22 − n12)X2)

+
(−n21X1 − n22X2)2 + ((n11 − n21)X1 + (n12 − n22)X2)2

(−n21X1 − n22X2)((n11 − n21)X1 + (n12 − n22)X2)
.

Set λ = n11X1+n12X2
n21X1+n22X2

and then

σ1(CP 2) =
(
λ+

1
λ

)
+
(
− λ

1− λ
− 1− λ

λ

)
+
(

1− λ+
1

1− λ

)
= 3.

2) Observe that, in example 1, by giving real values to X1, X2 we cannot have that
all three residues are integers, or equivalently, we cannot find a Killing vector field with
integer residues.

3) The main theorem of this paper makes sense for G being a finite abelian group; is
it true in that case?

4) If we consider the Borel bundleMG → BG, with fibreM, associated to the universal
bundle EG → BG and the G-manifold M ; we can extend the action of G on M to
an action of G on MG in the obvious way and the fixed point set is then BG × FG

with BG = CP∞ × r· · · × CP∞. Therefore, the integral cohomology of BG × FG is
H∗(FG) ⊗ Z[X1, . . . , Xr] with degree of Xj equal 2. This explains why it is natural to
consider rational residues in the variables X1, . . . , Xr.
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