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Abstract. We study the homotopy invariants of free cochain complexes and Hilbert complexes.

These invariants are applied to calculation of exact values of Morse numbers of smooth manifolds.

1. Introduction. Let Wn be a smooth manifold. By definition the i-th Morse number
Mi(Wn) of Wn is the minimal number of critical points of index i taken over all Morse
functions on Wn.

It is known [2, 10, 19] that for closed smooth manifolds of dimension greater than 6
the i-th Morse numbers are invariants of the homotopy type. There is a very complicated
unsolved problem: find exact values of Morse numbers for every i (see [19] for more
details).

In [20] using new homotopy invariants Di(Wn) of free cochain complexes and Hilbert
complexes of non simply-connected manifolds Wn we proved the following theorem.

Theorem. Let Wn (n ≥ 8) be a smooth closed manifold with π = π1(Wn). Then for
4 ≤ i ≤ n− 4 the following equality holds true:

Mi(Wn) = Di(Wn) + Ŝi(2)(W
n) + Ŝi+1

(2) (Wn) + dimN(Z[π])(Hi
(2)(W

n,Z)).

The Morse number M(Wn) of a manifold Wn is the minimum of the total number
of critical points over all Morse functions on Wn. In this paper we prove the following
theorem.

Theorem. Let (Wn, V n−1
0 , V n−1

1 ) (n ≥ 6) be a compact smooth manifold with boundary
∂Wn = V n−1

0 ∪ V n−1
1 and π = π1(Wn) be the fundamental group of the manifold Wn.

Suppose that π(V n−1
i ) → π1(Wn) is an isomorphism, Wh(π) = 0, where Wh(π) is the
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Whitehead group of π, and

D̂0
r(W

n) = D̂n−1
l (Wn) = D0

r(W
n) = Dn−2

l (Wn) = Di(Wn) = 0

for all i. Then

M(Wn) = 2
n−3∑
i=2

Ŝi(2)(W
n) + Ŝn−2

(2) (Wn) +
n−2∑
i=1

dimN [π](Hi
(2)(W

n,Z))

+ 2µ(Hn−1(W̃n,Z[π]))− dimN [π](Hn−1
(2) (Wn,Z)).

2. Stable invariants of finitely generated modules and L2-modules. Denote the
ring of integers by Z and the field of complex numbers by C. Let G be a discrete group.
Denote its integer group ring by Z[G] and the group ring over the field C by C[G]. In
the group ring there exists an augmentation epimorphism ε : Z[G] → Z (ε : C[G] → C)
acting by the rule ε(

∑
i αigi) =

∑
i αi. Denote the kernel of the epimorphism ε by I[G].

In the ring C[G] there exists an involution ∗ : C[G] → C[G], (
∑
i αigi)

∗ =
∑
i αig

−1
i ,

where α denotes the conjugation in C. This involution satisfies the following conditions:

a) (r∗)∗ = r;
b) (αr1 + βr2)∗ = αr∗1 + βr∗2 (α, β ∈ C);
c) (r1r2)∗ = r?2r

?
1 .

We can define the trace tr : C[G] → C by the rule tr(
∑k
i αigi) = α1, where α1 is the

coefficient at the unit g1 = e of G. It is obvious that the trace satisfies the following
conditions:

a) tr(e) = 1;
b) tr is a C-linear mapping;
c) tr(r1r2) = tr(r2r1);
d) tr(rr∗) ≥ 0, and if tr(rr∗) = 0, then r = 0.

In what follows, M will be a finitely generated left module over a certain associative
ring Λ with unit e. Rings for which the rank of the free module is uniquely defined
are called IBN -rings. It is known that the group rings Z[G] and C[G] are IBN -rings.
Denoting the minimum number of the generators of the module M by µ(M), we get
µ(M ⊕ Fn) < µ(M) + n, where Fn is a free module of rank n. There exist examples of
stably free modules when the strict inequality holds. Recall that a Λ-module M is called
stably free if the direct sum of M and a certain free Λ-module Fk is free. We assume that
µ(M) = 0 for zero module M = 0.

Definition 2.1 ([19]). For a finitely generated module M over an IBN -ring Λ define
the following function

µs(M) = lim
n→∞

(µ(M ⊕ Fn)− n))

called the stable minimal number of generators of the module M .

If ring Λ is Hopfian then for any Λ-module M the equality

µs(M) = 0,
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holds if and only if M = 0. Recall that a ring Λ is called Hopfian if every epimorphism
of a free Λ-module Fn on itself is an isomorphism.

From the theorems of Kaplansky and Cockroft it follows that the group rings Z[G] and
C[G] are Hopfian. It is clear that for any non-zero module M we have 0 < µs(M) ≤ µ(M).
The difference

µ(M)− µs(M)

shows how many times one can add a free module of rank one to the modules M ⊕ kΛ
(k = 0, 1 . . .) so that the number µ(M ⊕kΛ) does not increase. For every finite generated
module M over an IBN -ring Λ there is a natural number n such that for the module
N = M ⊕ nΛ and all m ≥ 0 we have that µ(N ⊕mΛ) = µ(N) +m.

In the ring C[G] there is an inner product 〈
∑
i αigi,

∑
i βigi〉 =

∑
i αiβi, so the norm

for an element r ∈ C[G] is defined by |r| = tr(rr∗)1/2. Consider a completion of the
ring C[G] with respect to this norm and denote it by L2(G). Then L2(G) is a Hilbert
space (the inner product is given by the same formula as for the group ring C[G]). The
Hilbert space L2(G) has an orthonormal basis consisting of all elements of the group G.
Now C[G] acts faithfully and continuously on L2(G) by multiplication from the left, so
we may regard C[G] ⊆ B(L2(G)), where B(L2(G)) denotes the set of bounded linear
operators on L2(G).

Let N [G] denotes the (reduced) group of von Neumann algebra of G: thus by definition
N [G] is a week closure of C[G] in B(L2(G)). Therefore the map w → w(e) allows us to
identify N [G] with a subspace of L2(G), where w ∈ N [G] and e is the unit element of
the group G. Thus algebraically we have C[G] ⊂ N [G] ⊂ L2(G). The involution and the
trace map on N [G] can be defined exactly as for the ring C[G]. For the set Mn(N [G])
of n × n matrices over von Neumann algebra N [G] the trace map can be extended by
setting tr(W ) =

∑n
i=1 wii, where W = (wij) is a matrix with entries in N [G].

Let L2(G)n denote the Hilbert direct sum of n copies of L2(G), so L2(G)n is a Hilbert
space. The von Neumann algebra N [G] acts on L2(G)n from the left, so L2(G)n is a left
N [G]-module called a free Hilbert N [G]-module of rank n. The left Hilbert N [G]-module
M is a closed left C[G]-submodule of L2(G)n for some n. By definition a Hilbert N [G]-
submodule of M is a closed left C[G]-submodule of M , an L2(G)-ideal is an Hilbert N [G]-
submodule of L2(G), and a homomorphism f : M → N between Hilbert N [G]-modules
is a continuous left C[G]-map [4].

Let M be a Hilbert N [G]-module and let p : L2(G)n → L2(G)n be the orthogonal
projection onto M ⊂ L2(G)n. The von Neumann dimension of the Hilbert N [G]-module
M is the following number: dimN [G](M) = tr(p) =

∑n
i=1〈p(ei), ei〉L2(G)n . Here ei =

(0, . . . , g, . . . , 0) is the standard basis in L2(G)n. It is known that dimN [G](V ) is a non-
negative real number [12].

Definition 2.2. Let M be a finitely generated Z[G]-module. Consider the Hilbert N [G]-
module L2(G)⊗Z[G] M and define the following number

S(M) = µs(M)− dimN [G](L2(G)⊗Z[G] M).

Lemma 2.3. For any finitely generated Z[G]-module M the number S(M) is non-negative.

The proof is given in [20].



284 V. V. SHARKO

3. Stable invariants of homomorphisms. The next results can be found in [20].
Consider a Λ-homomorphism f : Fk → Ft, where Fk and Ft are free modules over ring
Λ of ranks k and t respectively. The homomorphism f is a splitting along a submodule
F p ⊆ Fk if there exists a presentation of f of the form

f = fp ⊕ ft : F p ⊕ F k−p → F̃p ⊕ F̃t−p,

such that
f |Fp⊕0 = fp : F p → F̃p, f |0⊕Fk−p

= ft : F k−p → F̃t−p,

where fp is an isomorphism. From now on, in this situation we will assume that the
submodules F p, F k−p, F̃p, F̃t−p are free.

Definition 3.1. The number p above is called the rank of the splitting f = fp⊕ft. The
rank R(f) of a homomorphism f is the maximal value of possible ranks of splittings of f .

Definition 3.2. Stabilization of a homomorphism f : Fk → Ft by a free module Fp is a
homomorphism

fst(p) : Fk ⊕ Fp → Ft ⊕ Fp
such that

fst(p)|Fk⊕0 = f, fst(p)|0⊕Fp = Id.

A thickening of f : Fk → Ft by free modules Fm and Fn is the homomorphism

fth(m,n) : Fk ⊕ Fm → Ft ⊕ Fn,

such that
fth(m,n)|Fk

L
0 = f, fth(m,n)|0 L

Fm
= 0.

Definition 3.3. The stable rank Sr(f) of a homomorphism f : Fk → Ft is the limit

Sr(f) = lim
m,n,p→∞

(R(fth(m,n)st(p))− p).

Since Sr(f) ≤ min(k, t), this limit always exists. There are examples of stably free
modules with Sr(f) > R(f).

Lemma 3.4. For any homomorphism f : Fk → Ft the following equality holds:

Sr(fst(v)) = Sr(f) + v.

Remark 3.5. For every homomorphism f : Fk → Ft there exists a number n0 such that
the stable rank Sr(f) of the homomorphism f can be calculated by the formula

Sr(f) = R(fth(m,n)st(p))− p

for any m ≥ n0, n ≥ n0, p ≥ n0.

For a homomorphism f define the following numbers [20]:

Dr(f) = Sr(f)− Srr(f), Dl(f) = Sr(f)− Srl(f).

It is clear that Dr(f) = Dr(fst(p)) and Dl(f) = Dl(fst(p)) for any integer p.
Consider a composition of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,
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such that
g · f = 0. (∂)

We say that the homomorphisms f and g are splitting along submodules F p ⊆ Fm and
F q ⊆ Fn if there are presentations of f and g of the form

0 −−−−→ F p
f1−−−−→ F̃p −−−−→ 0

⊕ ⊕
Fm−p

f2−−−−→ Fn−p−q
g2−−−−→ Ft−q

⊕ ⊕
0 −−−−→ Fq

g1−−−−→ F̃q −−−−→ 0

such that
f |Fp⊕0 = f1, g|0⊕0⊕F q

= g1.

We allow the modules F p or F q to be zero. In the sequel we will suppose that the
submodules F p , F q , Fm−p , Ft−q , Fn−p−q are free.

Definition 3.6. The number p + q will be called the common rank of the splitting of
the homomorphisms f and g along the submodules F p ⊆ Fm and F q ⊆ Fn. The common
rank Cr(f, g) of the homomorphisms f and g is the maximal value of common ranks of
the splitting of f and g.

Definition 3.7. The stabilization of a composition of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂) by free modules Fp and Fq is the following composition of
homomorphisms

0 −−−−→ Fp
id−−−−→ Fp −−−−→ 0

⊕ ⊕
Fm

f−−−−→ Fn
g−−−−→ Ft

⊕ ⊕
0 −−−−→ Fq

id−−−−→ Fq −−−−→ 0.

We will denote it by (fst(p), gst(q)).

Definition 3.8. Consider a composition of homomorphisms f and g

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying the condition (∂). The thickening of this composition by free modules Fp and
Fq is the following composition of homomorphisms

Fm ⊕ Fp
fth(p)−−−−→ Fn

gth(q)−−−−→ Ft ⊕ Fq,
such that

fth(p)|Fm⊕0 = f, fth(p)|0⊕Fp = 0, gth(q) = g.

It will be denoted by (fth(p), gth(q)).
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Definition 3.9. The stable common rank Scr(f, g) of the composition of homomor-
phisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft

satisfying the condition (∂) is the limit

Scr(f, g) = lim
p,q,v,w→∞

(Cr(fth(p)st(v), gth(q)st(w))− v − w).

Since Scr(f, g) ≤ n, this limit always exists. There are examples of stably free modules
showing that Scr(f, g) ≥ Cr(f, g).

Lemma 3.10. For any homomorphisms

Fm
f−−−−→ Fn

g−−−−→ Ft

satisfying the condition (∂) the following equality holds true:

Scr(fst(x), gst(y)) = Scr(f, g) + x+ y.

Remark 3.11. For every composition of homomorphisms f and g satisfying the condition
(∂) there exists a number n0 such that the stable common rank Sr(f) can be calculated
by the following formula:

Scr(f, g) = Cr(fth(p)st(v), gth(q)st(w))− v − w

for any p ≥ n0, q ≥ n0, v ≥ n0, w ≥ n0.

Definition 3.12. The stable common rank from the left (from the right) Scrl(f, g)
(Scrr(f, g)) of the composition of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft

satisfying condition (∂) is the following limit of values of common ranks:

Scrl(f, g) = lim
p,v,w→∞

(Cr(fth,l(p)st(v), gst(w))− v − w)

(Scrr(f, g) = lim
q,v,w→∞

(Cr(fst(v), gth,r(q)st(w))− v − w)).

Remark 3.13. For the stable common rank from the left (from the right) Scrl(f, g)
(Scrr(f, g)) of the composition of the homomorphisms satisfying the condition (∂) the
analogues of Lemma 3.10 and Remark 3.11 hold true.

Definition 3.14. The defect D(f, g) of the composition of homomorphisms of free mod-
ules

Fm
f−−−−→ Fn

g−−−−→ Ft

satisfying condition (∂) is the following number:

D(f, g) = Sr(f) + Sr(g)− Scr(f, g).

Remark 3.15. a) For arbitrary composition of homomorphisms f and g satisfying the
condition (∂) there exists a number n0 such that defect D(f, g) can be calculated by the
formula

D(f, g) = R(fth(p, w)st(v)) +R(gth(v, q)st(w)) + Cr(fth(p)st(v), gth(q)st(w))

for any p ≥ n0, q ≥ n0, v ≥ n0, w ≥ n0;
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b) If in the composition of the homomorphisms f and g the module Fn/f(Fm) is
stably free, but not free, then D(f, g) > 0.

Lemma 3.16. Consider two compositions of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft

and
0 −−−−→ Fv

id−−−−→ Fv −−−−→ 0

⊕ ⊕ ⊕

Fm ⊕ Fp
fth,l(p)−−−−−→ Fn

gth,r(q)−−−−−→ Ft ⊕ Fq

⊕ ⊕ ⊕

0 −−−−→ Fw
id−−−−→ Fw −−−−→ 0

satisfying the condition (∂) (the numbers p, q, v, w are nonnegative). Then

D(f, g) = D(fth,l(p)st(v), gth,r(q)st(w)).

Definition 3.17. The defect from the left (from the right) Dl(f, g) (Dr(f, g)) of a com-
position of homomorphisms of free modules

Fm
f−−−−→ Fn

g−−−−→ Ft,

satisfying condition (∂) is the number

Dl(f, g) = Srl(f) + Sr(g)− Scrl(f, g)

(Dr(f, g) = Sr(f) + Srr(g)− Scrr(f, g)).

Remark 3.18. For the defect from the left (from the right) Dl(f, g) (Dr(f, g)) of a
composition of homomorphisms f and g satisfying condition (∂) the analogues of Lemma
3.16 and Remark 3.11 hold true.

4. Homotopy invariants of cochain complexes. The following statement can be
found in [3].

Proposition 4.1 (Cockroft-Swan). Let f = fn : (C, d) → (C, d), n ≥ 0 be a cochain
mapping between the free cochain complexes (C, d) and (C, d) that induces an isomorphism
in cohomology. Then there exist contractible free cochain complexes (D, ∂) and (D, ∂) such
that the cochain complexes

(C ⊕D, d⊕ ∂) and (C ⊕D, d⊕ ∂)

are cochain-isomorphic.

If (C, d) : C0 d0→ C1 d1→ . . .
dn−1

→ Cn is a free cochain complex over a ring Λ, then
the numbers Dr(d0), Dl(dn−1), Dr(d0, d1), Dl(dn−2, dn−1), D(di, di+1) are defined for
1 ≤ i ≤ n − 3. The next lemma shows that they are invariants of the homotopy type of
a cochain complex (C, d).

Lemma 4.2. Let (C, d)Λ be the class of free cochain complexes over ring Λ homotopy

equivalent to cochain complex (C, d) : C0 d0→ C1 d1→ . . .
dn−1

→ Cn. Then for any cochain
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complex (D, ∂) : D0 ∂0

→ D1 ∂1

→ . . .
∂n−1

→ Dn belonging to the class (C, d)Λ (n ≥ 4) the
following equalities hold:

Dr(d0) = Dr(∂0),

Dr(dn−1) = Dr(∂n−1),

Dr(d0, d1) = Dr(∂0, ∂1),

Dl(dn−2, dn−1) = Dl(∂n−2, ∂n−1),

D(di, di+1) = D(∂i, ∂i+1)

for 1 ≤ i ≤ n− 3.

Definition 4.3. Let (C, d): C0 d0−→ C1 → . . .
dn−1

−→ Cn be a free cochain complex. Then

the cochain complex (C(i), d(i)) : C0 d0−→ C1 → . . .
di−1

−→ Ci is called i-th skeleton of
cochain complex (C, d).

Let (C∗, d∗)): C0
d1−→ C1 → . . .

dn−→ Cn be a sequence of free Hilbert N [G]-modules
and bounded C[G]-map such that di+1◦di = 0. This sequence is called a Hilbert complex.
The reduced cohomology of a Hilbert complex (C∗, d∗) is the collection of the Hilbert
N [G]-modules Hi

(2)(C∗, d∗) = Kerdi/Imdi−1.

Definition 4.4. Consider a free cochain complex over Z[G]

(C∗, d∗) : C0 d0−→ C1 → . . .
dn−1

−→ Cn.

The Hilbert complex
(L2(G)⊗Z[G] C

∗, Id⊗Z[G] d
∗) :

L2(G)⊗Z[G] C
0 Id⊗Z[G]d

0

−→ L2(G)⊗Z[G] C
1 −→ . . .

Id⊗Z[G]d
n−1

−→ L2(G)⊗Z[G] C
n

of free Hilbert N [G]-modules is the Hilbert complex generated by the Z[G]-complex.

Consider the i-th skeletons of these complexes

(C∗(i), d∗(i)) : C0 d0−→ C1 → . . .
di−1

−→ Ci,

L2(G)⊗Z[G] C
0 Id⊗Z[G]d

0

−→ L2(G)⊗Z[G] C
1 → . . .

Id⊗Z[G]d
i−1

−→ L2(G)⊗Z[G] C
i,

Set Γi = Ci/di−1(Ci−1). It is clear that

Γ̂i = L2(G)⊗Z[G] C
i/Id⊗Z[G] di−1(L2(G)⊗Z[G] Ci−1)

is the i-th Hilbert N [G]-module of reduced cohomology of the i-th skeleton of the Hilbert
complex

(L2(G)⊗Z[G] C
∗(i), Id⊗Z[G] d

∗(i)).

Definition 4.5 ([18, 19]). For the cochain complex (C∗, d∗) over Z[G] set

Ŝi(2)(C
∗, d∗) = µs(Γi)− dimN [G]Γ̂i.

Lemma 4.6. The numbers Ŝi(2)(C
∗, d∗) are non-negative for every i. If (C∗, d∗) and

(D∗, ∂∗) are two homotopy equivalent free cochain complexes over the group ring Z[G]
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then
Ŝi(2)(C

∗, d∗) = Ŝi(2)(D
∗, ∂∗).

Definition 4.7. A free cochain complex (C, d) : C0 d0−→ C1 d1−→ . . .
dn−1

−→ Cn is called

minimal in dimension i if for every free cochain complex (D, ∂) : D0 ∂0

−→ D1 ∂1

−→ . . .
∂n−1

−→
Dn which is homotopy equivalent to (C, d) one has µ(Ci) ≤ µ(Di), where µ(Ci) is the
rank of the free module Ci. A free cochain complex (C, d) is called minimal if it is minimal
in all dimensions.

It is obvious that, for every i, in the homotopy class of any free cochain complex
(C, d) there always exists a minimal free cochain complex in dimension i. However in the
homotopy class of an arbitrary free cochain complex (C, d) there may exist no minimal
free cochain complexes, because of the existence of stably free modules.

Definition 4.8. The i-th homotopy Morse number of a cochain complex (C, d) over a
ring Λ is the number Mi(C, d) = µ(Di), where

(D, ∂) : D0 ∂0

−→ D1 ∂1

−→ . . .
∂n−1

−→ Dn

is the minimal cochain complex in dimension i which is homotopy equivalent to (C, d).

The next result can be found in [20].

Theorem 4.9. Let (C, d): C0 d0−→ C1 → . . .
dn−1

−→ Cn be a free cochain complex over a
group ring Z[G] (n ≥ 4). Its i-th homotopy Morse numbers satisfy the following equalities:

M0(C, d) = Dr(d0) + Ŝ1
(2)(C, d) + dimN [G](H0(L2(G)⊗Z[G] C, id⊗Z[G] d)),

M1(C, d)=Dl(d0, d1)+Ŝ1
(2)(C, d)+Ŝ2

(2)(C, d)+dimN [G](H1(L2(G)⊗Z[G] C, id⊗Z[G] d))

Mi(C, d) =

D(di−1, di) + Ŝi(2)(C, d) + Ŝi+1
(2) (C, d) + dimN [G](Hi(L2(G)⊗Z[G] C, id⊗Z[G] d)),

for 2 ≤ i ≤ n− 2,

Mn−1(C, d) = Dl(dn−2, dn−1) + Ŝn−1
(2) (C, d) + µ(Hn(C, d))

+ dimN [G](Hn−1(L2(G)⊗Z[G] C, id⊗Z[G] d))− dimN [G](Hn(C ⊗C[G] C, id⊗ d)),

Mn(C, d) = µ(Hn(C, d)),

where Hi(L2(G)⊗Z[G] C, id⊗Z[G] d)) is the cohomology of the cochain complex

(L2(G)⊗Z[G] C, id⊗Z[G] d)).

Remark 4.10. The number D(di−1, di) arises in this theorem because in the definition of
the number Si(C, d) we take the number µs(Γi) but not the number µ(Γi). For example, if
in Remark 3.15 the module Ci/di−1(Ci−1) is stably free but not free, then D(di−1, di) > 0.

Definition 4.11. The Morse number of a cochain complex

(C, d) : C0 d0−→ C1 → . . .
dn−1

−→ Cn

over a ring Λ is the number M(C, d) =
∑n
i=0 µ(Ci).
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Definition 4.12. The homotopy Morse number Mh(C, d) of a cochain complex (C, d)
over a ring Λ is the minimum of Morse numbers taken over all cochain complexes homo-
topy equivalent to (C, d).

Theorem 4.13. Let (C, d): C0 d0−→ C1 → . . .
dn−1

−→ Cn be a free cochain complex over a
group ring Z[G] (n ≥ 4) such that

Dr(d0) = 0,

Dr(dn−1) = 0,

Dr(d0, d1) = 0,

Dl(dn−2, dn−1) = 0,

D(di, di+1) = 0

for 1 ≤ i ≤ n − 3. Then in the homotopy type of (C, d) there exists a minimal cochain
complex and the homotopy Morse number of (C, d) is equal to

Mh(C, d) =

2
n−2∑
i=1

(Ŝi(2)(C, d)) + Ŝn−1
(2) (C, d) +

n−1∑
i=0

(dimN [G](Hi(L2(G)⊗Z[G] C, id⊗Z[G] d)))

+ 2µ(Hn(C, d))− dimN [G](Hn(L2(G)⊗Z[G] C, id⊗Z[G] d)).

Proof. From the conditions of the theorem it follows that in the homotopy type of (C, d)
any cochain complex

(D, d) : D0 d0−→ D1 → . . .
dn−1

−→ Dn

satisfies the condition µ(Di/d
i−1Di−1) = µs(Di/d

i−1Di−1) for all i. From [19] it follows
that in the homotopy type of (C, d) there exists a minimal cochain complex. The value of
the Morse number of a minimal cochain complex is equal to the homotopy Morse number
of (C, d). The value of the Morse number of a minimal cochain complex may be found
by direct calculations.

5. Applications. Let K be a topological space with the structure of a finite CW -
complex and with a non-zero fundamental group π = π1(K). Consider the universal
covering space p : K̃ → K of K. Using the map p, lift the structure of CW -complex
from K to K̃. On the universal covering space K̃ there exists a cell structure preserving
the free action of the fundamental group π = π1(K). This action turns each chain group
Ci(K̃,Z) into a left module over the group ring Z[π]. It is evident that the resulting chain
module Ci(K̃,Z) is free and finitely generated by i-cells of K. As a result we obtain the
following free chain complex over the ring Z[π]:

C∗(K̃) : C0(K̃,Z) d1←− C1(K̃,Z)← . . .
dn←− Cn(K̃,Z).

Denote by w : π1(K) → Z2 the homomorphism of orientation (the first Stiefel-
Whitney class). Define an involution on the group ring Z[π] by the formula g → w(g)g−1.
This involution makes it possible to turn every right Z[π]-module into a left Z[π]-module.
Making use of this involution, we turn the right Z[π]-module
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Ci(K̃,Z) = HomZ[π](Ci(K̃,Z),Z[π])

into a left one and consider the free cochain complex

C∗(K̃) : C0(K̃,Z) d0−→ C1(K̃,Z)→ . . .
dn−1

−→ Cn(K̃,Z).

Cohomology modules of this cochain complex are the cohomology with compact supports
of CW -complex K̃. Taking the tensor product of C∗(K̃) and L2(π) as Z[π]-modules we
obtain the Hilbert complex

C∗(2)(K̃) : L2(π)⊗Z[π] C
0(K̃,Z) id⊗d

0

−→ L2(π)⊗Z[π] C
1(K̃,Z)→ . . .

. . .
id⊗dn−1

−→ L2(π)⊗Z[π] C
n(K̃,Z).

The L2(π)-module of cohomology of this Hilbert complex are L2(π)-module of cohomol-
ogy of the space K. Since the cochain complex C∗(K̃) is constructed from the cellular
structure of the space K̃, we see that the segments of cochain complexes

C∗(K̃)(i) : C0(K̃,Z) d0−→ C1(K̃,Z)→ . . .
di−1

−→ Ci(K̃,Z);

C∗(2)(K̃)(i) : L2(π)⊗Z[π] C
0(K̃,Z) id⊗d

0

−→ L2(π)⊗Z[π] C
1(K̃,Z)→ . . .

. . .
id⊗di−1

−→ L2(π)⊗Z[π] C
i(K̃,Z)

are evidently the cochain complexes of the i-th skeleton of the cellular decomposition of
K̃ and K respectively. Therefore the Z[π]-module

Γ̂i(K̃) = Ci(K̃,Z)/di−1(Ci−1(K̃,Z)),

resp. the L2(G)-module

Γi(K) = L2(π)⊗Z[π] C
i(K̃,Z)/id⊗ di−1(L2(π)⊗Z[π] C

i−1(K̃,Z)),

can be interpreted as the i-th cohomology module with compact support (the i-th L2(π)-
module of cohomology) of the i-th skeleton of K̃ (the i-th skeleton of K).

Definition 5.1. For a cell complex K set

Ŝi(2)(K) = µs(Γ̂i(K̃))− dimN [π](Γi(K)),

D̂0
r(K) = Dr(d0),

D̂n−1
l (K) = Dl(dn−1),

D0
r(K) = Dr(d0, d1),

Dn−2
l (K) = Dl(dn−2, dn−1),

Di(K) = D(di−1, di)

for 1 ≤ i ≤ n− 2.

It is well known that all chain complexes constructed from cellular decompositions
of the topological space K have the same homotopy type. Therefore it follows directly
either from the previous discussions or from [11, 19] that the numbers Ŝi(2)(W ) and D̂0

r(K),

D̂n−1
l (K), D0

r(K), Dn−2
l (K), Di(K) for 1 ≤ i ≤ n−2 are invariants of the homotopy type

of the topological space K.



292 V. V. SHARKO

For a smooth manifold W there is a construction of cochain complex via Morse func-
tions. The details can be found in [17].

Let (Wn, V n−1
0 , V n−1

1 ) be a compact smooth manifold with boundary ∂Wn = V n−1
0 ∪

V n−1
1 (one of V n−1

i or both may be empty). Let also π = π1(Wn) be the fundamental
group of the manifold Wn. Denote by p : (W̃n, Ṽ n−1

0 , Ṽ n−1
1 ) → (Wn, V n−1

0 , V n−1
1 ) the

universal covering space. Here Ṽ n−1
i = p−1(V n−1

i ). Let us choose on Wn an ordered
Morse function

f : Wn → [0, 1], f−1(0) = V n−1
0 , f−1(1) = V n−1

1

and a gradient-like vector field ξ [19]. Using the mapping p, lift f and ξ to W̃n, and
denote a lifted function and a vector field by f̃ and ξ̃ respectively. Using f, ξ and f̃ , ξ̃

construct chain complexes of abelian groups:

C∗(Wn, f, ξ) : C0
d1←− C1 ← . . .

dn←− Cn, ;

C∗(W̃n, f̃ , ξ̃) : C̃0

ed1←− C̃1 ← . . .
edn←− C̃n,

where

Ci = Hi(Wi,Wi−1,Z), C̃i = Hi(W̃i, W̃i−1,Z);

and

W̃i = f̃−1[0, ai], Wi = f−1[0, ai]

are submanifolds containing all critical points of indices less than or equal to i. For the
generators of the chain groups Ci (Ĉi) one can take middle disks of critical points of
index i constructed by the vector field ξ (ξ̂). The fundamental group π = π1(Wn) acts
on manifolds W̃n. Making use of this actions, we can turn the chain group C̃i into a
finitely generated module over the ring Z[π]. Making use of the involution, we turn the
right Z[π]-modules

C(i) = HomZ[π](Ci,Z[π]),

D̂0
r(K), D̂n−1

l (K), D0
r(K), Dn−2

l (K), Di(K) for 1 ≤ i ≤ n− 2 into left ones and construct
the free cochain complex

C∗(W̃n, f̃ , ξ̃) : C̃(0)
ed(0)−→ C̃(1) → . . .

ed(n−1)

−→ C̃(n).

Taking the tensor product of C∗(W̃n, f̃ , ξ̃) and L2(π) as a Z[π]-module, we obtain the
cochain complex of abelian groups which can be used for the definition of the numbers
Ŝi(2)(W

n) and Di(Wn). It is proved in [11] that the chain complexes constructed from
Morse functions on the manifold Wn via cellular decomposition of Wn have the same
homotopy type. This means that the values of the numbers Ŝi(2)(W

n) and Di(Wn) do
not depend on the method of constructing a chain complex.

Definition 5.2. The i-th Morse number Mi(Wn) of a manifold Wn is the minimal
number of critical points of index i taken over all Morse functions on Wn.

It is known [2, 10, 19] that for closed smooth manifolds of dimension greater than 6
the i-th Morse numbers are invariants of the homotopy type. In [20] the following theorem
is proved.
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Theorem 5.3. Let Wn (n ≥ 8) be a smooth closed manifold with π = π1(Wn). The
following equality holds for the i-th Morse number 4 ≤ i ≤ n− 4:

Mi(Wn) = Di(Wn) + Ŝi(2)(W
n) + Ŝi+1

(2) (Wn) + dimN(G)(Hi
(2)(W

n,Z)).

Definition 5.4. The Morse number M(Wn) of a manifold Wn is the minimum of the
total number of critical points taken over all Morse functions on Wn.

Theorem 5.5. Let (Wn, V n−1
0 , V n−1

1 ) (n ≥ 6) be a compact smooth manifold with bound-
ary ∂Wn = V n−1

0 ∪ V n−1
1 and π = π1(Wn) be the fundamental group of the manifold

Wn. Suppose that π(V n−1
i )→ π1(Wn) is an isomorphism, Wh(π) = 0 and

D̂0
r(W

n) = D̂n−1
l (Wn) = D0

r(W
n) = Dn−2

l (Wn) = Di(Wn) = 0

for all i. Then

M(Wn) = 2
n−3∑
i=2

Ŝi(2)(W
n) + Ŝn−2

(2) (Wn) +
n−2∑
i=1

dimN [π](Hi
(2)(W

n,Z))

+ 2µ(Hn−1(W̃n,Z[π]))− dimN [π](Hn−1
(2) (Wn,Z)).

Proof. Let f be an arbitrary ordered Morse function, ξ a gradient-like vector field on Wn,
and

C∗(W̃n, f̃ , ξ̃) : C̃0

ed1←− C̃1 ← . . .
edn←− C̃n

the chain complex associated with them. Denote by

C∗(W̃n, f̃ , ξ̃) : C̃(0)
ed(0)−→ C̃(1) → . . .

ed(n−1)

−→ C̃(n)

the cochain complex constructed from the chain complex C∗(W̃n, f̃ , ξ̃). It is clear that
if the chain complex C∗(W̃n, f̃ , ξ̃) is minimal in dimension i then the cochain complex
C∗(W̃n, f̃ , ξ̃) is minimal in dimension i. It is known that the operation of stabilization of
the homomorphisms d̃i can be realized by changing the Morse function and gradient-like
vector field on Wn. But the inverse operation, the elimination of contractible free chain
complex of the form 0 → Ci → Ci+1 → 0 from the chain complex C∗(W̃n, f̃ , ξ̃), cannot
always be realized by changing the Morse function and gradient-like vector field on Wn.
This is possible provided n ≥ 6 and Wh(π) = 0 [19].

Let (C, d) be a minimal chain complex homotopy equivalent to the chain complex
C∗(W̃n, f̃ , ξ̃). In our situation it always exists. By Proposition 4.1 there exist contractible
free chain complexes (D, ∂) and (D, ∂) such that the chain complexes

(C∗(W̃n, f̃ , ξ̃ ⊕D, d⊕ ∂)) and (C ⊕D, d⊕ ∂)

are chain-isomorphic. The previous remark ensures the existence of a Morse function g

and gradient-like vector field that realize the complex (C∗(W̃n, f̃ , ξ̃ ⊕D, d⊕ ∂)).
Using elimination of contractible free chain complexes of the form 0→ Ci → Ci+1 → 0

and 0 → Ci−1 → Ci → 0 we can obtain from (C∗(W̃n, f̃ , ξ̃ ⊕ D, d ⊕ ∂)) the minimal
chain complex (Ĉ, d̃). The conditions that n ≥ 6 and Wh(π) = 0 ensure the existence of
a Morse function g and gradient-like vector field η that realize the complex (Ĉ, d̂). The
number of critical points of Morse function g can be computed using previous formulas
presented in Theorem 4.13.
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The estimations for Morse numbers are investigated in [1, 5–9, 12–21]. Our approach
differs from those papers. In next papers we shall give the values of Morse numbers for
other classes of manifolds.
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