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Abstract. Józef Marcinkiewicz’s (1910–1940) name is not known by many people, except maybe
a small group of mathematicians, although his influence on the analysis and probability theory
of the twentieth century was enormous. This survey of his life and work is in honour of the 100th

anniversary of his birth and 70th anniversary of his death. The discussion is divided into two
periods of Marcinkiewicz’s life. First, 1910–1933, that is, from his birth to his graduation from
the University of Stefan Batory in Vilnius, and for the period 1933–1940, when he achieved sci-
entific titles, was working at the university, did his army services and was staying abroad. Part 3
contains a list of different activities to celebrate the memory of Marcinkiewicz. In part 4, scien-
tific achievements in mathematics, including the results associated with his name, are discussed.
Marcinkiewicz worked in functional analysis, probability, theory of real and complex functions,
trigonometric series, Fourier series, orthogonal series and approximation theory. He wrote 55 sci-
entific papers in six years (1933–1939). Marcinkiewicz’s name in mathematics is connected with
the Marcinkiewicz interpolation theorem, Marcinkiewicz spaces, the Marcinkiewicz integral and
function, Marcinkiewicz–Zygmund inequalities, the Marcinkiewicz–Zygmund strong law of large
numbers, the Marcinkiewicz multiplier theorem, the Marcinkiewicz–Salem conjecture, the Mar-
cinkiewicz theorem on the characteristic function and the Marcinkiewicz theorem on the Perron
integral. Books and papers containing Marcinkiewicz’s mathematical results are cited in part 4
just after the discussion of his mathematical achievements. The work ends with a full list of
Marcinkiewicz’s scientific papers and a list of articles devoted to him.
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1. Life of Marcinkiewicz from the birth to university (1910–1933). Józef Mar-
cinkiewicz was born on 12 April 1910 (30 March 1910 in old style=Julian calendar) in
the small village Cimoszka near Białystok (Poland). His parents were Klemens Marcin-
kiewicz (1866–1941) and Aleksandra Marcinkiewicz née Chodakiewicz (1878–1941). Józef
was the fourth of five children.

The children of Klemens and Aleksandra Marcinkiewicz were: Stanisława Marcinkie-
wicz–Lewicka (1903–1988), Mieczysław Marcinkiewicz (1904–1976), Edward Marcinkie-
wicz (1908–1985), Józef Marcinkiewicz (1910–1940), Kazimierz Marcinkiewicz (1913–
1946).

Photo 1. Józef Marcinkiewicz and his signature

Photo 2. Parents of Józef Marcinkiewicz
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Marcinkiewicz grew up with some health problems, in particular he had lung trouble,
but this did not prevent him taking an active part in sports. Swimming and skiing
were two sports at which he became particularly proficient. Because of his poor health,
Marcinkiewicz first took private lessons at home and then he finished elementary school
in Janów.

After that Marcinkiewicz went to the District Gymnasium in Sokółka (after 4th class
of elementary school and examination). In the period 1924–1930 he studied at the King
Zygmunt August State Gymnasium in Białystok. He obtained his secondary-school cer-
tificate (matura certificate) on 22 June 1930 (number 220/322).

Photo 3. Photo and the first page of Marcinkiewicz’s gradebook (“indeks”)

In 1930 Marcinkiewicz became student at the Department of Mathematics and Nat-
ural Science, Stefan Batory University (USB) in Wilno (then in Poland, now Vilnius in
Lithuania). From the first year at the University, Marcinkiewicz demonstrated knowl-
edge of the subject and exceptional mathematical talent. He attracted the attention of
the following three professors from the Department: Stefan Kempisty, Juliusz Rudnicki
and Antoni Zygmund.1

1Stefan Jan Kempisty (born 23 July 1892 in Zamość – died 5 August 1940 in prison in Wilno),
Juliusz Rudnicki (born 30 March 1881 in village Siekierzyńce near Kamieniec Podolski – died
26 February 1948 in Toruń), Antoni Zygmund (born 25 December 1900 in Warsaw – died 30 May
1992 in Chicago).
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In his second year of studies he participated, in the academic year 1931/32, at Zyg-
mund’s course on orthogonal series preceded by an introduction to the theory of Lebesgue
integration. This course was too difficult for the average second year student and Mar-
cinkiewicz asked Zygmund for permission to take this course. That was the beginning of
their fruitful mathematical collaboration.

As well as Marcinkiewicz, there were a few other young mathematicians, for example,
Konstanty Sokół-Sokołowski, later he obtained PhD in mathematics and senior assistant
at the Department of Mathematics, who became like Marcinkiewicz one of the victims of
the war (and like Marcinkiewicz he was killed in Kharkov in 1940).2

Photo 4. Józef Marcinkiewicz

Zygmund wrote ([JMCP], pp. 2–3):

When I think of Marcinkiewicz I see in my imagination a tall and handsome
boy, lively, sensitive, warm and ambitious, with a great sense of duty and
honor. He did not shun amusement, and in particular was quite fond of danc-
ing and the game of bridge. His health was not particularly good ; he had weak
lungs and had to be careful of himself. He was interested in sports (possibly
because of his health) and was a good swimmer and skier. He also had intellec-
tual interests outside Mathematics, knew a lot of modern Physics and certain
branches of Celestial Mechanics. He said to me once that before entering the
university he had hesitated about whether to choose mathematics or Polish
literature.

2Konstanty Sokół-Sokołowski (born 9 September 1906 in Tarnobrzeg – killed in April or May
1940 in Kharkov). He has written his PhD thesis under supervision of Zygmund in 1939 On
trigonometric series conjugate to Fourier series of two variables.
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We must remember that Antoni Zygmund was not only a master for Marcinkiewicz,
but also an advocate for his achievements. In 1940 Zygmund emigrated to the United
States, and from 1947 he worked in Chicago, where he created the famous school of
mathematics. His students were among others Alberto Calderón (1920–1998), Leonard
D. Berkovitz (1924–2009), Paul J. Cohen (1934–2007) – awarded the Fields Medal in
1966, Mischa Cotlar (1912–2007), Eugene Fabes (1937–1997), Nathan Fine (1916–1994),
Benjamin Muckenhoupt (1933), Victor L. Shapiro (1924), Elias Stein (1931), Daniel Wa-
terman (1927), Guido Weiss (1928), Mary Weiss (1930–1966), Richard Wheeden (1940)
and Izaak Wirszup (1915–2008). It is thanks to Zygmund, who survived the war and be-
came an important mathematician in the world, the name of Marcinkiewicz also became
widely known among mathematicians.

Marcinkiewicz was interested in literature, music, painting, poetry, and he also wrote
poetry himself. He liked almost all areas of life and also to talk about different topics.
While studying he learnt English, French and Italian. Mathematics, however, he always
put first. He took an active part in the student life participating in various events orga-
nized by the Mathematical-Physical Circle; in the academic year 1932/33 he was presi-
dent of the Board. His closer friends and colleagues were: Stanisław Kolankowski, Wanda
Onoszko, Danuta Grzesikowska (-Sadowska) and Leon Jeśmanowicz.

Marcinkiewicz graduated in 1933, after only three years of study and on 20 June 1933
he obtained a Master of Science degree (in mathematics) at USB. The title of his master
thesis was Convergence of the Fourier–Lebesgue series and the supervisor was Professor
Antoni Zygmund.

His M.Sc. thesis consisted of his first original results in mathematics and contained,
among other things, the proof of the new and interesting theorem that there exists a
continuous periodic function whose trigonometric interpolating polynomials, correspond-
ing to equidistant nodal points, diverge almost everywhere. These results, in a somewhat
extended form, were presented two years later as his PhD thesis.

2. Scientific career, work, military service and tragic end. In the periods Septem-
ber 1933 – August 1934 and September 1934 – August 1935 he was assistant to the
Zygmund chair of mathematics at USB.

In the interim he did one year military service in 5th Infantry Regiment of Legions in
Wilno. He finished the military course with an excellent score. On 17 September 1934 he
was transferred to the reserves. Marcinkiewicz took his soldiering duties seriously, but not
without a sense of humour as far as the disadvantages of military service were concerned.
He received the following evaluation:

Outstanding individuality. Very energetic and full of initiative. (...) Deep and
bright mind. (...) Memory and logical thinking very good (...) Characterized
by a good planning and persistence in work. Overall evaluation: outstanding.

In September 1934 he returned to USB and on 25 June 1935 he defended his PhD thesis
entitled Interpolation polynomials of absolutely continuous functions at the Stefan Batory
University in Wilno, under supervision of Antoni Zygmund. His PhD thesis was a booklet
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Photo 5. 1933. The first page of hand-written master thesis of Józef Marcinkiewicz

of 41 pages published in Polish in Dissertationes Inaugurales No. 10, USB. It was also pub-
lished as the paper in [M35c] and its English translation appeared in [JMCP], pp. 45–70.
The evaluation of Marcinkiewicz’s PhD dissertation made by Zygmund (28 May 1935)
contains the following opinion:

I think Marcinkiewicz’s work is very valuable, showing big mathematical talent
and originality of the author. I accept it as a doctoral dissertation.
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Photo 6. XI Congress of Scientific Mathematical-Physical and Astronomical Circles
(25–28 May 1933) in Wilno. Congress Hall USB. Sitting in the first row from the left:

Kazimierz Jantzen (1885–1940), Józef Stanisław Patkowski (1887–1942) – physicist, Kazimierz
Opoczyński (1877–1963) – rector of USB, Władysław Dziewulski (1878–1962) – astronomer,
Józef Marcinkiewicz (1910–1940), Ira Anna Koźniewska (1911–1989) – statistician, Wacław
Michał Dziewulski (1882–1938) – physicist, Stefan Jan Kempisty (1892–1940), Bogumił
Jasinowski (1883–1969) – philosopher, Aleksander Januszkiewicz (1872–1955), Antoni

Zygmund (1900–1992), Edward Szpilrajn-Marczewski (1907–1976)

At the PhD examination, taken on 7 June 1935, the questions to Marcinkiewicz
were the following: Zygmund: problem of approximation of functions, interpolation the-
ory (Legendre, Hermite), quadratic approximation, Chebyshev polynomials, Fejér results,
convergence criterion in the case when nodes are zeros of Jacobi polynomials, means ap-
proximation of p 6= 2; Rudnicki: entire functions, results of Weierstrass, Poincaré, Borel,
Picard, Hadamard, theory of Nevanlinna and Julia; Kempisty: Perron integral and its
different definitions, similar question for functions of two variables, surface and its mea-
suring, results of Rado and Tonelli ; Dziewulski: equations of motion in mechanics of
celestial bodies, integrals of these equations, the perturbation function, Lagrangian points,
motion of the stars and the currents of stars.
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Photo 7. Diploma of doctor of philosophy

During the years 1934–1938 Marcinkiewicz was taken on six-weeks military exercises
(25 June–16 September 1934, 12 August–21 September 1935, 1 July–10 August 1936, 1938
– before travel to France). The spent the academic year 1935/1936 at the Jan Kazimierz
University in Lwów. This was a one year Fellowship from the Fund for National Culture
and the assistant position at the chair of Stefan Banach in the period 1 December 1935–
31 August 1936 with 12 hours of teaching weekly (cf. [DP10], pp. 59–61). Marcinkiewicz
visited the Scottish Café. He solved problems 83 of Auerbach, 106 of Banach and 131 of
Zygmund from the Scottish Book. Moreover, he posed his own problem number 124 (cf.
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[Mau81], pp. 211–212). In Lwów Marcinkiewicz cooperated with Juliusz Paweł Schauder
(1899–1943), who had returned to Lwów a year earlier having spent time in Paris working
with Hadamard and Leray.3

Photo 8. Józef Marcinkiewicz

Zygmund writes ([JMCP], p. 3):

The influence of Schauder was particularly beneficial and would probably have
led to important developments had time permitted. For in the field of real vari-
able Marcinkiewicz had exceptionally strong intuition and technique, and the
results he obtained in the theory of conjugate functions, had they been extended
to functions of several variables might have given (as we see clearly now) a
strong push to the theory of partial differential equations. The only visible
trace of Schauder’s influence is a very interesting paper of Marcinkiewicz on
the multipliers of Fourier series, a paper which originated in connection with
a problem proposed by Schauder (...)

While in Lwów Marcinkiewicz also collaborated with Stefan Kaczmarz (1895–1939)
and Władysław Orlicz (1903–1990)4 he became interested in problems of general orthog-
onal systems and wrote a series of papers on this subject. He published joint paper with
Kaczmarz on multipliers of Fourier series and was working in Lwów on general orthogonal
series.

Marcinkiewicz was nominated senior assistant to the chair of mathematics at USB
for the period 1 September 1936 – 31 August 1937 and on 16 April 1937 Marcinkiewicz
filled in an application to commence his habilitation. After one month, on 25 May 1937
Zygmund wrote the following opinion about the papers of Marcinkiewicz:

3Juliusz Paweł Schauder (born 21 September 1899 in Lwów – killed in September 1943).
4Stefan Kaczmarz (born 20 March 1895 in Sambor – killed in September 1939), Władysław

Orlicz (born 24 May 1903 in Okocim – died 9 August 1990 in Poznań).
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From the above discussion the work of Dr. Marcinkiewicz shows that it con-
tains a number of interesting and important results. Some of them, due to
their final form, will certainly appear in textbooks in mathematics. It should
be mentioned that in some of the early papers we can already see strong and
subtle arithmetic techniques; things of rare quality. The entire collection is
extremely favorable and testifies to the multilateral and original mathematical
talent of the author.

Photo 9. Wilno, 4 March 1936. Doctor honoris causa for Professor Kazimierz Sławiński5. In the
foreground (from the left): Juliusz Rudnicki, N.N., Kornel Michejda, Stefan Kempisty, Edward
Bekier. At the wall (fourth and fifth from the left): Józef Marcinkiewicz and Antoni Zygmund

Marcinkiewicz’s habilitation discussion (exam) was taken on 11 June 1937 and the
questions raised included the following: Zygmund: 1. Unsolved questions in the theory
of trigonometric series, orthogonal series and interpolational polynomials, 2. Questions
connected with the Laplace–Lyapunov theorem; Rudnicki: Integral equations; Kempisty:
Generalizations of the integral concept.

After the procedure, on 12 June 1937 his habilitation On summability of orthogonal
series was approved and the nomination to docent by USB was given. His habilitation
lecture had the title Arithmetization of notion of eventual variable. The second proposed
topic was Convergence of interpolational polynomials.

At the age 27 Marcinkiewicz was the youngest doctor with habilitation at the Ste-
fan Batory University. The same year Marcinkiewicz was awarded the Józef Piłsudski
Scientific Prize.

5Kazimierz Sławiński (1871–1941), chemist, professor of the Stefan Batory University in
Wilno.
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His senior assistant position at USB was prolonged on the periods 1 September 1937–
31 August 1938 and 1 September 1938–31 August 1939. In the meantime, he participated
in the 3rd Congress of Polish Mathematicians (29 September–2 October 1937) in Warsaw
with the lecture On one-sided convergence of orthogonal series. In January 1938 he was
nominated for lieutenant reserve, where we can find information about him: height –
180 centimeters, hair – dark blond, eye colour – bright hazel. The same year he received
one year scholarship from the Fund for National Culture for the trips to Paris, London
and Stockholm to complement his knowledge in probability theory and mathematical
statistics. On 9 July 1938 the Ministry of Religious Creeds and Public Education granted
Marcinkiewicz paid leave for the academic year 1938/1939.

Photo 10. Józef Marcinkiewicz

On 11 October 1938 Marcinkiewicz presented a talk in Poznań The development of
the probability theory for the last 25 years. This lecture was probably connected with his
application for a professor position in Poznań.

After this visit he went to Paris, where he stayed six months (October 1938–March
1939). In this period Marcinkiewicz collaborated with Stefan Bergman and Raphaël
Salem.6 With Bergman he wrote two joint papers in the theory of complex functions
of two variables and with Salem one paper on Riemann sums.

Marcinkiewicz also had contact with the famous mathematician Paul Lévy.7 Bernard
Bru in a conversation with Murad Taqqu discussed about contribution of Louis Bachelier

6Stefan Bergman (born 5 May 1895 in Częstochowa – died 6 June 1977 in Palo Alto, Cali-
fornia) whose name, in two joint papers with Marcinkiewicz, is written with two “n” at the end,
i.e., as Bergmann; Raphaël Salem (born 7 November 1898 in Saloniki – died 20 June 1963 in
Paris).

7Paul Pierre Lévy (born 15 September 1886 in Paris – died 15 December 1971 in Paris),
French mathematician, professor of analysis at École Polytechnique in Paris from 1920 to 1959,
who introduced in 1922 the term functional analysis. The author of 10 books and over 250 papers
in probability, functional analysis and partial differential equations.
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(1870–1946) to Brownian motion and informed how Paul Lévy get interested in Brownian
motion (see [Ta01]):

Lévy began to take an interest in Brownian motion toward the end of the 1930s
by way of the Polish school, in particular Marcinkiewicz who was in Paris in
1938. He rediscovered all of Bachelier’s results which he had never really seen
earlier. Lévy had become enthralled with Brownian motion.

We should mention here that Marcinkiewicz sent his paper on Brownian motion [M38–40]
to the journal already in January 1938 and Lévy published in 1939 paper [Le39] on a
problem of Marcinkiewicz. There are also theorems with the Lévy and Marcinkiewicz
names in it (cf. our Sections 4.2.3 and 4.6.4).

At the end of 1938 Irena Sławińska arrived in Paris, for a 9 month scientific stay,
alumnus of the Polish and Roman literature of USB in Wilno, regarded as his fiancée.8

She returned to Wilno in August 1939. After the War she was working in Toruń and from
1949 in Lublin (Catholic University of Lublin). I met her in Warsaw on 6 March 2002.
She mentioned to me that they were planning to get married and also that:

Marcinkiewicz was going out in the middle of the film and was saying that he
had no time for entertainment or this is a waste of his time on such a bad
movie.

According to K. Dąbrowski and E. Hensz-Chądzyńska ([DH02], p. 3): During his stay
in Paris he was offered a professorship in one of the American universities. He declined as
he had already accepted another offer from the University of Poznań in Poland. However,
I am not aware of any documentary evidence of this American offer.

After Paris Marcinkiewicz arrived in London on his scientific stay. He was staying five
months (April–August 1939) at the University College London (UCL). He managed to
present his own work in Cambridge, presumably visiting J. E. Littlewood (G. H. Hardy
was also there), and in Oxford (cf. [DP10], p. 27). A planned trip to Stockholm was never
realized, since Marcinkiewicz returned from London to Wilno at the end of August 1939.

In June 1939 he was appointed Extraordinary Professor at the University of Poznań.
From the new academic year 1939/40 Marcinkiewicz should take up the chair of mathe-
matics at the University of Poznań, after Zdzisław Krygowski (1872–1955), who retired
in 1938. There is even a protocol of the 8th meeting of the Senate of the University of
Poznań from 23 June 1939, where point 11 is about appointment of docent Marcinkie-
wicz on associate professor of mathematics and this was presented by the Dean Suszko.9

Unfortunately, the outbreak of war, disrupted his plans. By the way, Marcinkiewicz on
27 June 1939 was also nominated senior assistant to the mathematics chair at USB for
the period 1 September 1939–31 August 1940.

At the end of August 1939 Marcinkiewicz returned to Wilno from London. In the
second half of August 1939, Marcinkiewicz stayed in England. The outbreak of war was
imminent. In Poland, general mobilisation was announced. Despite his colleagues’ advice

8Irena Zofia Sławińska (born 30 August 1913 in Wilno – died 18 January 2004 in Warsaw).
9Jerzy Suszko (1889–1972), chemist, from 1937 Professor of the University of Poznań.
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to stay in England, he decided to go back to Poland. Marcinkiewicz was answering to
them that (cf. [MM76], p. 16):

as a patriot and son of my homeland would never attempt to refuse the service
to the country in such difficult time as war.

Norman L. Johnson10 in a conversation with C. B. Read in May 2002 was saying
(cf. [Re04], p. 557):

I would like to mention the influence that someone had on my life to some
extent. In my first, prewar, year on staff at University College, we had a visitor
from Poland, Jozef Marcinkiewicz. He was only over for a month or so because
he was also visiting Paris. He was a very good theoretical probabilist, he was
interested in statistics and he was very remarkable. He was only 28 years old
and already a Professor in Poland. We had a lot of talks. I was flattered that
he took notice of such a junior member of the staff as I was, in my corner of
the laboratory where I felt protected against Fisher. We talked a lot about that,
and he came to me for what he called a good practical outlook, thinking that his
mathematical statistics ought to be more applicable than it was in the way he
had learned it. I also thought I was learning a lot more about mathematics than
I had ever learned as an undergraduate in University College. We had a lot of
conversations then. When he left in the spring of 1939, it was pretty clear there
was going to be a war. He already had been offered a post in the United States,
and I said (which almost destroyed our friendship), “Won’t you perhaps accept
this and be out of the way if the Germans invade Poland?” He was extremely
indignant. He said, “My duty is to go back and defend my country, I am a
reserve officer and I am surprised you would think of something as bad as
that. Why don’t you go off to the United States?” I was able to calm him
down and sort that out. He did go, and he was taken prisoner by the Russians
and ultimately murdered in Katyn Forest near Smolensk. I always felt that
I would like to take an opportunity of saying how highly I thought of him as a
person and as a probabilist who was appreciative of statistics and that somehow
or other thought I could do something useful. At that time when I was just
starting, as you know, you are not very sure of anything. I would like to take
the opportunity of mentioning that. In fact, in the Encyclopaedia, there is an
entry “Marcinkiewicz’s Theorem.” He wrote a book, but I don’t know the title.

This shows that Marcinkiewicz was not only scientist, but he was also a great Polish
patriot returning to Poland. He could have stayed in England or go to United States, but
in his opinion, this meant desertion. Instead, he chose to fight and thus became a martyr.

10Norman Lloyd Johnson (1917–2004) completed his M.Sc. in statistics in 1938 under super-
vision of Jerzy Neyman at the Department of Applied Statistics at University College London.
The same year he joined the same Department as an Assistant Lecturer on an invitation by
Egon Pearson. From 1962 he became Professor at the University of North Carolina at Chapel
Hill (USA). He was the author and co-author of 17 books and more than 180 papers in statistics.
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Zygmund writes ([Zy64], p. 4):

On September 2nd, the second day of the war, I came across him accidently
in the street in Wilno, already in military uniform (he was an officer of the
reserve). We agreed to meet the same day in the evening but apparently cir-
cumstances prevented him from coming since he did not show up at the ap-
pointed place. A few months later came the news that he was a prisoner of
the war and was asking for mathematical books. It seems that this was the last
news about Marcinkiewicz.

and in [Zy51, p. 8]:

Marcinkiewicz, mobilized, was taken prisoner and disappeared without trace.

Marcinkiewicz was a reserve officer assigned to the 2nd Battalion, 205th Infantry Reg-
iment, and took part in the defence of Lwów (12–21 September 1939). After capitulation
of Lwów (22 September 1939) he, together with other officers, was taken prisoner by the
Red Army.

Photo 11. Józef Marcinkiewicz in uniform (second from the left).
First from the right – his brother Edward

Stanisława Lewicka (sister of Józef) wrote on 12 October 1959 in the letter to Wiadomości
Matematyczne [Mathematical News] ([Le59], pp. 1–2):

During his time in Paris and England, Marcinkiewicz had produced some
mathematical work, which he had written down in manuscript form. After
returning to Poland he gave these manuscripts to his parents for safe keep-
ing. Sadly Marcinkiewicz’s parents suffered the same fate as he did and died
in June 1941 in Bukhara (Uzbekistan). After the war his brother Kazimierz
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accidentally dug this work from the ground, but they were unfortunately in a
state of decomposition.

Stanisław Kolankowski wrote on Józef Marcinkiewicz:

We met for the first time on 20 September. (. . .) At night the German army
started to leave their positions, and then the Soviet Army came. The Lwów
defence committee decided to give the city up to the Soviet Army. The Soviets
“temporarily interned” the officers commanding the defence of Lwów. (. . .) It
was the 25 of September. I found out that Józef Marcinkiewicz was in the
same car with me. (. . .) The railway workers told us we would be located in
camps throughout the Soviet Union. Then I decided to flee from the transport
along with two other officers from Lwów. I insisted that Marcinkiewicz go with
us. He decided not to go. (. . .) The railway workers told us we were going to
Starobielsk (a small town near Kharkov in Ukraine). Just before the Polish-
Soviet border at the Podwysokie station all three of us jumped off the train.
I saw Józef Marcinkiewicz at ten p.m. for the last time.

Marcinkiewicz was kept in the Starobielsk camp from September 1939 until April or
May 1940 (registered under the id number 2160; victim index number 6444). The family
had received two postcards from the Starobielsk camp. The last one was dated March
1940. Marcinkiewicz also sent some postcards and letters from Starobielsk to his close
friends, including Zygmund and Jeśmanowicz.

There exists a description of Marcinkiewicz’s stay in the Starobielsk camp, written by
Zbigniew Godlewski11 school colleague, and published in the Review of History (Przegląd
Historyczny 38 (1993), z. 2, pp. 323–324) in 1992 Lived through Starobielsk.

Probably, the Soviets soon discovered how brilliant their captive was. They offered him
some form of collaboration. Marcinkiewicz allegedly asked in a letter for his mathematical
books and a copy of his PhD certificate to be sent to him at the camp. It is supposed
that, in the end, Marcinkiewicz declined the Soviet offer.

Marcinkiewicz was then murdered in Kharkov, where thousands of Polish officers were
executed. He is probably buried in the village Piatykhatky (Piatichatki).

The exact date of Józef Marcinkiewicz’s death remains unknown because some official
Soviet documents are inaccessible or have been destroyed. The only known information
is that this was between 5 April and 12 May 1940.

At the cemetery situated in Janów there is a grave containing the ashes of Kazi-
mierz Marcinkiewicz. A plaque commemorates also Józef Marcinkiewicz and his parents
Aleksandra and Klemens Marcinkiewicz. This plaque was founded by the priest Józef
Marcinkiewicz in 1956. The plaque bears the names of the parents of Józef, the name of
Józef and his brother Kazimierz; above that there are words:

In honour of the martyrdom of the Marcinkiewicz family.

11Zbigniew Godlewski (1909–1993), from 3 October 1939 prisoner of Starobielsk camp. Mem-
ories were written in 1980.
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This inscription gives the most tragic fate of the Polish family during the war. Marcinkie-
wicz’s parents Klemens and Aleksandra were transported in June 1941 to Uzbekistan by
the NKVD and six months later they died of hunger in Bukhara on 24 December 1941.
Józef was executed in Kharkov in Spring 1940. Edward, who was later transported to
Siberia, joined the Polish army of General Anders and took part in the battle of Monte
Cassino (Italy). He then lived in Argentina, Italy and Switzerland. The youngest brother,
Kazimierz, one of the defenders of Lwów, returned to his family’s house. Like Mieczysław
and Stanisława, he was a member of the Polish underground during the Soviet and Nazi
occupation and at the beginning of the Communist regime. In 1946 he was killed by
security officers in Janów. Mieczysław was forced by communist authorities to sell the
farm and move to a different place (Krapkowice).

Photos 12–13. Symbolic grave of the Marcinkiewicz family in Janów

Józef Marcinkiewicz should be remembered as a true Polish patriot, and especially as
an outstanding mathematician. Mathematics was his passion. He possessed an outstand-
ing ability to focus on problems in mathematical thinking and had extraordinary insights
in mathematics. Marcinkiewicz’s premature death was a huge blow to Polish and world
mathematics.

Zygmund, in his article about Marcinkiewicz, wrote ([Zy64], p. 1):

His first mathematical paper appeared in 1933 ; the last one he sent for pub-
lication in the Summer of 1939. This short period of mathematical activity
left, however, a definite imprint on Mathematics, and but for his premature
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death he would probably have been one of the most outstanding contemporary
mathematicians. Considering what he did during his short life and what he
might have done in normal circumstances one may view his early death as
a great blow to Polish Mathematics, and probably its heaviest individual loss
during the second world war.

3. Contests, books, conferences, lectures, exhibitions, awards and special lec-
tures dedicated to Marcinkiewicz. Books, competitions, conferences, exhibitions and
awards in his name have since celebrated the memory of Marcinkiewicz. They are pre-
sented below in chronological order with a short description.

1947. Poznań. In October 1947 Polish Mathematical Society in Poznań intended to
publish Commemorative Book, and Dr. Andrzej Alexiewicz (later professor of mathemat-
ics) has asked Stanisława Lewicka – the sister of Józef Marcinkiewicz – for biographical
material. Unfortunately, the Book did not appear in print.

1957. Toruń. In memory of Marcinkiewicz the Toruń Branch of the Polish Mathemat-
ical Society initiated in 1957 an annual Marcinkiewicz competition for the best student’s
mathematical paper. The winners of the first competition in 1957 were: Z. Ciesielski,
K. Sieklucki, A. Schinzel and A. Jankowski.

1959. New York. Antoni Zygmund dedicated his famous monograph Trigonometric
Series, 2nd ed., Cambridge University Press, New York 1959 in the following way: Dedi-
cated to the memories of A. Rajchman and J. Marcinkiewicz. My teacher and my pupil.

1960. Warsaw. On the twentieth anniversary of the death of Józef Marcinkiewicz the
Mathematical News (Wiadomości Matematyczne) published in Polish an article of Zyg-
mund on Marcinkiewicz: A. Zygmund, Józef Marcinkiewicz, Wiadom. Mat. (2) 4 (1960),
11–41.

1964. Warsaw. In recognition of the great mathematical achievements of Marcinkie-
wicz, Polish Academy of Sciences edited in 1964, on 681 pages, his collected papers: Józef
Marcinkiewicz, Collected Papers, PWN, Warsaw 1964. Only a few Polish mathematicians
have been honoured in this way.

1980. Warsaw. Commission of the History of Mathematics of the Polish Mathematical
Society and Institute of History of Science of the Polish Academy of Sciences organized on
11 December 1980 a scientific session dedicated to Józef Marcinkiewicz on the occasion
of his 70th anniversary of birth. Two lectures were given: Z. Ciesielski, The scientific
output of Józef Marcinkiewicz, L. Jeśmanowicz, Previous history of the Marcinkiewicz
competition. Moreover, L. Jeśmanowicz was talking about J. Marcinkiewicz.

1981. Chicago. On the occasion of Zygmund’s 80th birthday the conference Conference
on Harmonic Analysis in Honor of Antoni Zygmund, University of Chicago, Chicago, Ill.,
March 23–28, 1981 was organized. The wish of Zygmund was that each speaker should
quote or rely on some statement of Marcinkiewicz. Proceedings of the conference were
published in two volumes and edited by William Beckner, Alberto P. Calderón, Robert
Fefferman and Peter W. Jones in 1983 on 852 pages.

1981. Olsztyn. The 16th Scientific Session of the Polish Mathematical Society (15–17
September 1981). Z. Ciesielski presented a talk Ideas of Józef Marcinkiewicz in mathe-
matical analysis.
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1988. Katowice. Third All Polish School on History of Mathematics Mathematics
at the turn of the twentieth century, May 1988. Lecture: B. Koszela, The contribution
of Józef Marcinkiewicz, Stefan Mazurkiewicz and Hugo Steinhaus in developing Polish
mathematics. A biographical sketch (in Polish).

1991. Dziwnów. Fifth All Polish School on History of Mathematics Probability and
mechanics in historical sketches, 9–13 May 1991. Lectures on Marcinkiewicz: E. Hensz and
A. Łuczak, Strong law of large numbers of Marcinkiewicz, classical and non-commutative
version, E. Hensz, Józef Marcinkiewicz.

1995. Toruń. Scientific Session of the Polish Mathematical Society (13–15 September
1995). Lecture: K. Dąbrowski and E. Hensz, Józef Marcinkiewicz (1910–1940).

2000. Będlewo. 16–20 October 2000. Stefan Banach International Mathematical Cen-
ter organized Rajchman–Zygmund–Marcinkiewicz Symposium dedicated to the memory
of Aleksander Rajchman (1891–1940), Antoni Zygmund (1900–1992) and Józef Marcin-
kiewicz (1910–1940). Talk about Marcinkiewicz: K. Dąbrowski and E. Hensz-Chądzyńska,
Józef Marcinkiewicz (1910–1940). In commemoration of the 60th anniversary of his death
([DH02]).

2007. Gdańsk. Gdańsk Branch of the Polish Mathematical Society and Institute of
Mathematics of the Gdańsk University organized on 29 October 2007 an exposition
and scientific session to commemorate Józef Marcinkiewicz. Lectures were given by:
S. Kwapień, Józef Marcinkiewicz, Wolfgang Doeblin, two lots, similarities and differ-
ences, Z. Ciesielski, Some reflections on Józef Marcinkiewicz, and E. Jakimowicz, How
was the exhibition dedicated to Józef Marcinkiewicz organized.

2010. Toruń. Scientific session on the hundredth anniversary of birth of Józef Marcin-
kiewicz (10 March 2010). Lectures: A. Jakubowski, J. Marcinkiewicz and his achievements
in the theory of probability, Y. Tomilov, Selected results of J. Marcinkiewicz in the theory
of functions and functional analysis.

2010. Janów. 23 March 2010. Hundredth anniversary of the birth of Józef Marcinkie-
wicz (1910–1940). The School Complex of the Agricultural Education Center in Janów.
Lectures: R. Brazis (Polish University, Wilno), Wilno – a city enlightened in legend of
Józef Marcinkiewicz, L. Maligranda (Luleå University, Sweden), Józef Marcinkiewicz as
pupil, man and mathematician and exposition of E. Jakimowicz, To Józef Marcinkiewicz
on the occasion of the 100th anniversary of his birth and 70th anniversary of his death
(continuation of the exposition from 2007).

2010. Iwonicz Zdrój. 25 May 2010. The 24th School of History of Mathematics (24–28
May 2010). Lectures: S. Domoradzki and Z. Pawlikowska-Brożek, Józef Marcinkiewicz in
the light of memories, L. Maligranda (LTU), Józef Marcinkiewicz and his mathematical
achievements.

2010. Poznań. 28 June–2 July 2010. On the occasion of the centenary of the birth
of Józef Marcinkiewicz (1910–1940), Adam Mickiewicz University (Poznań), Institute of
Mathematics of the Polish Academy of Sciences, Warsaw University, Nicolaus Copernicus
University (Toruń) organized a scientific conference to commemorate one of the most
eminent Polish mathematicians The Józef Marcinkiewicz Centenary Conference (JM100).
The first plenary lecture was given by L. Maligranda, Józef Marcinkiewicz (1910–1940)
– on the centenary of his birth.
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2010. Janów. 14 October 2010. Celebration on which the name of Professor Józef
Marcinkiewicz was given to the School Complex of the Agricultural Education Center in
Janów [Zespół Szkół Centrum Kształcenia Rolniczego w Janowie, pow. Sokółka].

4. Mathematics of Józef Marcinkiewicz. Results proved by Marcinkiewicz are in
the following areas of mathematics:

– Functional Analysis (interpolation of operators, Marcinkiewicz spaces and vector-
valued inequalities)

– Probability Theory (independent random variables, Khintchine type inequalities,
characteristic functions, Brownian motion)

– Theory of Real Functions
– Trigonometric Series, Power Series, Orthogonal and Fourier Series
– Approximation Theory
– Theory of Functions of Complex Variables.

In the period of six years (1933–1939) Józef Marcinkiewicz wrote 55 papers (while
spending one year in the army). 19 were published with co-authors (14 with A. Zygmund,
two with S. Bergman and one with S. Kaczmarz, R. Salem, B. Jessen12 and A. Zygmund).
Despite the brevity of his period of mathematical activity, it has nonetheless left a define
mark on mathematics.

A list of his published papers can be found in Józef Marcinkiewicz, Collected Papers,
PWN, Warsaw 1964, pages 31–33, and also here in part 5, which is supplemented by his
printed PhD thesis [M35b] and unknown paper [M37b] and is in chronological order.

Marcinkiewicz was also reviewer for Zentralblatt für Mathematik und ihre Grenzgebiete
(Zbl) and Jahrbuch über die Fortschritte der Mathematik (JFM ) in years 1931–1939. He
has written 56 reviews.

Marcinkiewicz’s papers besides the original and important results, contain a lot of
ideas. They are still used today and continue to inspire mathematicians.

Antoni Zygmund has written about his pupil Marcinkiewicz ([Zy64], p. 1):

I was one of his professors at the University in Wilno; I introduced him to
mathematical research and interested him in problems with which I was then
concerned. Later on we collaborated and wrote several joint papers; but his
scientific development was so rapid and the originality of his ideas so great
that in certain parts of my own field of work I may only consider myself as
his pupil.

Orlicz asserted that Marcinkiewicz:

is probably the only mathematician with whom you can speak about everything.
He was a remarkably quick learner.

Marcinkiewicz was one of the most eminent figures in Polish mathematics and together
with Stanisław Zaremba, Leon Lichtenstein, Juliusz Schauder and Antoni Zygmund, the

12Borge Christian Jessen (born 19 June 1907 in Copenhagen – died 20 March 1993 in Copen-
hagen).
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most prominent in classical analysis. Zygmund considered him his best pupil, although
he had many students in Poland and the USA. We must also remember that it is because
of the Master, which was Zygmund, Marcinkiewicz also became a known mathematician.

Photo 14. Wilno, 4 March 1936. Józef Marcinkiewicz (left) and Antoni Zygmund

Paul Nevai in the text of Paul Turán informed ([Tu55], p. 3):

Zygmund told me that Marcinkiewicz was the strongest mathematician he ever
met – I wonder if I am making this up or he told this to others as well.

Alberto P. Calderón described ([Ca83], p. xiv):

Marcinkiewicz, whose name is familiar to everyone interested in functional
analysis and Fourier series, was an extraordinary mathematician. His col-
laboration with Zygmund lasted almost ten years and produced a number of
important results.

Cora Sadosky, in added information on A. Zygmund and J. Marcinkiewicz, concludes
([Sa01], p. 6):

Marcinkiewicz, did became a first-rank mathematician even if he died at 30.
Marcinkiewicz is recognized today largely because Zygmund survived the war
and became his champion.

Marcinkiewicz’s name in mathematics appeared e.g. in connection to the following: the
Marcinkiewicz interpolation theorem, Marcinkiewicz spaces, the Marcinkiewicz integral
and Marcinkiewicz function, the Marcinkiewicz–Zygmund inequalities, the Marcinkie-
wicz–Zygmund law of large numbers, the Marcinkiewicz multiplier theorem, the Jessen–
Marcinkiewicz–Zygmund strong differentiation theorem, Marcinkiewicz–Zygmund vector-
valued inequalities, the Grünwald–Marcinkiewicz interpolation theorem, the Marcinkie-
wicz–Salem conjecture, the Marcinkiewicz test for pointwise convergence of Fourier series,
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the Marcinkiewicz theorem on the Haar system, the Marcinkiewicz theorem on universal
primitive function and the Marcinkiewicz theorem on the Perron integral.

A description of Marcinkiewicz’s achievements was written in Polish by Antoni Zyg-
mund [Zy60] in 1960 and then translated into English and published in the Collected
Papers [Zy64] (pages 1–33). Achievements of Marcinkiewicz in analysis were described in
Japanese by Satoru Igari [Ig05] (the English translation was published three years later in
[Ig08]). We note, moreover, that Philip Holgate delivered on 25 February 1989 a lecture
on Independent functions: probability and analysis in Poland between the wars, which
was published in 1997 (see [Ho97]), and in the third part of this work some important
achievements of Marcinkiewicz and Zygmund were discussed.

Also, descriptions of Zygmund achievements have been written by Fefferman, Kahane
and Stein [FKS76] and by Stein [St83], which, of course, also contain the discussion of
the joint results of Marcinkiewicz and Zygmund.

The article by Zygmund [Zy60] is obviously the best source of Marcinkiewicz’s math-
ematics, however, I have adopted an alternative order of presentation of Marcinkiewicz’s
results. My order follows appearance of Marcinkiewicz’s results in text-books and mono-
graphs. This difference is also apparent from the fact that after 50 years, certain sections
of mathematics became more popular than others. This is why the first are results in
mathematical analysis (in fact in functional analysis), then in probability theory and real
analysis to be finished with the classical Fourier series and general orthogonal series, and
approximation theory, though Marcinkiewicz began to write papers on Fourier series and
approximation theory. This work ends with remarks on some less cited or quoted papers
of Marcinkiewicz.

4.1. Functional Analysis. In this section some results are presented that made Mar-
cinkiewicz’s name famous in the most spectacular way. These include the Marcinkiewicz
interpolation theorem and two types of Marcinkiewicz spaces, as well as Marcinkiewicz–
Zygmund vector-valued estimates of operators.

4.1.1. Marcinkiewicz interpolation theorem (1939). Consider two classical operators:
(a) The Hardy operator H is defined by

Hf(x) =
1
x

∫ x

0

f(t) dt, x ∈ I,

where I = (0, a), 0 < a ≤ ∞. The operator H is not bounded from L1(I) to L1(I) (for
example, f0(x) = 1

x ln2 x
χ(0,1/2) ∈ L1(0, 1), but Hf0(x) = −1/(x lnx) on (0, 1/2) so that

Hf0 /∈ L1(0, 1)), but it is bounded from L1(I) to weak-L1(I) and is bounded from L∞(I)
to L∞(I).

(b) The maximal operator M is defined by

Mf(x) = sup
I3x

1
|I|

∫
I

|f(t)| dt, I = (a, b) ⊂ [0, 1].

M is not bounded from L1 to L1, but is bounded from L1(I) to weak-L1(I) and it is
bounded from L∞ to L∞.

In fact, there are several examples of such type of operators. Marcinkiewicz knowing
the Riesz–Thorin interpolation theorem (1926, 1938) and the Kolmogorov result (1925)
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that the conjugate-function operator is of weak type (1, 1) tried to prove theorems not
only for the scale of Lp-spaces. A particular version of the Marcinkiewicz interpolation
theorem (1939) has the form: If a linear or sublinear mapping T is of weak type (1, 1)
and strong type (∞,∞), that is, satisfies the estimates

λm
(
{x ∈ I : |Tf(x)| > λ}

)
≤ A

∫
I

|f(x)| dx ∀λ > 0 (1)

ess sup
x∈I

|Tf(x)| ≤ B ess sup
x∈I

|f(x)|, (2)

then it is of strong type (p, p) for 1 < p ≤ ∞, i.e., we have the estimate∫
I

|Tf(x)|p dx ≤ CA,B

∫
I

|f(x)|p dx (3)

with

C
1/p
A,B ≤ 2

( p

p− 1

)1/p

A1/pB1−1/p. (4)

To understand better the importance of the Marcinkiewicz interpolation theorem let
us define the so-called weak-Lp spaces. The Lebesgue spaces Lp on the measure space
(Ω,Σ, µ) were known for Ω = [a, b] or Ω = Rn already in the thirties for F. Riesz.
Investigating the boundedness of operators Marcinkiewicz needed larger spaces in the
target, the so-called weak-Lp spaces denoted by Lp,∞ (1 ≤ p < ∞) and now called
Marcinkiewicz spaces given by one of two quasi-norms:

‖f‖p,∞ = sup
t>0

t1/pf∗(t) = sup
λ>0

λµ
(
{x ∈ Ω : |f(x)| > λ}

)1/p
.

Note that these spaces are larger than Lp, since for any λ > 0∫
Ω

|f(x)|p dµ ≥
∫
{x∈Ω:|f(x)|>λ}

|f(x)|p dµ ≥ λpµ
(
{x ∈ Ω : |f(x)| > λ}

)
,

that is,

‖f‖p,∞ = sup
λ>0

λµ
(
{x ∈ Ω : |f(x)| > λ}

)1/p ≤
(∫

Ω

|f(x)|p dµ
)1/p

= ‖f‖p.

The weak-L∞ space is here by definition the L∞ space.
Marcinkiewicz published in 1939 the two-page paper [M39h] and formulated three

theorems, containing the one presented below, without proofs. He sent a letter, including
the proof of the main theorem for p0 = q0 = 1 and p1 = q1 = 2, to Zygmund who
after the war reconstructed all the proofs and published them in 1956 (see [Zy56]). This
is the reason why Marcinkiewicz’s interpolation theorem (1939) is sometimes called the
Marcinkiewicz–Zygmund interpolation theorem. Note that in 1953 Zygmund presented all
the proofs at his Chicago seminar informing that he was only developing Marcinkiewicz’s
ideas (cf. [Pe02], p. 46). A proof was also given by the PhD students of Zygmund: Mischa
Cotlar for p0 = q0 and p1 = q1 (PhD 1953, published in 1956 in [Co56]) and William J.
Riordan for 1 ≤ pi ≤ qi ≤ ∞, i = 0, 1 (PhD 1955, unpublished).
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Theorem 1 (Marcinkiewicz 1939, Zygmund 1956). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and for
0 < θ < 1 define p, q by the equalities

1
p

=
1− θ

p0
+

θ

p1
,

1
q

=
1− θ

q0
+

θ

q1
. (5)

If p0 ≤ q0 and p1 ≤ q1 (lower triangle) with q0 6= q1, then the boundedness of any linear
or sublinear operator T : Lp0 → Lq0,∞ and T : Lp1 → Lq1,∞ [i.e. T is of weak type
(p0, q0) and of weak type (p1, q1)] implies the boundedness of T : Lp → Lq [that is, T is
of strong type (p, q)] and

‖T‖Lp→Lq ≤ C‖T‖1−θ
Lp0→Lq0,∞‖T‖θ

Lp1→Lq1,∞ , (6)

where

C = C(θ, p0, p1, q0, q1) = 2
( q

|q − q0|
+

q

|q1 − q|

)1/q p
(1−θ)/p0
0 p

θ/p1
1

p1/p

=
2 p(1−θ)/p0

0 p
θ/p1
1

p1/pq1/q[| 1
q1
− 1

q0
| θ(1− θ)]1/q

≤ 2
( q

|q − q0|
+

q

|q1 − q|

)1/q

=
2

[| 1
q1
− 1

q0
|θ(1− θ)]1/q

.

1
q

1
p1

2

1

10

W0

W1

S

Fig. 1. The Marcinkiewicz interpolation theorem is true in lower triangle: W0 = ( 1
p0

, 1
q0

),
W1 = ( 1

p1
, 1
q1

), S = ( 1
p
, 1
q
) and q0 6= q1 (except horizontal segments)

Two particular cases of Theorem 1 (A and B) are given below (cf. [JM82], pp. 8–9
and [Gr08], p. 32):

A (Marcinkiewicz’s interpolation theorem (diagonal case)). If 1 ≤ p0 < p1 ≤ ∞ and T
is an arbitrary linear or sublinear operator of weak type (p0, p0) and of weak type (p1, p1),
that is, T : Lp0 → Lp0,∞ and T : Lp1 → Lp1,∞ is bounded, then it is of strong type
(p, p), i.e., T : Lp → Lp is bounded for any p0 < p < p1. Moreover, if 1

p = 1−θ
p0

+ θ
p1

for
0 < θ < 1, then

‖T‖Lp→Lp ≤ 2
( p

p− p0
+

p

p1 − p

)1/p

‖T‖1−θ
Lp0→Lp0,∞‖T‖θ

Lp1→Lp1,∞ . (7)
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Remark 1. If the operator T in the above theorem is of weak type (p0, p0) and strong
type (p1, p1), then of course it will be of strong type (p, p), but we obtain then better
(than (7)) estimate on the norm, namely the following:

‖T‖Lp→Lp ≤ 2
p1/p

(p− p0)(1−θ)/p0 p
θ/p1
1

‖T‖1−θ
Lp0→Lp0,∞‖T‖θ

Lp1→Lp1 . (8)

1
q

1
p1

2

1

10

W0

W1

S

Fig. 2. The Marcinkiewicz interpolation theorem (diagonal case):
W0 = ( 1

p0
, 1
p0

), W1 = ( 1
p1

, 1
p1

), S = ( 1
p
, 1
p
)

B (Little Marcinkiewicz interpolation theorem). If 1 < p ≤ ∞ and T is an arbitrary
linear or sublinear operator of weak type (1, 1) and strong type (∞,∞), that is, T : L1 →
L1,∞ and T : L∞ → L∞ is bounded, then it is of strong type (p, p), i.e., T : Lp → Lp is
bounded and

‖T‖Lp→Lp ≤ 2
( p

p− 1

)1/p

‖T‖1/p
L1→L1,∞‖T‖1−1/p

L∞→L∞ . (9)

1
q

1
p1

2

1

10

W1

W0 = S0

S

Fig. 3. Little Marcinkiewicz interpolation theorem:
W0 = S0 = (0, 0), W1 = (1, 1), S = ( 1

p
, 1
p
)

A natural question appears, namely if the reverse theorem is true, but there are linear
and sublinear bounded operators in Lp for all 1 < p ≤ ∞, which are not of weak type
(1, 1). For example, such an operator is the two- or more-dimensional strong maximal
operator (averaging and supremum are taken over rectangles) as sublinear operator, and
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as a linear operator we can take arbitrary linear operator majorized by this sublinear
operator. In connection to the Marcinkiewicz interpolation theorem we formulate several
remarks:

1. Marcinkiewicz was probably the first who used the word “interpolation of operators”.
Riesz and Thorin spoke on “convexity theorems” (see also Peetre [Pe02], p. 39 and Horvath
[Ho09], p. 618). Marcinkiewicz’s proof is based on an idea of decomposition of a function
which generates later on the concept of the K-functional playing a central role in modern
interpolation theory.

2. It is not true, as some authors write, that Marcinkiewicz obtained in his short paper
the result only in the diagonal case. Marcinkiewicz had the theorem in the general case
and equations (5) were written by formulas p0 < p < p1 and q−q0

q1−q = q0p1
p0q1

· p−p0
p1−p . Moreover,

Marcinkiewicz’s second theorem was formulated even for Orlicz spaces (in this case it was
indeed the diagonal case): if a linear or sublinear operator is bounded T : Lp0 → Lp0 and
T : Lp1 → Lp1 , and a function ϕ : [0,∞) → [0,∞) is continuous, increasing, vanishing at
zero and satisfying three conditions ϕ(2u) = O(ϕ(u)),

∫ u

1
t−p0−1ϕ(t) dt = O(u−p0ϕ(u))

and
∫∞

u
tp1−1ϕ(t) dt = O(u−p1ϕ(u)) as u → ∞, then for f such that ϕ(|f |) ∈ L1[0, 1]

we obtain
∫ 1

0
ϕ(|Tf(x)|) dx ≤ C

∫ 1

0
ϕ(|f(x)|) dx + C, where C is independent of f (see

Zygmund [Zy56], Theorem 2 and [Zy59], XII. Theorem 4.22).
3. Marcinkiewicz’s interpolation theorem was proved even for pointwise quasi-additive

operators, that is, if there exists a constant γ ≥ 1 such that for any measurable functions
f, g we have the following inequality µ-almost everywhere on Ω:

|T (f + g)(x)| ≤ γ
(
|Tf(x)|+ |Tg(x)|

)
.

4. Marcinkiewicz’s interpolation theorem is true, if p ≤ q and q0 6= q1, that is, one
point can be in the upper triangle but the point S must appear in the lower triangle.
Proof of this theorem was given by: Calderón (1963), Lions–Peetre (1964), O’Neil (1964),
Hunt (1964) and Krée (1967). Berenstein–Cotlar–Kerzman–Krée (1967) proved that if
for the segment W0W1 Marcinkiewicz’s interpolation theorem is true, then it is also true
for another segment obtained from the rotation of W0W1 around the point S (except
horizontal and vertical segments).

5. Marcinkiewicz’s interpolation theorem is NOT true in the upper triangle, that is,
if p0 > q0 and p1 > q1. A counter-example is due to Hunt (1964). He also observed that
Theorem 1 is true in the extended range 0 < p0, p1, q0, q1 ≤ ∞ provided p ≤ q and q0 6= q1
(cf. Hunt [Hu64], p. 807).

6. E. Stein and G. Weiss (1959) generalized the Marcinkiewicz interpolation theorem
replacing the spaces Lpi in the domain of an operator by the smaller Lorentz spaces Lpi,1,
i = 0, 1 (in fact, they have in the assumption of the Marcinkiewicz theorem only estimates
for characteristic functions of measurable sets). Hence, if pi ≤ qi, pi 6= ∞, i = 0, 1 and
q0 6= q1, then the boundedness of T : Lp0,1 → Lq0,∞ and T : Lp1,1 → Lq1,∞ implies the
boundedness of T : Lp → Lq.

7. Using reiteration theorems for the real method of interpolation we are getting a
generalized Marcinkiewicz interpolation theorem: Suppose 1 ≤ p0, p1 <∞, 1 ≤ q0, q1 ≤ ∞
with q0 6= q1. If a quasi-linear operator T : Lp0,1 → Lq0,∞ and T : Lp1,1 → Lq1,∞ is
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bounded, then T : Lp,r → Lq,r is bounded for any 1 ≤ r ≤ ∞. In particular, T : Lp → Lq,p

is bounded.
If we have, as in Marcinkiewicz’s interpolation theorem, p0 ≤ q0 and p1 ≤ q1, then

Lq,p ↪→ Lq.
8. A very important progression to a generalization of the Marcinkiewicz interpolation

theorem was done by Calderón (1966), who found the maximal operator in the sense that
if an operator T : Lp0,1 → Lq0,∞ and T : Lp1,1 → Lq1,∞ is bounded, then (Tf)∗(t) ≤
CSσ(f∗)(t) for all t > 0, where Sσ is the maximal Calderón operator:

Sσf(t) =
∫ ∞

0

f(s) min
{s1/p0

t1/q0
,
s1/p1

t1/q1

} ds

s

= t−1/q0

∫ tm

0

s1/p0−1f(s) ds+ t−1/q1

∫ ∞

tm

s1/p1−1f(s) ds,

with m = (1/q0 − 1/q1)/(1/p0 − 1/p1). To get the Marcinkiewicz interpolation theorem
it is enough to investigate boundedness of the last two operators of Hardy type.

9. Marcinkiewicz’s interpolation theorem was proved for symmetric spaces by Boyd
(1967 ⇒, 1969 ⇔): if 1 ≤ p0 < p1 <∞, E is a symmetric space with the Fatou property
of the norm on either I = [0, 1] or I = [0,∞) and every linear operator T : Lp0,1 → Lp0,∞

and T : Lp1,1 → Lp1,∞ is bounded, then it yields that T : E → E is bounded if and only
if 1/p1 < αE ≤ βE < 1/p0, where numbers αE , βE are so-called Boyd indices of the space
E defined by

αE = lim
a→0+

ln ‖σa‖E→E

ln a
, βE = lim

a→∞

ln ‖σa‖E→E

ln a
and σaf(x) = f(x/a)χI(x/a). Krein–Petunin–Semenov (1977) proved that Boyd’s the-
orem is true for arbitrary symmetric spaces (even without the Fatou property of the
norm). In particular, E is an interpolation space between Lp0 and Lp1 . If p1 = ∞, a
one-sided estimate for a symmetric space E, βE < 1/p0, 1 ≤ p0 < ∞, implies that E is
an interpolation space between Lp0 and L∞ (see Maligranda [Mal81], Theorem 4.6, where
it is proved even for Lipschitz operators). Moreover, Astashkin and Maligranda [AM04]
proved the following one-sided Boyd theorem: if a symmetric space E either has the Fatou
property or is separable and αE > 1/p1, 1 < p1 < ∞, then E is an interpolation space
between L1 and Lp1 .

10. Marcinkiewicz’s interpolation theorem is not true for bilinear operators without
additional assumptions. In fact, Strichartz (1969) proved the following: the operator

S(f, g)(x) =
∫ ∞

0

f(xt)g(t) dt

is bounded S : L1 × L∞ → L1,∞ and S : L2 × L2 → L2,∞, but it is not bounded
S : Lp × Lp′ → Lp, and Maligranda (1989) proved that the operator

T (f, g)(x) =
∫ 1

0

∫ 1

0

f(s)g(t) min
( 1
st
,
1
x

)
ds dt

is bounded T : L1 × L1 → L1,∞ and T : L2 × L2 → L2,∞, but it is not bounded
T : Lp × Lp → Lp for 1 < p ≤ 2.
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J.-L. Lions and J. Peetre (1964) proved that for the real method of interpolation
we have the following interpolation theorem for bilinear operators: if a bilinear operator
T : Lp0 ×Lq0 → Lr0,∞ and T : Lp1 ×Lq1 → Lr1,∞ is bounded, then T : Lp ×Lq → Lr is
bounded, if besides the natural interpolation equality(1

p
,
1
q
,
1
r

)
= (1− θ)

( 1
p0
,

1
q0
,

1
r0

)
+ θ

( 1
p1
,

1
q1
,

1
r1

)
we have also 1/r ≤ 1/p+ 1/q − 1. More theorems of this type can be found in papers by
Sharpley (1977), Zafran (1978), Janson (1988) and Grafakos–Kalton (2001).

11. Marcinkiewicz’s interpolation theorem for spaces of sequences (and some of its
analogues) was given by Sargent in 1961.

12. In 1972 Yoram Sagher (cf. [Sa72], p. 172 and [Sag72], p. 240) introduced the notion
of a Marcinkiewicz quasi-cone. If (A0, A1) is a pair of quasi-normed spaces, then a subset
Q of A0 +A1 is called a quasi-cone if Q+Q ⊂ Q. Q is a cone if we also have λQ ⊂ Q for
all λ > 0. A quasi-cone Q is called a Marcinkiewicz quasi-cone in (A0, A1) if

(A0 ∩Q,A1 ∩Q)θ,p = (A0, A1)θ,p ∩Q for all 0 < θ < 1, 0 < p ≤ ∞,

where (·, ·)θ,p means the real K-method of interpolation of Lions-Peetre. For example,
Q = {(xk)∞k=1 : xk ↓ 0} is a Marcinkiewicz quasi-cone in (lp, l∞).

13. In 1978 Dmitriev and Krein [DK78] extended Marcinkiewicz interpolation theorem
to operators mapping couple of Banach spaces (A0, A1) into couple of Marcinkiewicz
spaces (M∗

ϕ0
,M∗

ϕ1
).

Marcinkiewicz’s interpolation theorem is cited in several classical books on analysis,
harmonic analysis and interpolation theory as, for example, in the following 55 books (in
chronological order):

[Co59] M. Cotlar, Condiciones de Continuidad de Operadores Potenciales y de Hilbert, Cur-
sos y Seminarios de Matemática, Fasc. 2, Universidad Nacional de Buenos Aires,
Buenos Aires 1959.

[Zy59] A. Zygmund, Trigonometric series, Vol. I, II, Cambridge Univ. Press, Cambridge,
1959 [XII.4. Marcinkiewicz’s theorem on the interpolation of operators, pp. 111–120];
Russian transl., Mir, Moscow 1965.

[DS63] N. Dunford, J. T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint
Operators in Hilbert Space, John Wiley & Sons, New York–London 1963 [important
interpolation theorem of Marcinkiewicz, pp. 1166–1168].

[KZPS66] M. A. Krasnosel’skĭı, P. P. Zabrĕıko, E. I. Pustyl’nik, P. E. Sobolevskĭı, Integral
Operators in Spaces of Summable Functions, Nauka, Moscow 1966 (Russian) [2.7. The
Marcinkiewicz interpolation theorem, pp. 47–55]; English transl.: Noordhoff, Leiden,
1976 [2.7. The Marcinkiewicz interpolation theorem, pp. 39–47].

[St70a] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Prince-
ton Math. Ser. 30, Princeton Univ. Press, Princeton NJ, 1970. [I.4. An interpolation
for Lp; in the text: the Marcinkiewicz interpolation theorem, pp. 20–22; Appendix
B: Marcinkiewicz interpolation theorem].

[St70b] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood–Paley Theory,
Ann. Math. Studies 63, Princeton Univ. Press, Princeton NJ, 1970. [Marcinkiewicz
interpolation theorem, pp. 92–93].
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[Ok71] G. O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in Lp-Spaces,
Academic Press, London–New York 1971 [5.2. Distribution functions and the Mar-
cinkiewicz–Zygmund interpolation theorem, pp. 234–245].

[SW71] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Prince-
ton Math. Ser. 32, Princeton Univ. Press, Princeton, 1971. [V.2. Marcinkiewicz in-
terpolation theorem, pp. 183–200].

[CC74] M. Cotlar, R. Cignoli, An Introduction to Functional Analysis, North-Holland, Ams-
terdam–London and American Elsevier, New York, 1974 [3.1.3. Interpolation theorem
of Marcinkiewicz for weak type (p, p), pp. 387–388; 3.1.4. Interpolation theorem of
Marcinkiewicz–Zygmund, pp. 388–389].

[RS75] M. Reed, B. Simon, Methods of Modern Mathematical Physics, II. Fourier Analysis,
Self-Adjointness, Academic Press, New York–London 1975 [IX.18. Marcinkiewicz in-
terpolation theorem].

[BL76] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin–New
York 1976 [1.3. The Marcinkiewicz theorem, pp. 6–11; 1.4. An application of the
Marcinkiewicz theorem, pp. 11–12]; Russian transl.: Mir, Moscow 1980.

[EG77] R. E. Edwards, G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergeb. Math.
Grenzgeb. 90, Springer, Berlin, 1977. [A.2. Marcinkiewicz interpolation theorems, pp.
179–183].

[KJF77] A. Kufner, O. John, S. Fučik, Function Spaces, Academia, Prague 1977 [Marcinkie-
wicz’s theorem, p. 106].

[BIN78] O. V. Besov, V. P. Il’in, S. M. Nikol’skĭı, Integral Representations of Functions and
Imbedding Theorems, Vol. I, Nauka, Moscow, 1975, 2nd ed. 1996 (in Russian); English
transl.: Wiley, New York, 1978 [3.2. Marcinkiewicz’s theorem, pp. 50–53].

[Tr78] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-
Holland Math. Library 18, North-Holland, Amsterdam–New York, 1978 [Theorem 3,
pp. 136–137]; Russian transl. Mir, Moscow, 1980 [Theorem 3, pp. 159–161].

[Sa79] C. Sadosky, Interpolation of Operators and Singular Integrals. An Introduction to
Harmonic Analysis, Monographs and Textbooks in Pure and Applied Math. 53, Mar-
cel Dekker, New York 1979 [4.4. The Marcinkiewicz interpolation theorem: diagonal
case, pp. 169–179; 4.5. The Marcinkiewicz interpolation theorem: general case, pp.
179–190].

[LT79] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer,
Berlin–New York, 1979 [Theorem 2.b15 (The Marcinkiewicz interpolation theorem),
pp. 149–150].

[Ru80] W. Rudin, Function Theory in the Unit Ball of Cn, Grundlehren Math. Wiss. 241,
Springer, New York–Berlin, 1980 [5.7. Appendix: Marcinkiewicz interpolation, pp.
88–90].

[Gu81] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math.
Stud. 46, North-Holland, Amsterdam–New York 1981 [3.4.B. The Marcinkiewicz the-
orem, p. 55].

[NP81] C. Niculescu, N. Popa, Elements of the Theory of Banach Spaces, Editura Acad.
Rep. Soc. Romania, Bucharest, 1981 (Romanian) [2.8.2. Marcinkiewicz interpolation
theorem].

[Ed82] R. E. Edwards, Fourier Series. Vol. 2. A Modern Introduction, 2nd ed., Grad. Texts
in Math. 85, Springer, New York–Berlin, 1982 [13.8. Marcinkiewicz interpolation
theorem].
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[JM82] O. G. Jørsboe, L. Mejlbro, The Carleson–Hunt Theorem on Fourier Series, Lecture
Notes in Math. 911, Springer, Berlin–New York 1982 [Theorem 1.9 – theorem due to
Marcinkiewicz, pp. 8–10].

[KPS82] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of Linear Operators, Nauka,
Moscow, 1978 (Russian); English transl.: Transl. Math. Monogr. 54, Amer. Math.
Soc., Providence, 1982 [Theorem 6.1 and 6.1′ are extensions of Marcinkiewicz’ theo-
rem, pp. 129–130, 132–133 and 350].

[KS84] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (Russian)
[Appendix 1.2. Marcinkiewicz interpolation theorem, pp. 442–443]; English transl.:
Transl. Math. Monogr. 75 Amer. Math. Soc., Providence, 1989 [Appendix 2.1. Mar-
cinkiewicz interpolation theorem, pp. 390–392]; second Russian edition, 1999.

[GR85] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985
[2.11. Marcinkiewicz interpolation theorem, pp. 148–150].

[To86] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123,
Academic Press, Orlando, 1986 [IV.4. The Marcinkiewicz interpolation theorem, pp.
86–91].

[BS88] C. Bennett, R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
Press, Boston, 1988 [4.4. The Marcinkiewicz interpolation theorem, pp. 216–230].

[Bu89] V. I. Burenkov, Functional Spaces. Basic Integral Inequalities Connected with Lp-
Spaces, Univ. Druzhby Narodov, Moscow 1989 (Russian) [Part 5.3. Marcinkiewicz
theorem, pp. 78–86].

[Zi89] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts Math. 120, Springer,
New York, 1989 [4.7.1. Marcinkiewicz interpolation theorem, p. 199].

[BK91] Yu. A. Brudny̆ı, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I,
North-Holland, Amsterdam, 1991 [1.10. The Marcinkiewicz theorem, pp. 66–83].

[RR91] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York, 1991 [Mar-
cinkiewicz’s interpolation theorem for certainOrlicz spaces, Theorem 13, pp. 247–252].

[Me92] Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge
Univ. Press, Cambridge, 1992. [Marcinkiewicz’s theorem, p. 166].

[So93] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts Math. 105,
Cambridge Univ. Press, Cambridge, 1993 [Marcinkiewicz interpolation theorem, pp.
12–14].

[Str93] D. W. Stroock, Probability Theory. An Analytic View, Cambridge Univ. Press, Cam-
bridge, 1993 [6.2.19. Marcinkiewicz theorem, pp. 325–326].

[Ba95] R. F. Bass, Probabilistic Techniques in Analysis, Probab. Appl., Springer, New York,
1995. [Marcinkiewicz interpolation theorem, pp. 31–32 and 304–305].

[Wo97] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Math. Soc. Stu-
dent Texts 37, Cambridge Univ. Press, Cambridge, 1997. [6.7. Marcinkiewicz inter-
polation theorem, pp. 145–146]; Polish transl.: Teoria falek, PWN, Warszawa, 2000
[7.7. Marcinkiewicz theorem, pp. 143–144].

[CW98] Y.-Z. Chen, L.-C. Wu, Second Order Elliptic Equations and Elliptic Systems, Transl.
Math. Monogr. 17, Amer. Math. Soc., Providence, 1998 [3.1. The Marcinkiewicz
interpolation theorem, pp. 37–39].

[Ko98] P. Koosis, Introduction to Hp Spaces, Cambridge Tracts Math. 115, Cambridge Univ.
Press, Cambridge, 1998 [2. Proof of M. Riesz’ theorem by Marcinkiewicz interpola-
tion, p. 94].
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[Fo99] G. B. Folland, Real Analysis. Modern Techniques and their Applications, 2nd ed.,
John Wiley & Sons, New York, 1999 [Theorem 6.28. The Marcinkiewicz interpolation
theorem, pp. 203–208].

[St00] V. D. Stepanov, Some Topics in the Theory of Integral Convolution Operators (Rus-
sian), Dal’nauka, Vladivostok, 2000 [Marcinkiewicz theorem, pp. 92–93].

[Du01] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math. 29, Amer. Math. Soc., Prov-
idence, 2001 [2.3. The Marcinkiewicz interpolation theorem, pp. 28–30].

[GT01] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer, Berlin, 2001 [9.3. The Marcinkiewicz interpolation theorem, pp. 227–230].

[Ar02] J. Arias de Reyna, Pointwise Convergence of Fourier Series, Lecture Notes in Math.
1785, Springer, Berlin, 2002 [11.4. The Marcinkiewicz interpolation theorem, pp.
134–137].

[Di02] E. DiBenedetto, Real Analysis, Birkhäuser, Boston, 2002 [VIII.9. The Marcinkiewicz
interpolation theorem, pp. 390–394].

[Ni02] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 1. Hardy,
Hankel, and Toeplitz, Amer. Math. Soc., Providence, 2002 [Marcinkiewicz interpola-
tion theorem, pp. 121–122].

[Pi02] M. A. Pinsky, Introduction to Fourier Analysis and Wavelets, Brooks/Cole, Pacific
Grove, 2002 [3.6. The Marcinkiewicz interpolation theorem, pp. 206–208]; reprint
Amer. Math. Soc., Providence, 2009.

[AF03] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, 2nd ed., Academic Press, New York,
2003 [2.58. The Marcinkiewicz interpolation theorem, pp. 55–58].

[Ka03] S. Kantorovitz, Introduction to Modern Analysis, Oxf. Grad. Texts Math. 8, Oxford
Univ. Press, Oxford, 2003 [5.8. Operators between Lebesgue spaces: Marcinkiewicz’s
interpolation theorem, pp. 145–150].

[Pa04] M. Pavlović, Introduction to Function Spaces on the Disk, Matematički Institut
SANU, Belgrade, 2004 [2.2. Weak Lp-spaces and Marcinkiewicz’s theorem, pp. 22–
25].

[Kn05] A. W. Knapp, Basic Real Analysis, Birkhäuser, Boston, 2005 [IX.6. Marcinkiewicz
interpolation theorem, pp. 427–436].

[Ta06] M. E. Taylor, Measure Theory and Integration, Grad. Stud. Math. 76, Amer. Math.
Soc., Providence, 2006 [Appendix D. The Marcinkiewicz interpolation theorem, pp.
283–285].

[Ga07] D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge Univ.
Press, Cambridge, 2007 [10.1. The Marcinkiewicz interpolation theorem: I, pp. 154–
156; 10.5. The Marcinkiewicz interpolation theorem: II, pp. 162–165].
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A very long list of publications is devoted to all possible variants and generalizations
of Marcinkiewicz’s interpolation theorem, whose part is as follows:
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[Sag72] Y. Sagher, Some remarks on interpolation of operators and Fourier coefficients,
Studia Math. 44 (1972), 239–252.

[Sa61] W. L. C. Sargent, Some analogues and extensions of Marcinkiewicz’s interpolation
theorem, Proc. London Math. Soc. (3) 11 (1961), 457–468.

[Sh77] R. Sharpley, Multilinear weak type interpolation of mn-tuples with applications, Stu-
dia Math. 60 (1977), 179–194.

[SW59] E. M. Stein, G. Weiss, An extension of a theorem of Marcinkiewicz and some of its
applications, J. Math. Mech. 8 (1959), 263–284.

[Str69] R. S. Strichartz, A multilinear version of the Marcinkiewicz interpolation theorem,
Proc. Amer. Math. Soc. 21 (1969), 441–444.

[To76] A. Torchinsky, Interpolation of operations and Orlicz classes, Studia Math. 59
(1976), 177–207.

[Za78] M. Zafran, A multilinear interpolation theorem, Studia Math. 62 (1978), 107–124.
[Zy56] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operations,

J. Math. Pures Appl. (9) 35 (1956), 223–248.

4.1.2. Marcinkiewicz function and sequence spaces (1939). Marcinkiewicz’s investiga-
tions led him to consider three types of spaces: two symmetric spaces and one space of
another type, which will be considered in the next part. All are called now Marcinkiewicz
spaces. Earlier we discussed about the weak-Lp space Lp,∞ (1 ≤ p <∞) or Marcinkiewicz
space given by one of quasi-norms:

‖f‖p,∞ = sup
t>0

t1/pf∗(t) = sup
λ>0

λµ({x ∈ Ω : |f(x)| > λ})1/p.

The above type of space can be easily generalized. Let I = (0, 1) or I = (0,∞) and let
ϕ : I ∪ {0} → [0,∞) be an arbitrary concave function on I such that ϕ(0) = 0 (it is also
possible to take as ϕ only quasi-concave function, that is, a function for which inequality
ϕ(s) ≤ max(1, s/t)ϕ(t) is true for all s, t ∈ I). The Marcinkiewicz function space M∗

ϕ on I
contains classes of all measurable functions generated by the quasi-norm

‖f‖∗ϕ = sup
t∈I

ϕ(t) f∗(t) <∞,

where f∗ denotes the decreasing rearrangement of |f |.
Important is also another (smaller) Marcinkiewicz function space Mϕ on I generated

by the norm

‖f‖ϕ = sup
t∈I

ϕ(t) f∗∗(t), where f∗∗(t) =
1
t

∫ t

0

f∗(s) ds.

In the case when ϕ(t) = t1/p, 1 < p <∞ we have M∗
ϕ = Mϕ = Lp,∞, but for ϕ(t) = t we

get M∗
ϕ = L1,∞ (weak-L1 space is a quasi-Banach space but not a Banach space, since

the triangle inequality holds with constant 2 and Mϕ = L1).
Of course, Mϕ ⊂ M∗

ϕ and ‖f‖∗ϕ ≤ ‖f‖ϕ for f ∈ Mϕ. The Marcinkiewicz function
space Mϕ on I is a symmetric Banach space and for an arbitrary symmetric space X
on I with the fundamental function ϕ(t) := ‖χ(0,t)‖X , Mϕ is the largest symmetric space
containing X with the same fundamental function, i.e, ‖χ(0,t)‖X = ‖χ(0,t)‖Mϕ

= ϕ(t) for
any t ∈ I. This follows from the fact that

∫ t

0
f∗(s) ds ≤ t

ϕ(t)‖f
∗χ(0,t)‖X for f ∈ X.

Let us recall that a symmetric space X on I is an ideal Banach space on I (the

http://dx.doi.org/10.1090/S0002-9939-1969-0238070-9
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assumption |f(t)| ≤ |g(t)| almost everywhere on I, g ∈ X and f is measurable on I

implies that f ∈ X and ‖f‖X ≤ ‖g‖X) with the additional property that two arbitrary
equimeasurable functions f and g, i.e. satisfying m({x ∈ I : |f(x)| > λ}) = m({x ∈
I : |g(x)| > λ}) for any λ > 0, with f ∈ X and g measurable on I gives g ∈ X and
‖f‖X = ‖g‖X . In particular, ‖f‖X = ‖f∗‖X .

Note that when we investigate the Marcinkiewicz spaces Lp,∞ or operators with values
in this space, then important is the so-called Kolmogorov–Cotlar equivalence (cf. García-
Cuerva and Rubio de Francia [GR85], pp. 485–486): if 0 < q < p < ∞ and f ∈ Lp,∞,
then

‖f‖p,∞ ≈ sup
A⊂I,0<µ(A)<∞

µ(A)1/p−1/q
(∫

A

|f(x)|q dµ
)1/q

. (10)

Marcinkiewicz sequence spaces m∗
ϕ and mϕ are defined analogously by quasi-norms and

norms

‖x‖∗ϕ = sup
n∈N

ϕ(n)x∗n <∞, ‖x‖ϕ = sup
n∈N

ϕ(n)
1
n

n∑
k=1

x∗k ,

where ϕ : N → [0,∞) satisfies ϕ(k) ≤ max(1, k/n)ϕ(n) for any k, n ∈ N and (xn
∗) is a

rearrangement of the sequence (|xn|) in decreasing order. These spaces are also symmetric
sequence spaces.

Marcinkiewicz function and sequence spaces (symmetric) are now classical spaces and
are still investigated (some examples are given below). They also appear naturally in the
interpolation theory.

Marcinkiewicz symmetric spaces, as examples or objects of investigation of their struc-
ture, can be found e.g. in the following 5 monographs:

[KJF77] A. Kufner, O. John, S. Fučik, Function Spaces, Academia, Prague 1977 [4.2. Marcin-
kiewicz spaces and their connection with the spaces Lwp (Ω), pp. 209–212].

[PP80] Ju. I. Petunin, A. N. Plichko, The Theory of the Characteristics of Subspaces and its
Applications, Vishcha Shkola, Kiev, 1980 (Russian) [Marcinkiewicz spaces Mψ and
M0
ψ, pp. 101–103 and 111–112].

[KPS82] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of Linear Operators, Nauka,
Moscow, 1978 (Russian); English transl.: Transl. Math. Monogr. 54, Amer. Math.
Soc., Providence, 1982 [II.5, p. 107: Lorentz and Marcinkiewicz spaces; Marcinkiewicz
spaces, pp. 112–118; II.6.2. Operators from Lorentz spaces to Marcinkiewicz spaces,
pp. 127–130].

[AZ90] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Tracts Math.
95, Cambridge Univ. Press, Cambridge, 1990 [5.2. Lorentz and Marcinkiewicz spaces].

[BK91] Yu. A. Brudny̆ı, N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces I,
North-Holland, Amsterdam, 1991 [The Marcinkiewicz space M(ϕ), p. 472].

The name Marcinkiewicz space appeared also in Encyclopaedia of Mathematics:

[Kr90] S. G. Krĕın, Marcinkiewicz space, in: Encyclopaedia of Mathematics, Vol. 6, Kluwer,
Dordrecht, 1990, 93–94.

Papers having word Marcinkiewicz space in the title are for instance:

[AK08] M. D. Acosta, A. Kamińska, Norm-attaining operators between Marcinkiewicz and
Lorentz spaces, Bull. Lond. Math. Soc. 40 (2008), 581–592.

http://dx.doi.org/10.1112/blms/bdn030
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[AS92] J. Appell, E. M. Semenov, On the equivalence of the Lorentz and Marcinkiewicz norm
on subsets of measurable functions, J. Funct. Anal. 104 (1992), 47–53.

[AS95] J. Appell, E. M. Semenov, On the truncation of functions in Lorentz and Marcinkiewicz
spaces, Rocky Mountain J. Math. 25 (1995), 857–866.

[As07] S. V. Astashkin, On the normability of Marcinkiewicz classes, Mat. Zametki 81 (2007),
483–489; English transl.: Math. Notes 81 (2007), 429–434.

[AL06] S. V. Astashkin, K. V. Lykov, Extrapolation description of Lorentz and Marcinkiewicz
spaces “close” to L∞, Sibirsk. Mat. Zh. 47 (2006), 974–992; English transl.: Siberian
Math. J. 47 (2006), 797–812.

[AS07] S. V. Astashkin, F. A. Sukochev, Banach–Saks property in Marcinkiewicz spaces, J.
Math. Anal. Appl. 336 (2007), 1231–1258.

[BL10] C. Boyd, S. Lassalle, Geometry and analytic boundaries of Marcinkiewicz sequence
spaces, Q. J. Math. 61 (2010), 183–197.

[CN85] M. Cwikel, P. Nilsson, Interpolation of Marcinkiewicz spaces, Math. Scand. 56 (1985),
29–42.

[KK05] N. J. Kalton, A. Kamińska, Type and order convexity of Marcinkiewicz and Lorentz
spaces and applications, Glasg. Math. J. 47 (2005), 123–137.

[KL04] A. Kamińska, H. J. Lee, M-ideal properties in Marcinkiewicz spaces, Comment. Math.
Prace Mat. 2004, Tomus specialis in Honorem Juliani Musielak, 123–144.

[KLL09] A. Kamińska, H. J. Lee, G. Lewicki, Extreme and smooth points in Lorentz and Marcin-
kiewicz spaces with applications to contractive projections, Rocky Mountain J. Math.
39 (2009), 1533–1572.

[KP08] A. Kamińska, A. M. Parrish, Convexity and concavity constants in Lorentz and Mar-
cinkiewicz spaces, J. Math. Anal. Appl. 343 (2008), 337–351.

[KP10] A. Kamińska, A. M. Parrish, Note on extreme points in Marcinkiewicz function spaces,
Banach J. Math. Anal. 4 (2010), 1–12.

[Lo75] G. Ja. Lozanovskĭı, Coordinate Marcinkiewicz spaces, Optimizacija 17 (34) (1975),
130–142 (Russian).

[Lo78] G. Ja. Lozanovskĭı, The representation of linear functionals in Marcinkiewicz spaces,
Izv. Vyssh. Uchebn. Zaved. Mat. 1978, no. 1 (188), 43–53 (Russian).

[Me75] A. A. Mekler, The Hardy–Littlewood property in Marcinkiewicz spaces, Izv. Vyssh.
Uchebn. Zaved. Mat. 1975, no. 3 (154), 104–106 (Russian).

[Mi78] M. Milman, Embeddings of Lorentz–Marcinkiewicz spaces with mixed norms, Anal.
Math. 4 (1978), 215–223.

[Pu01] E. Pustylnik, On some properties of generalized Marcinkiewicz spaces, Studia Math.
144 (2001), 227–243.

[Se09] A. A. Sedaev, Singular symmetric functionals and stabilizing subsets of the Marcin-
kiewicz space, Izv. Vyssh. Uchebn. Zaved. Mat. 2009, no. 12, 90–94; English transl.:
Russian Math. (Iz. VUZ) 53 (2009), no. 12, 77–80.

[To78] E. V. Tokarev, Quotient spaces of Marcinkiewicz spaces, Sibirsk. Mat. Zh. 19 (1978),
704–707; English transl.: Siberian Math. J. 19 (1978), 498–500.

[To84] E. V. Tokarev, Quotient spaces of Banach lattices and Marcinkiewicz spaces, Sibirsk.
Mat. Zh. 25 (1984), 205–212; English transl.: Siberian Math. J. 25 (1984), 332–338.

4.1.3. Marcinkiewicz Mp(R) spaces (1939). The third type of Marcinkiewicz function
spaces (sometimes also called Besicovitch–Marcinkiewicz spaces) consists of functions
defined on R satisfying certain condition, more precisely, if 1 ≤ p <∞, then the Marcin-

http://dx.doi.org/10.1016/0022-1236(92)90089-2
http://dx.doi.org/10.1216/rmjm/1181072192
http://dx.doi.org/10.1134/S0001434607030182
http://dx.doi.org/10.1007/s11202-006-0090-x
http://dx.doi.org/10.1016/j.jmaa.2007.03.040
http://dx.doi.org/10.1093/qmath/han037
http://dx.doi.org/10.1017/S0017089504002204
http://dx.doi.org/10.1216/RMJ-2009-39-5-1533
http://dx.doi.org/10.1016/j.jmaa.2008.01.034
http://dx.doi.org/10.1007/BF01908990
http://dx.doi.org/10.4064/sm144-3-3
http://dx.doi.org/10.1007/BF01875305
http://dx.doi.org/10.1007/BF00971471
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kiewicz spaceMp = Mp(R) contains all measurable real (or complex) functions f : R → R
(or C) locally p-integrable on R and such that the semi-norm

‖f‖Mp = lim sup
T→∞

( 1
2T

∫ T

−T

|f(t)|p dt
)1/p

<∞. (11)

The closure in the semi-norm ‖·‖Mp of the set of trigonometric polynomials
∑
ake

iλkt

is the Besicovitch space of almost periodic functions (Bp a.p.). Marcinkiewicz himself was
calling this space the Besicovitch space and he proved the completeness of this space in
the paper [M39b].

Theorem 2 (Marcinkiewicz 1939). The space Mp(R) with semi-norm (11) is complete.

Marcinkiewicz and Orlicz were trying to prove completeness in Lwów, when Marcin-
kiewicz was there in the academic year 1935/1936, but they were not able to do it. Two
years later, on 24 November 1938, Marcinkiewicz wrote in a letter from Paris to Orlicz
the proof of completeness:

Dear Colleague, Sir!

I don’t know if You remember that at the time of my stay in Lwów we were
trying to investigate spaces, let say Hp, where the metric is defined as

(−) lim
T→∞

{ 1
2T

∫ T

−T

|f(x)|p dx
}1/p

or (∗) lim sup
T→∞

{ 1
2T

∫ T

−T

|f(x)|p dx
}1/p

.

You were saying at that time that you can prove some theorems if we have
completeness. I think that this is quite simple. I will do it in the case (∗).
(. . .) These spaces however will be different from spaces Lp, since they are
non-separable. Therefore results which we can get may be different from those
in Lp. I would like to work with you in their investigations, but unfortunately
I am doing several different small things taking time and I think you will not
have a great benefit from me.
In Paris I feel great. Local mathematicians are so-so, but there are many
foreigners and it is possible to have discussions about many things. Besides
it is a free time from classes and, finally, it is an interesting city in terms of
general culture. Best regards, signed by Marcinkiewicz.

Note here that completeness of the space where “lim sup” is replaced by “sup”, in the
terms of a new convergence, was given already in 1914 by the Italian mathematician
Pia Nalli (1886–1964). Marcinkiewicz gave a proof of completeness for (∗) in [M39b] (see
also Levitan [Le53], pp. 249–252), and other proofs were also found by Bohr and Følner
[BF45, pp. 54–57], Hartman and Wintner [HW47], Luxemburg and Zaanen [LZ63], and
Corduneanu [Co09].

Observe that if 1 ≤ p ≤ q <∞, then

L∞(R)
1
↪→Mq(R)

1
↪→Mp(R),

that is, L∞(R) ⊂ Mq(R) ⊂ Mp(R) and ‖f‖Mp ≤ ‖f‖Mq for any f ∈ Mq(R) and
‖f‖Mq ≤ ‖f‖L∞ for any f ∈ L∞(R).
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Photo 15. Paris, 24 Nov. 1938. The fascimile of J. Marcinkiewicz’s letter to W. Orlicz (p. 1)

Sometimes the nameMarcinkiewicz space is used on the quotient spaceMp = Mp(R),
i.e. the space Mp(R) modulo the kernel of ‖ · ‖Mp (that is, ‖ · ‖Mp = 0). This space is
then a Banach ideal space on R.

Lau (1980) investigated geometry of the ball and geometry of the Marcinkiewicz space.
He proved, among other things, the following theorem:
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The Marcinkiewicz space Mp(R) contains an isomorphic copy of l∞. There-
fore, Mp(R) is a non-separable and non-reflexive space.

The convolution operator was investigated by Bertrandias (1966), who proved that if
µ is a measure on R and f ∈Mp, then the convolution f∗µ ∈Mp and ‖f∗µ‖p ≤ ‖f‖p‖µ‖.
While Lau (1981) proved that if Mp

r = {f ∈Mp : limT→±∞
1
T

∫ T+1

T
|f(t)|p dt = 0}, then

for the measure µ the norm of the convolution operator on Mp
r is equal to the norm of

the convolution on Lp(R).
Note that there are generalizations of these spaces, the so-called Marcinkiewicz–

Orlicz spaces generated by modulars ρϕ(f) = lim supT→∞
1

2T

∫ T

−T
ϕ(|f(t)|) dt, where

ϕ : [0,∞) → [0,∞) are convex Orlicz functions. These spaces were developed by Al-
brycht (1956, 1959 and 1962), Wang (1959) and Hillmann (1986). In 1995 Kucher and
Plichko [KP95], [KPl95] investigated also the Marcinkiewicz-symmetric spaces ME de-
fined by semi-norms ‖f‖ME

= lim supT→∞ ‖fT ‖E , where fT (t) = f(tT ) and E is an
arbitrary symmetric Banach function space on [− 1

2 ,
1
2 ]. Moreover, Vo–Khac in [BCD87]

and Cohen–Losert in [CL06] defined generalized Marcinkiewicz spaces based upon arbi-
trary measure spaces and limits of averages over more general families of sets.

Harmonic analysis in Marcinkiewicz spaces was investigated in [Ur61], [Be66] and
[BCD87].

Marcinkiewicz spaces Mp(R) are considered in the following books and papers:

[Le53] B. M. Levitan, Almost-Periodic Functions, Gosudarstv. Izdat. Tehn.-Teor. Lit.,
Moscow, 1953 [5.10.1. Marcinkiewicz theorem, pp. 249–252].

[Ba84] J. Bass, Fonctions de corrélation, fonctions pseudo-aléatoires et applications, Masson,
Paris, 1984 [Marcinkiewicz space M2, pp. 33–35].

[Pa85] A. A. Pankov, Bounded and Almost Periodic Solutions of Nonlinear Operator-Differ-
ential Equations, Naukova Dumka, Kiev, 1985 [Marcinkiewicz, pp. 41, 179]; English
transl.: Kluwer, Dordrecht, 1990 [Marcinkiewicz, pp. 13, 43, 220].

[BCD87] J.-P. Bertrandias, J. Couot, J. Dhombres, M. Mendès France, Pham Phu Hien, Kh. Vo-
Khac, Espaces de Marcinkiewicz: corrélations, mesures, systèmes dynamiques, Masson,
Paris, 1987 [Marcinkiewicz spaces, pp. 2–3, 11, 13, 59, 78].

[Co09] C. Corduneanu, Almost Periodic Oscillations and Waves, Springer, New York, 2009
[Marcinkiewicz space, pp. 41–46].

[Al56] J. Albrycht, Some remarks on the Marcinkiewicz–Orlicz space, Bull. Acad. Polon. Sci.
Cl. III. 4 (1956), 1–3.

[Al59] J. Albrycht, Some remarks on the Marcinkiewicz–Orlicz space. II, III, Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1959), 11–12 and 55–56.

[Al62] J. Albrycht, The theory of Marcinkiewicz–Orlicz spaces, Dissertationes Math. Roz-
prawy Mat. 27 (1962), 1–56.

[AG05] F. Andreano, R. Grande, The Hilbert transform on Marcinkiewicz spaces, Afr. J. Math.
Phys. 2 (2005), no. 2, 111–118.

[ABG06] J. Andres, A. M. Bersani, R. F. Grande, Hierarchy of almost-periodic function spaces,
Rend. Mat. Appl. (7) 26 (2006), 121–188 [Marcinkiewicz spaces, pp. 153–154].

[Ba63] J. Bass, Espaces de Besicovitch, fonctions presque-périodiques, fonctions pseudo-aléa-
toires, Bull. Soc. Math. France 91 (1963), 39–61 [Marcinkiewicz theorem on complete-
ness of M2, p. 40].



170 L. MALIGRANDA

[Be65] V. E. Beneš, A nonlinear integral equation in the Marcinkiewicz space m2, J. Math.
and Phys. 44 (1965), 24–35.

[Be66] J.-P. Bertrandias, Espaces de fonctions bornées et continues en moyenne asymptotique
d’ordre p, Bull. Soc. Math. France Mém. 5 (1966) [Besicovitch–Marcinkiewicz space
Mp, pp. 12–51; Marcinkiewicz theorem on completeness, p. 12].

[BF45] H. Bohr, E. Følner, On some types of functional spaces. A contribution to the theory
of almost periodic functions, Acta Math. 76 (1945), 31–155.

[CL06] G. Cohen, V. Losert, On Hartman almost periodic functions, Studia Math. 173 (2006),
81–101. 83–85].

[HW47] P. Hartman, A. Wintner, The (L2)-space of relative measure, Proc. Nat. Acad. Sci.
U.S.A. 33 (1947), 128–132.

[He99] C. Heil, The Wiener transform on the Besicovitch spaces, Proc. Amer. Math. Soc. 127
(1999), 2065–2071.

[Hi86] T. R. Hillmann, Besicovitch–Orlicz spaces of almost periodic functions, in: Real and
Stochastic Analysis, Wiley, New York, 1986, 119–167.

[KP95] O. V. Kucher, A. M. Plichko, Limits on the real line of symmetric spaces on segments,
Ukraïn.Mat. Zh. 47 (1995), 46–55; English transl.: UkrainianMath. J. 47 (1995), 50–62.

[KPl95] O. V. Kucher, A. M. Plichko, The Wiener transformation on the limits of symmetric
spaces, Acta Univ. Carolin. Math. Phys. 36 (1995), no. 2, 39–52.

[La80] K.-S. Lau, On the Banach spaces of functions with bounded upper means, Pacific J.
Math. 91 (1980), 153–172.

[La81] K.-S. Lau, The class of convolution operators on the Marcinkiewicz spaces, Ann. Inst.
Fourier (Grenoble) 31 (1981), 225–243.

[La83] K.-S. Lau, Extension of Wiener’s Tauberian identity and multipliers on the Marcin-
kiewicz space, Trans. Amer. Math. Soc. 277 (1983), 489–506.

[LZ63] W. A. J. Luxemburg, A. C. Zaanen, Notes on Banach function spaces. I, Indag. Math.
25 (1963), 135–147.

[MV08] G. Muraz, J.-L. Verger-Gaugry, On densest packings of equal balls of Rn and Marcin-
kiewicz spaces, http://arxiv.org/abs/0812.1720

[Na14] P. Nalli, Sopra una nuova specie di convergenza in media, Rend. Circ. Mat. Palermo
(1) 38 (1914), 305–319, 320–323.

[Ne82] R. R. Nelson, Pointwise evaluation of Bochner integrals in Marcinkiewicz spaces,
Indag. Math. 44 (1982), 365–379.

[Sa71] U. Santarelli, Un modello astratto dello spazio di Besicovič–Marcinkiewicz, Boll. Un.
Mat. Ital. (4) 4 (1971), 907–911.

[Ur61] K. Urbanik, Fourier analysis in Marcinkiewicz spaces, Studia Math. 21 (1961), 93–102.
[VT77] M. Vidyasagar, M. A. L. Thathachar, A note on feedback stability and instability in

the Marcinkiewicz space M2, IEEE Trans. Circuits and Systems CAS-24 (1977), no. 3,
127–131.

[Wa59] S. Wang, A note on the Marcinkiewicz–Orlicz space, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astr. Phys. 7 (1959), 707–710.

4.1.4. Marcinkiewicz–Zygmund vector-valued inequalities (1939). Marcinkiewicz–Zyg-
mund vector-valued inequalities are estimates of operators between vector-valued spaces.

Theorem 3 (Marcinkiewicz–Zygmund 1939). For an arbitrary linear bounded operator
T : Lp → Lp between real or complex (quasi-)normed Lebesgue spaces we have vector-

http://dx.doi.org/{10.4064/sm173-1-6} [Generalized Marcinkiewicz spaces, pp
http://dx.doi.org/10.1073/pnas.33.5.128
http://dx.doi.org/10.1090/S0002-9939-99-04798-X
http://dx.doi.org/10.1007/BF01058795
http://arxiv.org/abs/0812.1720
http://dx.doi.org/10.1007/BF03015195
http://dx.doi.org/10.1007/BF03015196
http://dx.doi.org/10.1109/TCS.1977.1084317
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valued estimate with constant 1, that is,∥∥∥∥( n∑
k=1

|Tfk|2
)1/2

∥∥∥∥
p

≤ ‖T‖Lp→Lp

∥∥∥∥( n∑
k=1

|fk|2
)1/2

∥∥∥∥
p

(12)

and for 0 < p < r ≤ 2∥∥∥∥( n∑
k=1

|Tfk|r
)1/r

∥∥∥∥
p

≤ ‖T‖Lp→Lp

∥∥∥∥( n∑
k=1

|fk|r
)1/r

∥∥∥∥
p

(13)

for arbitrary f1, f2, . . . , fn ∈ Lp(µ) and any n ∈ N.

The estimates (12) and (13) were proved by Marcinkiewicz–Zygmund with the help
of Gaussian variables and r-stable Gaussian variables in paper [MZ39a, Thms 1 and 2].
These theorems together with their proof appeared in books by Edwards–Gaudry [EG77,
pp. 203–204], Grafakos [Gr08, pp. 316–318] and in a paper by Andersen [An80]. The
inequality (12) with the proof is also in the book by Nikolski [Ni02] and without proof in
the book by Beckenbach and Bellman [BB83, p. 39].

More general, for an arbitrary linear bounded operator T : Lp → Lp between real or
complex (quasi-)normed Lebesgue spaces with arbitrary σ-finite measures µ and ν, and
for 0 < p, q, r ≤ ∞ and natural n ≥ 2 let K(n)

p,q (r) be the smallest constant C ≥ 1 in the
inequality ∥∥∥∥( n∑

k=1

|Tfk|r
)1/r

∥∥∥∥
q

≤ C‖T‖Lp→Lq

∥∥∥∥( n∑
k=1

|fk|r
)1/r

∥∥∥∥
p

(14)

for arbitrary f1, f2, . . . , fn ∈ Lp(µ).
The properties of constants K(n)

p,q (r) and Kp,q(r) = supn≥2K
(n)
p,q (r) for 1 ≤ p, q, r ≤ ∞

were investigated by Marcinkiewicz and Zygmund (1939), Herz (1971), Krivine (1978,
1979), Defant and Floret (1993), Gasch and Maligranda (1994), Vogt (1995), Defant and
Junge (1997), Maligranda and Sabourova (2011).

The equalities Kp,p(2) = 1 and Kp,p(r) = 1, where 0 < p < r ≤ 2, are just results
of Marcinkiewicz–Zygmund. Note that K(n)

p,q (r) are increasing in n and p, but decreasing
in q. Moreover, if 0 < p ≤ q ≤ ∞, then Kp,q(2) = 1.

Using the equivalence (10) we can easily prove that if 0 < p, q <∞ and T : Lp → Lq,∞

is a bounded linear operator, then∥∥∥∥( n∑
k=1

|Tfk|2
)1/2

∥∥∥∥
q,∞

≤ C‖T‖Lp→Lq,∞

∥∥∥∥( n∑
k=1

|fk|2
)1/2

∥∥∥∥
p

for arbitrary f1, f2, . . . , fn ∈ Lp(µ) and any n ∈ N. Moreover, C ≤ K
(n)
p,r (2)( q

q−r )1/r for
any 0 < r < q.

Constants Kp,q(2) are connected with the relation between norm of the operator
T : Lp

R → Lq
R and the norm of its natural complexification between complex spaces

TC : Lp
C → Lq

C given by the formula TC(f+ ig) = T (f)+ i T (g) (cf. [Ve76], [Kr77], [DF93],
[Vo95] and [MS11]).

Among books on this topic the following ones should be mentioned:

[BB83] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, 1983 [Theorem 12 of Zyg-
mund and Marcinkiewicz, p. 30].
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[DF93] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North-Holland, Amsterdam,
1993 [Marcinkiewicz–Zygmund result, pp. 314, 315, 347].

[EG77] R. E. Edwards, G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergeb. Math.
Grenzgeb. 90, Springer, Berlin, 1977 [Marcinkiewicz–Zygmund theorem, pp. 203–204].

[GR85] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Top-
ics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985 [V.2. A
theorem of Marcinkiewicz and Zygmund, pp. 482–487].

[Ni02] N. K. Nikolski, Operators, Functions, and Systems: an Easy Reading, Vol. 1. Hardy,
Hankel, and Toeplitz, Amer. Math. Soc., Providence, 2002 [(k) Marcinkiewicz and Zyg-
mund (1939), p. 120].

[Gr08] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts Math. 249, Springer, New
York, 2008 [4.5.1. Marcinkiewicz–Zygmund theorem, pp. 316–319].

Papers discussing vector-valued Marcinkiewicz–Zygmund inequalities are:

[An80] K. F. Andersen, Inequalities for scalar-valued linear operators that extend to their vector-
valued analogues, J. Math. Anal. Appl. 77 (1980), 264–269.

[CS83] M. Cotlar, C. Sadosky, Vector valued inequalities of Marcinkiewicz–Zygmund and Gro-
thendieck type for Toeplitz forms, in: Harmonic Analysis (Cortona, 1982), Lecture Notes
in Math. 992, Springer, Berlin, 1983, 276–308.

[DJ97] A. Defant, M. Junge, Best constants and asymptotics of Marcinkiewicz–Zygmund in-
equalities, Studia Math. 125 (1997), 271–287.

[GM94] J. Gasch, L. Maligranda, On vector-valued inequalities of the Marcinkiewicz–Zygmund,
Herz and Krivine type, Math. Nachr. 167 (1994), 95–129.

[He71] C. Herz, The theory of p-spaces with an application to convolution operators, Trans.
Amer. Math. Soc. 154 (1971), 69–82.

[Kr77] J.-L. Krivine, Sur la complexification des opérateurs de L∞ dans L1, C. R. Acad. Sci.
Paris Sér. A–B 284 (1977), A377–A379.

[Kr78] J.-L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères,
in: Séminaire sur la géométrie des espaces de Banach (1977–1978), École Polytech.,
Palaiseau, 1978, Exp. No. 1–2.

[Kr79] J.-L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les sphères,
Adv. in Mat. 31 (1979), 16–30.

[MS11] L. Maligranda, N. Sabourova, Real and complex operator norms between quasi-Banach
Lp − Lq spaces, Math. Inequal. Appl. 14 (2011), 247–270.

[Pi11] G. Pisier, Grothendieck’s Theorem, past and present, http://arxiv.org/abs/1101.4195
[Marcinkiewicz–Zygmund inequality, p. 9].

[RS91] H. P. Rosenthal, S. J. Szarek, On tensor products of operators from Lp to Lq, in: Func-
tional Analysis (Austin, TX, 1987/1989), Lecture Notes in Math. 1470, Springer, Berlin,
1991, 108–132.

[Ve76] I. E. Verbickĭı, Some relations between the norm of an operator and that of its complex
extension, Mat. Issled. 42 (1976), 3–12 (Russian).

[Vo95] H. Vogt, Komplexifizierung von Operatoren zwischen Lp-Räumen, Diplomarbeit, Carl
von Ossietzky Universität Oldenburg, Oldenburg, 1995.

4.1.5. Rearrangements of series – Marcinkiewicz example (1936). Let X be a Banach
space and

∑∞
k=1 xk be a series in X. Denote by S = S(

∑∞
k=1 xk) the set of sums of

this series, that is, the set {x ∈ X: there exists a permutation π : N → N such that
x =

∑∞
k=1 xπ(k)}.

http://dx.doi.org/10.1016/0022-247X(80)90274-7
http://dx.doi.org/10.1002/mana.19941670106
http://dx.doi.org/10.1016/0001-8708(79)90017-3
http://arxiv.org/abs/1101.4195
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If X = R, then S is either empty (divergent series) or single point (absolutely conver-
gent series) or whole R (for any conditionally convergent series by the Riemann the-
orem). If X = C, then we have four alternatives on S(

∑∞
k=1 xk): empty set, single

point (absolutely convergent series), straight line in C (for example, S = R + ia for∑∞
k=1[

(−1)k+1

k + ia
k(k+1) ], a ∈ R fixed) and the whole C (if x2k ∈ R, x2k−1 ∈ R for any k

and each of series
∑
x2k,

∑
x2k−1 is a conditionally convergent series).

For finite-dimensional X the famous Lévy–Steinitz theorem on rearrangements of
series gives that S(

∑∞
k=1 xk) is a linear manifold in X, that is, S = x0 + M , where

x0 ∈ X and M is a linear subspace of X. The theorem was first proven by P. Lévy
in 1905. In 1913 E. Steinitz pointed out that Lévy proof was incomplete, especially in
the higher-dimensional cases. Steinitz filled the gap of Lévy’s proof and also found an
entirely different approach (cf. [Ro87]).

Already in 1927, the paper written by Orlicz [Or27] contained on page 124 the Banach
question on convexity of the set of sums in infinite-dimensional spaces. In 1935, in Prob-
lem 106 of the “Scottish Book”, Banach asked whether Lévy–Steinitz theorem is valid in
infinite-dimensional normed spaces. Banach proposed to prove that for any series in a
Banach space its set of sums is a linear manifold. A simple and elegant counter-example
in L2[0, 1] to this conjecture was given by J. Marcinkiewicz. The solution by Marcin-
kiewicz also appears in the Scottish Book and the answer was negative. Marcinkiewicz
constructed an example of a conditionally convergent series in infinite-dimensional Hilbert
space L2[0, 1] with even a nonconvex set of sums since series of integer-valued functions
cannot converge in the strong L2 topology to 1/2.

Theorem 4 (Marcinkiewicz 1936). The Lévy–Steinitz theorem does not hold in L2[0, 1]
space since there exists a series in L2[0, 1] such that the set of sums S is a nonconvex set.

As the proof we present Marcinkiewicz’s construction ([Mau81], p. 188): in L2[0, 1]
consider a sequence

x2n+k = χ[k/2n,(k+1)/2n], where 0 ≤ n <∞, 0 ≤ k < 2n.

Then x1 = χ[0,1] = 1, x2 = χ[0,1/2], x3 = χ[1/2,1], x4 = χ[0,1/4], x5 = χ[1/4,1/2], x6 =
χ[1/2,3/4], x7 = χ[3/4,1], x8 = χ[0,1′8], etc. Consider the series

∑∞
n=1 yn, where y2n−1 = xn

and y2n = −xn (n ≥ 1). Since ‖x2n+k‖22 = 2−n → 0 as n→∞ it follows that
∑∞

n=1 yn =
(x1−x1)+(x2−x2)+. . . = 0. Also since x2+x3−x1 = x4+x5−x2 = x6+x7−x3 = . . . = 0
it follows that x1 + (x2 + x3− x1) + (x4 + x5− x2) + . . . = 1. However, no rearrangement
will make that the series converge to the function identically equal to 1

2 on [0, 1], because
each of the partial sums of the series is an integer-valued function. Thus, the set of sums S
is not a convex set since 0, 1 ∈ S but 1

2 6∈ S. Of course, any constant function l, 0 < l < 1
is not in S.

Note that Marcinkiewicz’s construction will show nonconvexity of the set of sums S
also in Lp[0, 1] for 0 < p < ∞, in C[0, 1] which was mentioned by Marcinkiewicz (since
by the Banach theorem [Ba32, p. 185] the space L2[0, 1] can be imbedded isometrically
in the Banach space C[0, 1]) and in L∞[0, 1] (since it has C[0, 1] as a subspace).

Examples of series in Lp[0, 1] with nonconvex set of sums S were given independently
in 1971 by Nikishin [Ni71] (for p = ∞) and in 1980 by Kornilov [Ko80] (for 1 ≤ p ≤ 2).
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Kadets [Ka86], making use of the Marcinkiewicz–Kornilov example together with
the Dvoretzky theorem, has shown that in any infinite-dimensional Banach space there
exists a series with nonlinear set of sums S (more precisely, that the set of sums of
convergent rearrangements of the series fails to be convex). Today we know more: for any
fixed elements x, y of an infinite-dimensional Banach space there exists a conditionally
convergent series

∑∞
k=1 xk such that S(

∑∞
k=1 xk) = {x, y} (cf. [KW89]). Moreover, for

a given finite subset A of an infinite-dimensional Banach space X there is a series in X
whose sum range equals A (cf. [Wo05]).

Among books, papers and bibliographies discussing the Lévy–Steinitz theorem, the
Banach problem and the Marcinkiewicz example are:

[Mau81] R. D. Mauldin, The Scottish Book. Mathematics from the Scottish Café, Birkhäuser,
Boston, 1981 [Problem 106 of Banach, Marcinkiewicz example and commentary by
R. D. Mauldin and W. A. Beyer, pp. 188–190].

[KK91] V. M. Kadets, M. I. Kadets, Rearrangements of Series in Banach Spaces, Transl. Math.
Monogr. 86, Amer. Math. Soc., Providence, 1991 [Marcinkiewicz example, pp. 24–25].

[DJT95] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Stud.
Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995 [Marcinkiewicz example,
p. 21].

[KK97] M. I. Kadets, V. M. Kadets, Series in Banach Spaces. Conditional and Unconditional
Convergence, Oper. Theory Adv. Appl. 94, Birkhäuser, Basel, 1997 [Marcinkiewicz’s
construction, pp. 30–31].

[Ch05] A. G. M. Champi, Absolute and unconditional convergence in Banach spaces, Mas-
ter Thesis, Rio de Janeiro, December 2005 (Portuguese) [4.4. Marcinkiewicz counter-
example, pp. 54–56].

[CC97] M.-J. Chasco, S. Chobanyan, On rearrangements of series in locally convex spaces,
Michigan Math. J. 44 (1997), 607–617. 608].

[CG89] S. Chobanyan, G. J. Georgobiani, A problem on rearrangements of summands in
normed spaces and Rademacher sums, in: Probability Theory on Vector Spaces, IV
(Łańcut, 1987), Lecture Notes in Math. 1391, Springer, Berlin, 1989, 33–46 [informa-
tion on Marcinkiewicz counter-example, p. 42].

[Ha86] I. Halperin, Sums of a series, permitting rearrangements, C. R. Math. Rep. Acad. Sci.
Canada 8 (1986), 87–102 [9. The counter-example of Marcinkiewicz, p. 100].

[HA89] I. Halperin, T. Ando, Bibliography: series of vectors and Riemann sums, Hokkaido
Univ., Research Inst. of Applied Electricity, Division of Applied Mathematics, Sapporo,
1989 [information on counter-example of J. Marcinkiewicz from 1937 in the preface].

[Ka86] V. M. Kadets, A problem of S. Banach (problem 106 from the “Scottish Book”), Funk-
tsional. Anal. i Prilozhen. 20 (1986), no. 4, 74–75; English transl.: Functional Anal.
Appl. 20 (1986), 317–319.

[Ka89] V. M. Kadets, Series permutation in infinite-dimensional spaces (main results and open
problems), C. R. Math. Rep. Acad. Sci. Canada 11 (1989), no. 5, 151–164 [information
on counter-example in L2[0, 1] by J. Marcinkiewicz, p. 155].

[KW89] M. I. Kadets, K. Woźniakowski, On series whose permutations have only two sums,
Bull. Polish Acad. Sci. Math. 37 (1989), 15–21 [information that Marcinkiewicz has
given a simple counter-example, p. 15].

[Ko80] P. A. Kornilov, On rearrangements of conditionally convergent functional series, Mat.
Sb. (N.S.) 113 (1980), 598–616 (Russian).

http://dx.doi.org/{10.1307/mmj/1029005791} [information on Marcinkiewicz example, p
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[N71] E. M. Nikishin, A certain problem of Banach, Dokl. Akad. Nauk SSSR 196 (1971),
774–775; English transl.: Soviet Math. Dokl. 12 (1971), 255–257.

[Ni71] E. M. Nikishin, Rearrangements of function series, Mat. Sb. (N.S.) 85 (1971), 272–285;
English transl.: Math. USSR-Sb. 14 (1971), 267–280.

[Or27] W. Orlicz, Über die unabhängig von der Anordnung fast überall konvergenten Funk-
tionenreihen, Bull. Internat. Acad. Polon. Sci. Sér. A 1927, 117–125; reprinted in:
Władysław Orlicz, Collected Papers I, 41–49 [Banach problem on convexity of S on
page 124].

[Ro87] P. Rosenthal, The remarkable theorem of Lévy and Steinitz, Amer. Math. Monthly 94
(1987), 342–351. 350].

[So08] M. A. Sofi, Levy–Steinitz theorem in infinite dimension, New Zealand J. Math. 38
(2008), 63–73 [information on Marcinkiewicz example in L2[0, 1], p. 63].

[Wo05] J. O. Wojtaszczyk, A series whose sum range is an arbitrary finite set, Studia Math.
171 (2005), 261–281. [information on Marcinkiewicz example in L2[0, 1], p. 261].

4.2. Probability theory. In the years 1937–1938 Marcinkiewicz was interested in in-
dependent random variables. He called them independent functions. Papers, joint with
Zygmund [MZ37c], [MZ38a], and his own papers [M38b], [M38c] and [M38e] are discussing
problems about these functions.

4.2.1. Marcinkiewicz–Zygmund inequalities for independent random variables (1937).
Consider the Rademacher functions rk(t) = sign[sin(2kπt)], k ∈ N, t ∈ [0, 1], which
form an orthonormal system in L2[0, 1], that is, we have∫ 1

0

rk(t) dt = 0,
∫ 1

0

rk(t)2 dt = 1 and
∫ 1

0

rk(t) rm(t) dt = 0 for k 6= m.

Immediately from here we get equalities∫ 1

0

∣∣∣ n∑
k=1

rk(t)ak

∣∣∣2 dt =
∫ 1

0

[ n∑
k=1

rk(t)ak

] [ n∑
m=1

rm(t)am

]
dt

=
n∑

k=1

n∑
m=1

akam

∫ 1

0

rk(t)rm(t) dt =
n∑

k=1

n∑
m=1

akamδkm =
n∑

k=1

a2
k,

and for Lp space the Khintchine inequality (inequalities) from 1923 reads: for p ∈ R,
p > 0 there exist constants Ap, Bp > 0 such that

Ap

( n∑
k=1

|ak|2
)1/2

≤
(∫ 1

0

∣∣∣ n∑
k=1

rk(t)ak

∣∣∣p dt)1/p

≤ Bp

( n∑
k=1

|ak|2
)1/2

(15)

for any a1, a2, . . . , an ∈ R and any n ∈ N.
Rademacher functions are also independent random variables on [0, 1]. More general,

consider random variables, that is, measurable functions Xk : Ω → R on the prob-
ability space (Ω,Σ, P ) and assume that they are independent, i.e., for any intervals
I1, I2, . . . , In ⊂ R we have the equality

P
(
{t ∈ Ω : X1(t) ∈ I1, X2(t) ∈ I2, . . . , Xn(T ) ∈ In}

)
=

n∏
k=1

P
(
{t ∈ Ω : Xk(t) ∈ Ik}

)
.

http://dx.doi.org/10.1070/SM1971v014n02ABEH002617
http://dx.doi.org/{10.2307/2323094} [information on Marcinkiewicz counter-example, p
http://dx.doi.org/10.4064/sm171-3-4
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Khintchine inequalities were generalized by Marcinkiewicz and Zygmund in 1937 in
their paper [MZ37e] (see also [KS84], Theorems 2.5 and 2.6, and [AS10], Theorems 2
and 3) to uniformly bounded random variables on [0, 1].

Theorem 5 (Marcinkiewicz–Zygmund inequalities 1937). Let (Xk)∞k=1 be a sequence of
independent random variables on [0, 1] satisfying the conditions∫ 1

0

Xk(t) dt = 0, ‖Xk‖2 =
(∫ 1

0

Xk(t)2 dt
)1/2

= 1, ‖Xk‖∞ ≤M (k ∈ N). (16)

Then, for any a = (ak)n
k=1 ∈ R, any n ∈ N and 1 ≤ p <∞, we have:

m
{
t ∈ [0, 1] :

∣∣∣ n∑
k=1

ak Xk(t)
∣∣∣ > λ‖a‖2

}
≤ 2 exp(−λ2/(4M2)) for any λ > 0, (17)

1
C

( n∑
k=1

a2
k

)1/2

≤
∥∥∥ n∑

k=1

akXk‖p ≤ C
( n∑

k=1

a2
k

)1/2

for some C = CM,p > 0, (18)

and ∫ 1

0

exp
(
λ max

1≤m≤n

∣∣∣ m∑
k=1

akXk(t)
∣∣∣) dt ≤ 32 exp

(1
2
λ2

n∑
k=1

a2
k

)
for any λ > 0. (19)

We can find the proof of the inequalities (17) and (18) in the book [KS84, pp. 39–
41]. Inequality (17) is also called the Hoeffding inequality (especially by probabilists and
statisticians) however it was published only in 1963 by Wassily Hoeffding in [Ho63]. Note
that already in 1929 estimates similar to (17) were proved by Kolmogorov [Ko29, p. 127].
A proof of estimate (19) can be found in [MZ37e], [Ka72, pp. 571–573] and [Ts51, p. 143
for Rademacher functions].

In 2000 Astashkin [As00] proved that the system of independent random variables
satisfying (16) is even equivalent in the distribution sense to the Rademacher system (see
also [As09], Theorem 8.4 and Corollary 8.3).

Another generalization of the Khintchine inequality for the sum of random variables
was given by Marcinkiewicz and Zygmund for p > 1 in the paper [MZ37c, Thm 13, p. 87]
from 1937 and for p ≥ 1 in the paper [MZ38a, Theorem 5, p. 109] from 1938. Falsity of
the inequalities for 0 < p < 1 was also shown by Marcinkiewicz and Zygmund in [MZ38a,
pp. 112–113].

Theorem 6 (Marcinkiewicz–Zygmund inequalities 1937). Let 1 ≤ p < ∞. Let (Xk)∞k=1

be a sequence of independent random variables with E(Xk) =
∫
Ω
Xk(t) dP = 0 and such

that E(|Xk|p) =
∫
Ω
|Xk(t)|p dP <∞ for any k ∈ N. Then there are constants A∗p, B∗p > 0

such that for any n ∈ N we have the inequalities

A∗p

∥∥∥( n∑
k=1

X2
k

)1/2∥∥∥
p
≤

∥∥∥ n∑
k=1

Xk

∥∥∥
p
≤ B∗p

∥∥∥( n∑
k=1

X2
k

)1/2∥∥∥
p
. (20)

For 0 < p < 1 no one of these two inequalities (20) is true.

Burkholder (1988) proved that for 1 < p <∞ we have B∗p ≤ max(p− 1, 1
p−1 ) and the

constant B∗p = p− 1 is sharp for p ≥ 2.
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From the second inequality in (20) and from the Hölder–Rogers inequality we are
getting that for p ≥ 2 ∥∥∥ n∑

k=1

Xk

∥∥∥
p
≤ Cp n

1/2−1/p
( n∑

k=1

‖Xk‖p
p

)1/p

(21)

or, equivalently, for p ≥ 1

E
(∣∣∣ n∑

k=1

Xk

∣∣∣2p)
≤ C2p

2p n
p−1

n∑
k=1

E(|Xk|2p). (21′)

Inequality (21) or (21′) is sometimes also calledMarcinkiewicz–Zygmund inequality, about
which it was written by Petrov [Pe95, Theorem 2.10, p. 62] (see also [CMR05, p. 292]),
and Ren–Liang [RL01, pp. 228], where they proved that Cp ≤ 3

√
2p. Combining the

result of Burkholder and Ren–Liang we receive that Cp ≤ min(B∗p , 3
√

2p ).
Burkholder and Gundy (1970) generalized the Marcinkiewicz–Zygmund inequality for

the modular inequalities. Let Φ : [0,∞) → [0,∞) be a convex function with Φ(0) = 0,
satisfying the condition ∆2, that is, Φ(2u) ≤ CΦ(u) for any u > 0. If (Xk)∞k=1 is a
sequence of independent random variables such that E(Xk) =

∫
Ω
Xk(t) dP = 0, then

there are constants A,B > 0 dependent only on Φ such that for any n ∈ N the following
inequalities hold:

A

∫
Ω

Φ
[( n∑

k=1

X2
k

)1/2]
dP ≤

∫
Ω

Φ
(∣∣∣ n∑

k=1

Xk

∣∣∣) dP ≤ B

∫
Ω

Φ
[( n∑

k=1

X2
k

)1/2]
dP. (20′)

Ingenious proofs of generalized Khintchine inequality (15) for integral modular can be
found in [Ka77, Lemma 6.2] and [Ma89, Sublemma 14.6(b)]: there are constants C,D > 0
dependent on Φ such that the following inequalities are true:

CΦ
[( n∑

k=1

a2
k

)1/2]
≤

∫ 1

0

Φ
(∣∣∣ n∑

k=1

akrk(t)
∣∣∣) dt ≤ DΦ

[( n∑
k=1

a2
k

)1/2]
(15′)

for any a1, a2, . . . , an ∈ R and arbitrary n ∈ N. Of course, the inequalities (15′) are special
case of inequalities (20′).

Johnson and Schechtman (1988) proved a generalization of Marcinkiewicz–Zygmund
inequalities (20) on symmetric spaces. If X is a symmetric space on [0, 1], which either is
separable or has the Fatou property and the lower Boyd index αX > 0, then the inequality
of the Marcinkiewicz–Zygmund type∥∥∥ n∑

k=1

Xk

∥∥∥
X
≤ C

∥∥∥( n∑
k=1

X2
k

)1/2∥∥∥
X

(n = 1, 2, . . . ) (22)

holds for any sequence of independent random variables (Xk)∞k=1⊂X with
∫ 1

0
Xk(t) dt=0

(k = 1, 2, . . . ). In fact, Johnson and Schechtman (1988) proved that inequality (22) holds
for any sequence of martingale differences (Xk)∞k=1 ⊂ X if and only if the lower Boyd
index αX > 0.

Astashkin (2008) showed that instead of assumption αX > 0 the necessary and suffi-
cient condition for inequality (22) to hold is the Kruglov property of the space X, intro-
duced by M. Sh. Braverman by using some probabilistic construction of V. M. Kruglov
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(1970). This property is satisfied by spaces which are sufficiently “far” from L∞ – the
smallest symmetric space on [0, 1]. For example, the symmetric space X has the Kruglov
property if X ⊃ Lp for some p <∞ (in particular, if αX > 0). A more interesting exam-
ple is the exponential Orlicz spaces LM , generated by the functions M(u) = exp(up)− 1
for 1 ≤ p < ∞, which are “near” to the space L∞ and do not contain Lq for any q < ∞
(Braverman 1994).

Another powerful inequality was proved by Rosenthal (1970): Let 2 ≤ p <∞ and let
(Xk)k∈N be independent random variables such that E(Xk) = 0 and E(|Xk|p) < ∞ for
any k ∈ N. Then there exist constants Cp, Dp > 0 such that for any n ∈ N the following
inequalities hold :

Cp max
(( n∑

k=1

‖Xk‖p
Lp

)1/p

,
( n∑

k=1

‖Xk‖2L2

)1/2
)
≤

∥∥∥ n∑
k=1

Xk

∥∥∥
Lp

≤ Dp max
(( n∑

k=1

‖Xk‖p
Lp

)1/p

,
( n∑

k=1

‖Xk‖2L2

)1/2
)
.

The Marcinkiewicz–Zygmund inequalities (20) can be found, e.g., in the books by
Kawata ([Ka72], Theorem 13.6.1) and Gut ([Gu05], Theorem 8.1). Gut, in fact, gave the
proof of the Marcinkiewicz–Zygmund inequalities with the help of Khintchine inequality
with constants A∗p = A

1/p
p /2, B∗p = 2B1/p

p (pp. 150–151), and the Rosenthal inequality is
proved with the help of Marcinkiewicz–Zygmund inequalities (pp. 151–153).

Marcinkiewicz and Zygmund proved also other inequalities in the papers [MZ37c] and
[MZ38a, Theorem 5]. For example, in the first paper in Theorems 1 and 3 we have the
following estimates:

Theorem 7 (Marcinkiewicz–Zygmund inequalities 1937). Let Xk be independent random
variables such that E(Xk) = 0 for k = 1, 2, . . . , n and Sn =

∑n
k=1Xk.

(a) If p > 1, then ∥∥ max
1≤m≤n

|Sm|
∥∥

p
≤ 21/p p

p− 1
‖Sn‖p. (23)

(b) If EX2
k = 1 and E|Xk| ≥ α > 0 for k = 1, 2, . . . , n, then there exists a constant

C = C(α) > 0 such that for any (ak)n
k=1 we have∥∥∥ max

1≤m≤n

∣∣∣ m∑
k=1

akXk

∣∣∣∥∥∥
1
≤ C(α)

∥∥∥ n∑
k=1

akXk

∥∥∥
1
. (24)

In the proof of Theorem 7(a) they are using the Hardy–Littlewood result (1930) on the
maximal function. In the proof of part (b) they use the result from (a) for p = 2 and the
Paley–Zygmund inequality ([PZ32], p. 192). Moreover, Mogyoródi [Mo79] generalized the
inequality (23) to the form

∥∥max1≤m≤n Φ(|Sm|)
∥∥

1
≤ C‖Φ(|Sn|)‖1, where Φ is a convex

Young function satisfying together with its complementary function the so-called ∆2-
condition.

Let us collect some books and papers quoted above or devoted to this subject:

[Ka72] T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York–
London, 1972 [13.5.3. Marcinkiewicz–Zygmund theorem, pp. 568–571; 13.6.1. Mar-
cinkiewicz–Zygmund, pp. 576–578].
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[St74] W. F. Stout, Almost Sure Convergence, Academic Press, New York–London, 1974
[Theorem 3.3.6. Martingale version of Marcinkiewicz and Zygmund inequality, pp.
149–152].

[Pe75] V. V. Petrov, Sums of Independent Random Variables, Ergeb. Math. Grenzgeb. 82,
Springer, New York, 1975 [pp. 59–60].

[KS84] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (Russian)
[Marcinkiewicz–Zygmund inequalities (18), (17): Theorems 2.5 and 2.6, pp. 39–42].

[SW86] G. R. Shorack, J. A. Wellner, Empirical Processes with Applications to Statistics,
Wiley, New York, 1986 [Appendix 5. Marcinkiewicz and Zygmund equivalences, pp.
858–859].

[CT88] Y. S. Chow, H. Teicher, Probability Theory. Independence, Interchangeability, Mar-
tingales, 2nd ed., Springer, New York, 1988 [10.3 Marcinkiewicz–Zygmund inequality,
pp. 366–369; 11.2. Martingale extension of Marcinkiewicz–Zygmund inequalities, pp.
394–402].

[Pe95] V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Ran-
dom Variables, Oxford Stud. Probab. 4, Oxford Univ. Press, New York, 1995 [2.6.18.
Marcinkiewicz–Zygmund inequalities, pp. 82; Theorem 2.10 is a corollary from Mar-
cinkiewicz–Zygmund inequalities, pp. 62 and 77].

[DG99] V. H. de la Peña, E. Giné, Decoupling. From Dependence to Independence. Randomly
Stopped Processes. U-statistics and Processes. Martingales and Beyond, Springer, New
York, 1999 [Lemma 1.4.13. Marcinkiewicz inequalities, pp. 34–35].

[CMR05] O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models, Springer, New
York, 2005 [9.1.5. Marcinkiewicz–Zygmund inequality, p. 292].

[Gu05] A. Gut, Probability: A Graduate Course, Springer Texts Stat., Springer, New York,
2005 [8.1. Marcinkiewicz–Zygmund inequalities, pp. 150–151].

[As00] S. V. Astashkin, Systems of random variables equivalent in distribution to the Rade-
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(Kolmogorov proved it for p = 1): Let (Xn)n≥1 be a sequence of independent random
variables with the same distribution. Let Sn =

∑n
k=1Xk, n ≥ 1. Then Sn−nc

n → 0 al-
most surely (i.e. with probability 1 or almost everywhere) for some c ∈ R if and only if
E|X1| <∞, in which case c = EX1.

Theorem 8 (Marcinkiewicz–Zygmund strong law of large numbers 1937). Let 0 < p < 2
and X1, X2, . . . be a sequence of independent random variables with the same distribution.

(a) If E|X1|p < ∞, then Sn−nc
n1/p → 0 almost surely, where c = EX1 for 1 ≤ p < 2 and

any c ∈ R for 0 < p < 1.
(b) If Sn−nc

n1/p → 0 with probability 1 for some c ∈ R, then E|X1|p <∞.

The classical Marcinkiewicz–Zygmund theorem appeared in the following monographs:

[Lo63] M. Loève, Probability Theory, Third Edition, Van Nostrand, Princeton, 1963 [Kol-
mogorov: p = 1; Marcinkiewicz: p 6= 1, pp. 242–243].

[St74] W. F. Stout, Almost Sure Convergence, Probability and Math. Statistics 24, Academic
Press, New York, 1974 [Theorem 3.2.3 is due to Marcinkiewicz, pp. 126–128].

[LT91] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Isoperimetry and Processes,
Ergeb. Math. Grenzgeb. (3) 23, Springer, Berlin, 1991 [Marcinkiewicz–Zygmund the-
orem on random variables with values in Banach space B, Theorem 7.9, pp. 186–190;
relation between type of a Banach space B and Marcinkiewicz–Zygmund theorem on
random variables with values in B, Theorem 7.9, Theorem 9.21, pp. 259–260].

[Ka97] O. Kallenberg, Foundations of Modern Probability, Springer, New York, 1997 [Theorem
3.23. Marcinkiewicz and Zygmund with proof, p. 51].

[Gu05] A. Gut, Probability: A Graduate Course, Springer Texts Stat., Springer, New York, 2005
[6.7. The Marcinkiewicz–Zygmund strong law and Theorem 7.1. The Marcinkiewicz–
Zygmund strong law with proof, pp. 298–301].

[ALa06] K. B. Athreya, S. N. Lahiri, Measure Theory and Probability Theory, Springer Texts
Stat., Springer, New York, 2006 [8.4. Kolmogorov and Marcinkiewicz–Zygmund SLLNs;
Theorem 8.4.4 (Marcinkiewicz–Zygmund SLLNs) with proof].

[BW07] R. Bhattacharya, E. C. Waymire, A Basic Course in Probability Theory, Springer, New
York, 2007 [Theorem 9.5 of Marcinkiewicz and Zygmund (1937) with the proof, pp.
124–126].
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[Sz11] Z. S. Szewczak, On Marcinkiewicz–Zygmund laws, J. Math. Anal. Appl. 375 (2011),
738–744.

[Sz92] D. Szynal, History of strong law of large numbers until 1939, in: Probability and Me-
chanics in the Historical Sketches, Proc. of the 5th All-Polish School on the History
of Mathematics (Dziwnów, 9–13 May 1991), ed. Stanisław Fudali, Part 1. Probability,
Szczecin, 1992, 120–176 (Polish).

The strong law of large numbers of Marcinkiewicz–Zygmund was generalized to ran-
dom variables with values in Banach spaces and is closely connected with Rademacher
type of a Banach space. For p ∈ [1, 2] one says that a Banach space B has Rademacher
type p if there is some constant C > 0 such that(∫ 1

0

∥∥∥ n∑
k=1

xkrk(t)
∥∥∥p

B
dt

)1/p

≤ C
( n∑

k=1

‖xk‖p
B

)1/p

for all x1, x2, . . . , xn ∈ B and any n ∈ N. Any Banach space has type 1; Hilbert spaces
have type 2; for p < q, type q implies type p. Beck [Be62] found a necessary and sufficient
condition (Beck convexity, or “B-convexity”) on the geometry of B that for every B-valued
independent random variables X1, X2, . . . with mean zero and supnE‖Xn‖2B < ∞ we
have X1+X2+...+Xn

n → 0 as n→∞. The B-convexity condition holds if and only if B has
type p for some p > 1.

The following extension of the Marcinkiewicz–Zygmund SLLN to B-valued random
variables was proved by de Acosta [Ac81, p. 160] (see also Azlarov and Volodin [AV81]):
Let 1 ≤ p < 2. A Banach space B has the Rademacher type p if and only if for every
B-valued sequence of identically distributed independent random variables (Xk)∞k=1 with
mean zero and E‖X1‖p

B < ∞ satisfies the SLLN: limn→∞
X1+X2+...+Xn

n1/p = 0 almost
surely.

The Marcinkiewicz–Zygmund law of large numbers was examined by Marcus and
Woyczyński [MW79] in Banach spaces of stable type, Woyczyński [Wo80], Korzeniowski
[Ko84], Bingham [Bi86] and many others. More information can be found in the papers
collected below and in the mentioned monograph by Ledoux and Talagrand (1991).

[Ac81] A. de Acosta, Inequalities for B-valued random vectors with applications to the strong
law of large numbers, Ann. Probab. 9 (1981), 157–161.

[AV81] T. A. Azlarov, N. A. Volodin, The laws of large numbers for identically distributed
Banach space valued random variables, Teor. Veroyatnost. i Primenen. 26 (1981), 584–
590; English transl.: Theory Prob. Appl. 26 (1981), 573–580.

[Be62] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers,
Proc. Amer. Math. Soc. 13 (1962), 329–334.

[Bi86] N. H. Bingham, Extensions to the strong law, Adv. in Appl. Probab. 1986, suppl.,
27–36 [Marcinkiewicz–Zygmund LLN, p. 29].

[GZ92] E. Giné, J. Zinn, Marcinkiewicz type law of large numbers and convergence of moments
for U-statistics, in: Probability in Banach Spaces 8 (Brunswick, ME, 1991), Progr.
Probab. 30, Birkhaüser, Boston, 1992, 273–291.

[HH10] F. Hechner, B. Heinkel, The Marcinkiewicz–Zygmund LLN in Banach spaces: a gen-
eralized martingale approach, J. Theor. Probab. 23 (2010), 509–522.

[Ko84] A. Korzeniowski, On Marcinkiewicz SLLN in Banach spaces, Ann. Probab. 12 (1984),
279–280.

http://dx.doi.org/10.1016/j.jmaa.2010.10.011
http://dx.doi.org/10.1214/aop/1176994517
http://dx.doi.org/10.1090/S0002-9939-1962-0133857-9
http://dx.doi.org/10.1007/s10959-009-0212-z
http://dx.doi.org/10.1214/aop/1176993393


J. MARCINKIEWICZ – ON THE CENTENARY OF HIS BIRTH 183

[MW79] M. B. Marcus, W. A. Woyczyński, Stable measures and central limit theorem in spaces
of stable type, Trans. Amer. Math. Soc. 251 (1979), 71–102.

[Ri95] E. Rio, A maximal inequality and dependent Marcinkiewicz–Zygmund strong laws, Ann.
Probab. 23 (1995), 918–937.

[ST92] K. L. Su, R. L. Taylor, Marcinkiewicz strong laws of large numbers and convergence
rates for arrays of independent random elements in Banach spaces, Stochastic Anal.
Appl. 10 (1992), 223–237.

[Su93] Z. G. Su, Marcinkiewicz laws of large numbers for a sequence of independent Banach
space-valued random variables, Acta Math. Sinica 36 (1993), 731–739 (Chinese).

[Su96] Z. Su, The law of the iterated logarithm and Marcinkiewicz law of large numbers for
B-valued U-statistics, J. Theoret. Probab. 9 (1996), 679–701.

[Wo80] W. A. Woyczyński, On Marcinkiewicz–Zygmund laws of large numbers in Banach
spaces and related rates of convergence, Probab. Math. Statist. 1 (1980), 117–131.

A frequent method of proof of the strong law of large numbers is to demonstrate
the convergence almost surely of some random series and to use the Kronecker lemma.
Sufficient conditions or criteria of convergence were given by Khintchine and Kolmogorov
(1925). If (Xn)∞n=1 is a sequence of independent random variables, then by zero-one law
of Kolmogorov the probability that the series

∑∞
n=1Xn is convergent is equal either to 0

or 1.
Marcinkiewicz and Zygmund in the paper [MZ37c] proved also the following theorem

on random series:

Theorem 9 (Marcinkiewicz–Zygmund 1937).
(a) Let (Xn)∞n=1 be a sequence of independent random variables such that EXn = 0,

E(X2
n) = 1, n ≥ 1 and infn∈N E|Xn| > 0. If the series

∑∞
n=1 anXn is almost surely

convergent for a sequence (an)∞n=1 of real numbers, then
∑∞

n=1 a
2
n <∞.

(b) If (Xn)∞n=1 is a sequence of independent random variables with the same distribu-
tion such that E|X1|p <∞ for some 0 < p < 2, then

∞∑
n=1

Xn − EYn

n1/p
<∞ almost surely,

where Yn = XnI{|Xn|≤n1/p}. Morever, if either 0 < p < 1 or 1 < p < 2 and EX1 = 0,
then the series

∑∞
n=1

Xn

n1/p is convergent almost surely.

In 1938 Marcinkiewicz and Zygmund proved in the paper [MZ38a] the next famous
result for real-valued random variables (see Theorem 10). Kahane in the book [Ka85]
generalized this result to random variables with values in a Banach space X.

Assume that the infinite matrix of numbers T = (anm)∞n,m=1 is a summability matrix
(Toeplitz matrix), that is, it satisfies the condition limn→∞ anm = 1 for m = 1, 2, . . . .
A sequence x = (xn), xn ∈ X is T -summable, if the series Tn(x) =

∑∞
m=1 anmxm are

convergent in X for each n ∈ N and the sequence (Tn(x)) is convergent in X.

Theorem 10 (Marcinkiewicz–Zygmund 1938). Let (Xn)∞n=1 be a sequence of independent
random variables with values in a Banach space X and let T be a matrix of summability.
If the series

∑∞
n=1Xn is almost surely T -summable, then there exists a sequence xn ∈ X

such that the series
∑∞

n=1(Xn − xn) is convergent almost surely. If the series
∑∞

n=1Xn

http://dx.doi.org/10.1090/S0002-9947-1979-0531970-2
http://dx.doi.org/10.1214/aop/1176988295
http://dx.doi.org/10.1080/07362999208809265
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is almost surely T -bounded, then there exists a sequence xn ∈ X such that the series∑∞
n=1(Xn − xn) is bounded almost surely.

Another proof of Theorem 10 together with necessity of conditions in this theorem
on convergence for the case X = R was given by Tucker [Tu65]. Kahane says in [Ka85]
that P. Lévy has such a theorem in his paper [Le35], which I cannot see. The formulation
maybe is in Lévy’s book [Le37].

On almost sure convergence of random series we can read in many books. For example,
the books listed below contain Marcinkiewicz–Zygmund theorems (Theorem 9: [CT88],
[KS84], [St74] and Theorem 10: [Ka63], [Ka85]):

[Le37] P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
[Ka63] J.-P. Kahane, Séries de Fourier aléatoires, Séminaire de Math. Supérieures, No. 4

(1963), Université de Montréal, Montreal, 1967 [Theorem 5, pp. 39–41].
[Ka72] T. Kawata, Fourier Analysis in Probability Theory, Academic Press, New York–London,

1972 [13.7.1 and 13.8.1. Marcinkiewicz–Zygmund, pp. 583–584 and 588–590].
[KS84] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (Russian).
[Ka85] J.-P. Kahane, Some Random Series of Functions, 2nd ed., Cambridge Stud. Adv. Math.

5, Cambridge Univ. Press, Cambridge, 1985. [Theorem 2, pp. 13–17].
[CT88] Y. S. Chow, H. Teicher, Probability Theory. Independence, Interchangeability, Mar-

tingales, 2nd ed., Springer, New York, 1988 [Theorem 3 (Marcinkiewicz–Zygmund),
p. 118].

[LW83] T. L. Lai, C. Z. Wei, A note on martingale difference sequences satisfying the local
Marcinkiewicz–Zygmund condition, Bull. Inst. Math. Acad. Sinica 11 (1983), 1–13.

[Le35] P. Lévy, Sur la sommabilité des séries aléatoires divergentes, Bull. Soc. Math. France
63 (1935), 1–35.

[Tu65] H. G. Tucker, On quasi-convergence of series of independent random variables, Proc.
Amer. Math. Soc. 16 (1965), 435–439.

4.2.3. Law of the iterated logarithm (1937). In 1929 Kolmogorov proved the so-called law
of the iterated logarithm: Let (Xn) be a sequence of independent random variables, each
with mean zero and finite variance. Let Sn =

∑n
k=1Xk and Bn =

∑n
k=1E(X2

k) →∞,
when n→∞. If there exists a sequence (Mn)∞n=1 of positive numbers such that

|Xn| ≤Mn and Mn = o

(( Bn

log logBn

)1/2
)
, (25)

i.e. Xn = o
(
( Bn

log log Bn
)1/2

)
almost surely, then

P
(
lim sup

n→∞

Sn√
2n log log n

= 1
)

= 1, (26)

that is, lim supn→∞
Sn√

2n log log n
= 1 almost surely.

The second assumption in condition (25) cannot be weakened, which was proved by
Marcinkiewicz and Zygmund in their paper [MZ37e] from 1937.

Theorem 11 (Marcinkiewicz–Zygmund 1937). There exists a sequence (Xn)∞n=1 of in-
dependent (two-valued) random variables such that EXk = 0, σ2Xk < ∞ for k ≥ 1

http://dx.doi.org/10.1090/S0002-9939-1965-0179834-6
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and

Mn := max
1≤k≤n

|Xk| = O
(( Bn

log logBn

)1/2)
and P

(
lim sup

n→∞

|Sn|√
2n log log n

= 1
)

= 0,

i.e., lim supn→∞
Sn√

2n log log n
< 1 almost surely.

It is worth to mention a remark of Marcinkiewicz to Zygmund, which is not in the
joint paper with Zygmund (only in the overview of Marcinkiewicz’s results [Zy60], p. 38):
for any sequence of numbers (an)∞n=1 such that Bn =

∑n
k=1 ak →∞ as n→∞ we have

lim sup
n→∞

∑n
k=1 ak rk(t)√

2Bn log logBn

≤ 1

for almost all points t from the interval [0, 1]. The proof follows from classical argument
of Kolmogorov.

Let us note that Hartman and Wintner [HW41] showed in 1941 that if (Xn)∞n=1

is a sequence of independent random variables with the same distribution such that
E(X1) = µ and σ2(X1) = σ2 <∞, then

P
(
lim inf
n→∞

Sn − nµ

σ
√

2n log log n
= −1

)
= P

(
lim sup

n→∞

Sn − nµ

σ
√

2n log logn
= 1

)
= 1.

From here it can be derived that with probability 1 the set of all limit points of the
sequence ( Sn−nµ

σ
√

2n log log n
)∞n=3 is the interval [−1, 1].

Strassen [St66] proved a converse theorem to the law of iterated logarithm: if (Xn)∞n=1

is a sequence of independent random variables with the same distribution and

lim sup
n→∞

Sn√
2n log log n

= 1,

then EX1 = 0 and EX2
1 = 1.

A survey article on law of the iterated logarithm was published by Bingham [Bi86a].
Moreover, these problems appeared in the following books and papers:

[St74] W. F. Stout, Almost Sure Convergence, Probability and Math. Statistics 24, Academic
Press, New York, 1974 [Part 5.2].

[Pe95] V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random
Variables, Oxford Stud. Probab. 4, Oxford Univ. Press, New York, 1995.

[Bi86a] N. H. Bingham, Variants on the law of the iterated logarithm, Bull. London Math. Soc.
18 (1986), 433–467.

[Bi00] N. H. Bingham, Studies in the history of probability and statistics XLVI. Measure into
probability: from Lebesgue to Kolmogorov, Biometrika 87 (2000), 145–156.

[Fe45] W. Feller, The fundamental limit theorems in probability, Bull. Amer. Math. Soc. 51
(1945), 800–832.

[Ga66] V. F. Gaposhkin, Lacunary series and independent functions, Uspekhi Mat. Nauk 21
(1966), no. 6, 3–82; English transl.: Russian Math. Surveys 21 (1966), no. 6, 1–82.

[Ha41] P. Hartman, Normal distributions and the law of the iterated logarithm, Amer. J. Math.
63 (1941), 584–588.

[HW41] P. Hartman, A. Wintner, On the law of the iterated logarithm, Amer. J. Math. 63 (1941),
169–176.

[Ko29] A. Kolmogoroff, Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929),
126–135.

http://dx.doi.org/10.1112/blms/18.5.433
http://dx.doi.org/10.1093/biomet/87.1.145
http://dx.doi.org/10.1090/S0002-9904-1945-08448-1
http://dx.doi.org/10.2307/2371372
http://dx.doi.org/10.2307/2371287
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[St66] V. Strassen, A converse to the law of the iterated logarithm, Z. Wahrscheinlichkeitsthe-
orie Verw. Gebiete 4 (1966), 265–268.

[Sz92] D. Szynal, History of strong law of large numbers until 1939, in: Probability and Me-
chanics in the Historical Sketches, Proc. of the 5th All-Polish School on the History
of Mathematics (Dziwnów, 9–13 May 1991), ed. Stanisław Fudali, Part 1. Probability,
Szczecin, 1992, 120–176 (Polish).

[To71] R. J. Tomkins, Some iterated logarithm results related to the central limit theorem,
Trans. Amer. Math. Soc. 156 (1971), 185–192.

After Kolmogorov law of iterated logarithm different forms of this theorem became
an object of interest of several mathematicians (see Feller [Fe43] and the references given
there). Some bounds for the sums Sn =

∑n
k=1Xk of a sequence of independent random

variables (Xk)∞k=1 were proved in 1931 by Lévy [Le31] for 0 < α < 1 using the stable
distribution. The method does not work for α ≥ 1 and he formulated the question if
his result is also true for 1 ≤ α < 2. Marcinkiewicz [M39k] gave a positive answer in
1939. Afterwards this result was named the Lévy–Marcinkiewicz theorem (cf. Feller [Fe46],
pp. 257–258): Let (Xk)∞k=1 be a sequence of independent random variables. Suppose that
one has estimates uniformly for large u and all k ∈ N

cu−α ≤ P (|Xk| > u) ≤ Cu−α,

where c, C are positive constants and 0 < α < 1. Let λ(t) be an increasing function such
that limt→∞

λ(2t)
λ(t) = 1. Then the probability for an infinite number of realizations of the

inequality
|Sn| > n log nλ(log n)1/α

is zero (one) if the series
∑∞

n=1
1

nλ(n) converges (diverges). The theorem remains true
also for 1 ≤ α < 2 provided that E(Xk) = 0.

Some generalizations of the Lévy–Marcinkiewicz result were given by Feller [Fe43],
[Fe45], [Fe46], Kunisawa [Ku49b], [Ku49], Lipschutz [Li56] and later generalizations ob-
tained by many authors received the name of Feller.

[Ku49b] K. Kunisawa, Limit Theorems in Probability Theory, Chûbunkan, Tokyo, 1949
(Japanese) [Chapter 10, generalization of the Lévy–Marcinkiewicz theorem].

[Fe43] W. Feller, The general form of the so-called law of the iterated logarithm, Trans. Amer.
Math. Soc. 54 (1943), 373–402 [Lévy–Marcinkiewicz result, p. 377].

[Fe45] W. Feller, The fundamental limit theorems in probability, Bull. Amer. Math. Soc. 51
(1945), 800–832 [Lévy and Marcinkiewicz result, p. 809].

[Fe46] W. Feller, A limit theorem for random variables with infinite moments, Amer. J. Math.
68 (1946), 257–262 [Lévy–Marcinkiewicz theorem, p. 257–258].

[Ku49] K. Kunisawa, On an analytical method in the theory of independent random variables,
Ann. Inst. Statist. Math., Tokyo 1 (1949), 1–77 [6.3.2. Lévy–Marcinkiewicz theorem,
p. 75].

[Le31] P. Lévy, Sur les séries dont les termes sont des variables éventuelles indépendantes,
Studia Math. 3 (1931), 117–155.

[Li56] M. Lipschutz, On strong bounds for sums of independent random variables which tend
to a stable distribution, Trans. Amer. Math. Soc. 81 (1956), 135–154 [Marcinkiewicz
and Lévy result, p. 136].
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4.2.4. Marcinkiewicz’s theorem on characteristic function (1938). LetX be a real-valued
random variable on a probability space (Ω,Σ, P ) with the distribution function F (x). The
characteristic function (or the Fourier–Stieltjes transform) of the random variable X (or
of the distribution function F ) is a function f : R → C defined by

f(t) = E(eitX) =
∫

R
eitx dF (x), t ∈ R.

There is interest to decide whether a given function f(t) can be a characteristic function,
i.e., whether it admits the above representation. Necessary and sufficient conditions are
known which a complex-valued function of a real variable t must satisfy in order to be
a characteristic function of some random variable. The central result here is Bochner’s
theorem (1932), although its usefulness is limited because the main condition of the
theorem, positive definiteness, is very hard to verify. Other theorems also exist, such as
Mathias (1923), Khintchine (1937), or Cramér (1937), although their application is just as
difficult (cf. Linnik [Li64], pp. 41–48). Pólya’s theorem (1949), on the other hand, provides
a very simple convexity condition which is sufficient but not necessary. However, these
general conditions are not easily applicable. Therefore various conditions were derived
which are restricted to certain classes of functions but are applied more readily.

A characteristic function f is said to be an analytic characteristic function if it coin-
cides in −δ < t < δ for some δ > 0 with a function of complex variable z = t+ iv which
is analytic in the disc |z| < δ.

Marcinkiewicz, in the paper [M39a] from 1939, showed that the exponential function
with the base e and exponent given by polynomial of degree higher than 2 is not a
characteristic function of any random variable, that is, if ϕ(t) = exp(P (t)), where P is a
polynomial such that P (0) = 0 is a characteristic function of some random variable X,
then P (t) is a polynomial of degree 2 and X is a Gaussian variable.

Theorem 12 (Marcinkiewicz’s theorem on characteristic function 1938). If a polynomial
P (t) = Pn(t) =

∑n
k=1 akt

k is of degree n > 2, then the function ϕ(t) = exp(P (t)) is
not a characteristic function. More general, any entire function of finite order ρ, which
convergence exponent is smaller than ρ cannot be a characteristic function.

In other words Marcinkiewicz’s theorem asserts: No function of the form
exp(

∑n
k=1 akz

k) with n > 2 can be a characteristic function; also if the function ϕ(t) =
exp[P (t)] with P (t) =

∑n
k=1 akt

k, ak ∈ C, is a characteristic function, then either
P (t) = −at2 + ibt, a > 0, b ∈ C (Gaussian law) or P (t) = ibt (degenerate law).

Marcinkiewicz’s theorem was extended to iterated exponents and certain functions of
the form f(t) = g(t) exp[P (t)] by Lukacs [Lu58]: If

e1(z) = exp(z), e2(z) = ee1(z), . . . , ek(z) = eek−1(z)

and Pm(t) =
∑m

k=0 ckt
k is a polynomial of degree m > 2, then for any n ≥ 1 the function

fn(t) = cnen[Pmt)] with constant cn determined by the condition that fn(0) = 1 cannot
be a characteristic function (for n = 1 this is the Marcinkiewicz theorem).

Further extension was done by Christensen [Ch62] to certain functions of the form
fn(t) = cng(t)en[Pm(t)], where g(t) is some specified characteristic function. Cairoli
[Ca64] investigated similar problems for meromorphic functions of finite order. Miller
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[Mi67] studied entire functions of the form g(t){exp[P (t)]} or f{exp[P (t)]}, where g(t)
and f(t) are entire functions while P (t) is a polynomial.

Important generalizations of Marcinkiewicz’s theorem were obtained by Ostrovskĭı
(1962, 1966, 1983). In 1962 Ostrovskĭı [Os62] proved a conjecture of Linnik on strength-
ened Marcinkiewicz theorem for entire characteristic functions without zeros (he gave a
simpler proof in [Os83]): If a characteristic function f(t) has the form f(t) = exp[g(t)],
where g(t) is entire function such that log+ max|z|=r |f(z)| = o(r) as r → ∞, then f(t)
is the characteristic function of the Gaussian law.

Marcinkiewicz’s theorem was further generalized by Sapogov (1976, 1979), Kamynin
(1979), Golinskĭı (1986, 1988) and Feldman (1989) on other classes of analytic functions,
and also on distribution functions of several variables by Rajagopal and Sudarshan (1974)
as well as on matrix-valued analytic characteristic functions by Gyires (1983).

Marcinkiewicz’s theorem is useful and used by many authors in studies concerning the
characterization of the normal distribution. For example, we can find it in the books by Lin-
nik (1964), Lukacs and Laha (1964), Ramachandran (1967), Lukacs (1970), Kagan, Linnik
and Rao (1973), Linnik and Ostrovskĭı (1977), Bryc (1995) and Feldman (1990, 2008).

Among the books and papers thematically related to Theorem 12 it is worth to men-
tion the following ones:

[Li64] Yu. V. Linnik, Decomposition of Probability Distributions, Oliver & Boyd, Edinburgh-
London, 1964 [3.3.1. Marcinkiewicz theorem, pp. 56–58]; Russian version: Izdat. Lenin-
grad. Univ., Leningrad, 1960.

[LL64] E. Lukacs, R. G. Laha, Applications of Characteristic Functions, Hafner, New York,
1964 [Marcinkiewicz’ theorem (Lemma 5.1.2), p. 75].

[Ra67] B. Ramachandran, Advanced Theory of Characteristic Functions, Statistical Publish-
ing Soc., Calcutta, 1967 [3.13 and 3.14. Marcinkiewicz theorems, pp. 63–64].

[Lu70] E. Lukacs, Characteristic functions, 2nd ed., Hafner, New York, 1970 [Corollary to
theorem 7.3.3 (Theorem of Marcinkiewicz), p. 213; Theorem 7.3.4 – theorem of Mar-
cinkiewicz, pp. 221–225].

[KLR73] A. M. Kagan, Yu. V. Linnik, C. R. Rao, Characterization Problems in Mathemati-
cal Statistics, Wiley, New York–London–Sydney, 1973 [Lemma 1.4.2. Marcinkiewicz’
theorem, p. 25]; Russian version: Nauka, Moscow, 1972.

[LO77] Ju. V. Linnik, I. V. Ostrovskĭı, Decomposition of Random Variables and Vectors,
Transl. Math. Monogr. 48, Amer. Math. Soc., Providence, 1977 [II. 5. Marcinkiewicz’s
theorem, pp. 41–42 and 361]; Russian version: Nauka, Moscow, 1972.

[Fe90] G. M. Feldman, Arithmetic of Probability Distributions, and Characterization Prob-
lems on Abelian Groups, Naukova Dumka, Kiev, 1990 (Russian); English transl.:
Transl. Math. Monogr. 116, Amer. Math. Soc., Providence, 1993 [Appendix 1. Group
analogs of the Marcinkiewicz theorem and the Lukacs theorem, pp. 173–177].

[Br95] W. Bryc, The Normal Distribution. Characterizations with Applications, Lecture Notes
in Statist. 100, Springer, New York, 1995 [in Section 2.5 two classical theorems ap-
peared, Cramér decomposition theorem and Marcinkiewicz theorem, giving criteria
for normality].

[Fe08] G. Feldman, Functional Equations and Characterization Problems on Locally Compact
Abelian Groups, EMS Tracts in Math. 5, European Math. Soc., Zürich, 2008 [II.5. Poly-
nomials on locally compact Abelian groups and the Marcinkiewicz theorem, pp. 38–49].
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[Ca64] R. Cairoli, Sur les fonctions caractéristiques de lois de probabilité, Publ. Inst. Statist.
Univ. Paris 13 (1964), 45–53.

[Ch62] I. F. Christensen, Some further extensions of a theorem of Marcinkiewicz, Pacific J.
Math. 12 (1962), 59–67.

[Fe89] G. M. Feldman, Marcinkiewicz and Lukacs theorems on abelian groups, Teor. Veroyat-
nost. i Primenen. 34 (1989), 330–339; English transl.: Theory Probab. Appl. 34 (1989),
290–297.

[Go86] L. B. Golinskĭı, An estimate for stability in the Marcinkiewicz theorem for fourth-
degree polynomials, in: Mathematical Physics, Functional Analysis, Naukova Dumka,
Kiev, 1986, 118–126 (Russian).

[Go88] L. B. Golinskĭı, Stability estimates in a theorem of J. Marcinkiewicz, in: Stability Prob-
lems for Stochastic Models, (Sukhumi, 1987), VNIISI, Moscow, 1988, 8–24; English
transl.: J. Soviet Math. 57 (1991), 3193–3209.

[Gy83] B. Gyires, On matrix-valued analytic characteristic functions, Publ. Math. Debrecen
30 (1983), 133–142.

[Ka79] I. P. Kamynin, Generalization of the theorem of Marcinkiewicz on entire characteristic
functions of probability distributions, Zap. Nauch. Sem. Leningrad. Otd. Mat. Inst.
Steklov. (LOMI) 85 (1979), 94–103; English transl.: J. Math. Sci. 20 (1982), 2175–
2180.

[Lu58] E. Lukacs, Some extensions of a theorem of Marcinkiewicz, Pacific J. Math. 8 (1958),
487–501.

[Lu72] E. Lukacs, A survey of the theory of characteristic functions, Advances in Appl. Prob-
ability 4 (1972), 1–38 [Theorem 3.6 (Marcinkiewicz), p. 14].

[Mi67] H. D. Miller, Generalization of a theorem of Marcinkiewicz, Pacific J. Math. 20 (1967),
261–274.

[Os62] I. V. Ostrovskĭı, Application of a rule of Wiman and Valiron to the study of the
characteristic functions of probability laws, Dokl. Akad. Nauk SSSR 143 (1962), 532–
535 (Russian).

[Os66] I. V. Ostrovskĭı, On the growth of entire characteristic functions of probabilistic laws,
in: Contemporary Problems in Theory Anal. Functions (Internat. Conf., Erevan, 1965),
Nauka, Moscow, 1966, 239–245 (Russian).

[Os83] I. V. Ostrovskĭı, On the growth of entire characteristic functions, in: Stability Problems
for Stochastic Models (Moscow, 1982), Lecture Notes in Math. 982, Springer, Berlin,
1983, 151–155.

[RS74] A. K. Rajagopal, E. C. G. Sudarshan, Some generalizations of the Marcinkiewicz the-
orem and its implications to certain approximation schemes in many-particle physics,
Phys. Rev. A (3) 10 (1974), 1852–1857.

[Sa76] N. A. Sapogov, Stability for the Marcinkiewicz theorem. The case of a fourth de-
gree polynomial, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 61
(1976), 107–124, 137–138 (Russian).

[Sa79a] N. A. Sapogov, Weak stability of J. Marcinkiewicz’s theorem and some inequalities
for characteristic functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 85 (1979), 193–196 (Russian).
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4.3. Real mathematical analysis. In this part we will deal with Marcinkiewicz in-
tegral, Marcinkiewicz function, theorem on strong differentiation of integrals, maximal
function, strong maximal function and Marcinkiewicz decomposition being a prototype
of the Calderón–Zygmund decomposition.

4.3.1. Marcinkiewicz integral, Marcinkiewicz function and decomposition of Marcinkie-
wicz–Zygmund. Examining the existence of the conjugate function and its weak type
(1, 1) Marcinkiewicz analyzed a special function and structure of closed subsets. Let us
consider the one-dimensional case. For a closed set P ⊂ R1 and a point x let

δ(x) = δ(x, P ) = inf
{
|x− y| : y ∈ P )

}
denote the distance of x to P . This function satisfies the Lipschitz condition, i.e.,
|δ(x)− δ(y)| ≤ |x− y|. Marcinkiewicz proved the following result:

Theorem 13 (Marcinkiewicz 1938).
(i) If P is a closed subset of a bounded open interval (a, b) and λ > 0, then the integral

Iλ(x) = Iλ(x;P ) =
∫ b

a

δ(y)λ

|x− y|1+λ
dy (27)

is finite for almost all x ∈ P . Moreover, Iλ ∈ L1(P ) and
∫

P
Iλ(x) dx ≤ 2

λm((a, b) \ P ).
(ii) If P is a closed subset in R1 and f a nonnegative integrable function on R1 \ P ,

then the function

Jλ(f)(x) =
∫

R1

δ(y)λf(y)
|x− y|1+λ

dy (28)

is integrable on P , and hence is finite almost everywhere in P .

In the limiting case λ = 0, (27) and (28) should be replaced by the integrals

I0(x) =
∫ b

a

(log 1/δ(y))−1

|x− y|
dy, J0(f)(x) =

∫ b

a

f(y) (log 1/δ(y))−1

|x− y|
dy, (29)

respectively. The integrals in (27), (28) and (29) are called Marcinkiewicz integrals. The
integral (27) is discussed in the papers [M36a], [MZ36], [M38h], [M39f] and the integrals
(29) in the paper [M35d]. Zygmund noted the following (cf. [Zy64], p. 5):

Marcinkiewicz proved this theorem in a somewhat different form by consider-
ing in (27) instead of the function δ(x) the function ψ(x) which is equal to 0
in P and is equal to d in each interval contiguous to P and having length d,
but the proofs in both cases are analogous, and the function δ is easier to
use than ψ, especially if we consider the analogue of the theorem in the n-
dimensional space. The proof of the theorem is not particularly difficult, and
a discrete sum somewhat similar to the integral (27) in the case λ = 2 ap-
pears in an earlier paper of Besicovitch [Be26], in the proof of the existence
of the conjugate function; it is possible that Marcinkiewicz knew that paper.
The merit of Marcinkiewicz was that he understood the significance of the
result transcending its individual application, and by using it systematically
succeeded in obtaining a number of very interesting results in the theory of
trigonometric series.
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In general, in Rn, for a closed subset P in Rn, λ > 0 and f nonnegative measurable
function on Rn, we consider the Marcinkiewicz integral

Jλ(f)(x) =
∫

Rn

δ(y)λf(y)
|x− y|n+λ

dy (x ∈ Rn) (30)

and its modified forms

Hλ(f)(x) =
∫

Rn

δ(y)λf(y)
|x− y|n+λ + δ(x)n+λ

dy, H ′
λ(f)(x) =

∫
Rn

δ(y)λf(y)
|x− y|n+λ + δ(y)n+λ

dy,

introduced by Carleson and Zygmund. Observe that

2−n−λ−1H ′
λ(f)(x) ≤ Hλ(f)(x) ≤ 2n+λ+1H ′

λ(f)(x).

The proof of the following theorem is given in ([WZ77], Theorem 9.19): If f ∈ Lp(Rn),
1 ≤ p <∞ and λ > 0, then Hλ(f) ∈ Lp(Rn) and

‖Hλ(f)‖p ≤ C ‖f‖p,

where the constant C > 0 is independent of f . In particular, ‖Jλ(f)‖Lp(P ) ≤ C ‖f‖p.
The Marcinkiewicz integral was an important tool in the proof of Calderón–Zygmund

estimate of weak type (1, 1) for n-dimensional strongly singular integrals (Hilbert inte-
grals, cf. Calderón and Zygmund [CZ52], and Stein [St75], pp. 14–19).

Different variants and generalizations of the Marcinkiewicz integral, and boundedness,
not only in Lp-spaces, were studied by Ostrow and Stein [OS57], Yano [Ya59], Zygmund
[Zy69], Fefferman and Stein [FS71], Yano [Ya75], A. P. Calderón [Ca76], C. P. Calderón
[Ca78], Kruglyak and Kuznetsov [KK07].

[Zy59] A. Zygmund, Trigonometric series, Vol. I, II, Cambridge Univ. Press, Cambridge, 1959
[IV.2. A theorem of Marcinkiewicz, pp. 129–130].

[St75] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton
Math. Ser. 30, Princeton Univ. Press, Princeton NJ, 1970 [2.3. Integral of Marcinkie-
wicz, pp. 14–15].

[WZ77] R. L. Wheeden, A. Zygmund, Measure and Integral. An Introduction to Real Analysis,
Marcel Dekker, New York–Basel, 1977 [Theorem of Marcinkiewicz, pp. 95–96; 4. The
Marcinkiewicz integral, pp. 157–159].

[GR85] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985
[Marcinkiewicz integrals, pp. 502–503 and 523].

[St93] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993 [Marcinkie-
wicz integral, p. 76].

[GGKK] I. Genebashvili, A. Gogatishvili, V. Kokilashvili, M. Krbec, Weight Theory for Integral
Transforms on Spaces of Homogeneous Type, Pitman Monogr. Surveys Pure Appl.
Math. 92, Longman, Harlow, 1998 [7.1. Weighted inequalities for the Marcinkiewicz
integral, pp. 291–294].

[Be26] A. S. Besicovitch, On a general metric property of summable functions, J. London
Math. Soc. 1 (1926), 120–128.

[Ca76] A. P. Calderón, On an integral of Marcinkiewicz, Studia Math. 57 (1976), 279–284.
[CZ52] A. P. Calderón, A. Zygmund, On the existence of certain singular integrals, Acta Math.

88 (1952), 85–139.
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[Ca78] C. P. Calderón, On a lemma of Marcinkiewicz, Illinois J. Math. 22 (1978), 36–40.
[Car66] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math.

116 (1966), 135–157.
[FS71] C. Fefferman, E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–

115.
[FS72] C. Fefferman, E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972),

137–193 [standard Marcinkiewicz “distance function integral”, p. 190].
[KK07] N. Kruglyak, E. A. Kuznetsov, The limiting case of the Marcinkiewicz integral: growth

for convex sets, Proc. Amer. Math. Soc. 135 (2007), 3283–3293.
[OS57] E. H. Ostrow, E. M. Stein, A generalization of lemmas of Marcinkiewicz and Fine with

applications to singular integrals, Ann. Scuola Norm. Sup. Pisa (3) 11 (1957), 117–135.
[Ya59] S. Yano, On a lemma of Marcinkiewicz and its applications to Fourier series, Tôhoku

Math. J. (2) 11 (1959), 191–215.
[Ya75] S. Yano, On Marcinkiewicz integral, Tohoku Math. J. (2) 27 (1975), 381–388.
[Zy69] A. Zygmund, On certain lemmas of Marcinkiewicz and Carleson, J. Approx. Theory 2

(1969), 249–257.

The Marcinkiewicz function appeared in his paper [M38h] from 1938, whose subject is
on the borderline of real and complex variable. As is known, Littlewood and Paley (1936)
considering the behaviour on the boundary of an analytic function f(z) in the unit circle
|z| < 1, whose real part is f(θ), introduced the function of real variable

g(f)(θ) =
(∫ 1

0

(1− r)|f ′(reiθ)|2 dr
)1/2

and proved that ‖g(f)‖p = (
∫ 2π

0
|g(f)(θ)|p dθ)1/p ≈ ‖f‖p = (

∫ 2π

0
|f(eiθ)|p dθ)1/p for

1 < p <∞ if
∫ 2π

0
f(θ) dθ = 0 (the equivalence constants depend only on p). Marcin-

kiewicz and Zygmund [MZ38c] showed also that ‖g(f)‖p ≤ Cp ‖f‖p for 0 < p <∞. Luzin
(1930) considered a function

s(f)(θ) =
(∫∫

Ω

|f ′|2 dω
)1/2

,

where Ω is a “triangle” area in |z| < 1 with a vertex at eiθ. Marcinkiewicz and Zygmund
in [MZ38c] also obtained the following estimates:

‖s(f)‖p ≤ Ap ‖f‖p for 0 < p <∞ and ‖f‖p ≤ Bp ‖s(f)‖p for 1 < p <∞.

Marcinkiewicz and some others before him were seeking for an analogue of the function
g without use of complex variable. At the first moment we can think that if f is a 2π-
periodic function from L2, then the expression(∫ 2π

0

|f(θ + t)− f(θ − t)|2 dt
t

)1/2

will be proper, but there are simple examples of continuous functions f indicating that
this integral can be infinite for all θ. Marcinkiewicz accurately predicted the usefulness
of the expression µ, now called Marcinkiewicz function, given by the formula

µ(f)(x) :=
(∫ 2π

0

∣∣∣F (θ + t) + F (θ − t)− 2F (θ)
t

∣∣∣2 dt
t

)1/2

, F (θ) =
∫ θ

0

f(t) dt+ C, (31)

http://dx.doi.org/10.1007/BF02392815
http://dx.doi.org/10.2307/2373450
http://dx.doi.org/10.1007/BF02392215
http://dx.doi.org/10.1090/S0002-9939-07-08856-9
http://dx.doi.org/10.2748/tmj/1178244582
http://dx.doi.org/10.2748/tmj/1203529248
http://dx.doi.org/10.1016/0021-9045(69)90020-3
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about which he proved the following result ([M38g], Theorem 1): Let F be a 2π-periodic
function from L2. If F is differentiable at each point of the set of positive measure E,
then the integral (31) is finite at almost each point of the set E.

Marcinkiewicz considered in [M38h] for 2π-periodic functions from Lp, p > 1 a more
general situation, namely, functions µr, r ≥ 1, defined as

µr(f)(x) :=
(∫ 2π

0

∣∣∣F (θ + t) + F (θ − t)− 2F (θ)
t

∣∣∣r dt
t

)1/r

and proved the following estimates:

‖µp(f)‖p ≤ Bp ‖f‖p for p ≥ 2,

‖f‖p ≤ Cp ‖µp(f)‖p for 1 < p ≤ 2 with
∫ 2π

0

f(t) dt = 0.

Marcinkiewicz raised the question if for µ = µ2 we have

Ap ‖f‖p ≤ ‖µ2(f)‖p ≤ Bp ‖f‖p,

assuming, of course, in the first inequality that
∫ 2π

0
f(t) dt = 0. Zygmund ([Zy44], Theo-

rem 1, p. 184) gave a positive solution. An analogue of the Marcinkiewicz function on R
is, for f ∈ L1, the following function

µ(f)(x) =
(∫

R1

∣∣∣F (θ + t) + F (θ − t)− 2F (θ)
t

∣∣∣2 dt
t

)1/2

(32)

and on Rn

µ(f)(x) =
(∫

Rn

∣∣∣F (θ + t) + F (θ − t)− 2F (θ)
t

∣∣∣2 dt

|t|n
)1/2

For the function (32) Waterman [Wat59] proved that if f ∈ Lp(R1), p > 1, then
‖µ(f)‖p ≈ ‖f‖p. Definitions of g-function, s-function and Marcinkiewicz function µ in
Rn and all the above estimates in the case of n variables were given by Stein [St58].

Investigations of the Marcinkiewicz function were and are still carried out in different
directions, see e.g. [Wh69], [Wa72], [CW82], [CW83], [TW90], [SY99], [HMY07], and also
[Zy44], [Ca50], [St58], [Zy59].

[Zy59] A. Zygmund, Trigonometric series, Vol. I, II, Cambridge Univ. Press, Cambridge,
1959 [XIV.5. The Marcinkiewicz function µ(θ), pp. 129–130].

[Ca50] A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math.
Soc. 68 (1950), 55–61.

[CW82] S. Chanillo, R. L. Wheeden, Distribution function estimates for Marcinkiewicz inte-
grals and differentiability, Duke Math. J. 49 (1982), 517–619.

[CW83] S. Chanillo, R. L. Wheeden, Relations between Peano derivatives and Marcinkiewicz
integrals, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (Chicago,
Ill., 1981), Wadsworth, Belmont, 1983, Vol. II, 508–525.

[HMY07] G. Hu, Y. Meng, D. Yang, Estimates for Marcinkiewicz integrals in BMO and Cam-
panato spaces, Glasg. Math. J. 49 (2007), 167–187.

[LP36] J. E. Littlewood, R. E. A. C. Paley, Theorems on Fourier series and power series,
Proc. London Math. Soc. (2) 42 (1936), 52–89.

[Lu30] N. Lusin, Sur une propriété des fonctions à carré sommable, Bull. Calcutta Math.
Soc. 20 (1930), 139–154.

http://dx.doi.org/10.1215/S0012-7094-82-04930-4
http://dx.doi.org/10.1017/S0017089507003655
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[SY99] W. Sakamoto, K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135
(1999), 103–142.

[St58] E. M. Stein, On the functions of Littlewood–Paley, Lusin and Marcinkiewicz, Trans.
Amer. Math. Soc. 88 (1958), 430–466.

[TW90] A. Torchinsky, S. L. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61
(1990), 235–243.

[Wa72] T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203–217.
[Wat59] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 (1959),

129–138.
[Wh69] R. L. Wheeden, Lebesgue and Lipschitz spaces and integrals of the Marcinkiewicz type,

Studia Math. 32 (1969), 73–93.
[Ya04] K. Yabuta, Existence and boundedness of g∗λ-function and Marcinkiewicz functions

on Campanato spaces, Sci. Math. Jpn. 59 (2004), 93–112.
[Zy44] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170–204.

Marcinkiewicz and Zygmund in paper [MZ36], studying the trigonometric series, con-
sider the so-called Riemann derivatives. A function f , defined in a neighbourhood of a
point x0, has at this point k-th Riemann derivative if there is a limit of the quotient
limh→0

∆k
hf(x0)
(2h)k = Dkf(x0), where the k-th difference is given by formula

∆k
hf(x) =

k∑
i=0

(−1)i

(
k

i

)
f(x+ (k − 2i)h) = f(x+ kh)−

(
k

1

)
f(x+ (k − 2)h)

+ (−1)2
(
k

2

)
f(x+ (k − 4)h) + . . .+ (−1)k

(
k

k

)
(f(x− kh).

The special case k = 2 is the known Schwarz derivative. The main result in the paper
([MZ36], Thm 1) is the following:

Theorem 14 (Marcinkiewicz–Zygmund 1936). If at each point x0 of a set E of positive
measure the quotient ∆k

hf(x0)
(2h)k is bounded when h → 0 (in particular, if the Riemann

derivative Dkf(x0) exists), then f is k-times differentiable for almost all points from E.

The method of proof showed that for a function f of the particular form

f(x+ h) =
k−1∑
j=0

aj(x)
hj

k!
+O(hk) (x ∈ E), (33)

and for arbitrary ε > 0 there exists a set P and functions g, b such that

(i) P is a perfect set and |E \ P | < ε

(ii) f(x) = g(x) + b(x), where g is of class Ck (k-th derivative is continuous) and
|b(x)| ≤ C δ(x, P )k.

In other words, the function f satisfying (33) can be decomposed on “good part” g(x)
and a “bad part” b(x), and the bad part b(x) can be nonzero only on a small set E \ P
and is estimated by the use of a Marcinkiewicz integral (27) with λ = k.

This method was an important tool of proofs in the forties. However, in 1952 Calderón
and Zygmund presented their famous decomposition for functions of n variables (see
[St75], Theorem 3.2) and from then this method of proof has become the leading one.

http://dx.doi.org/10.1090/S0002-9947-1958-0112932-2
http://dx.doi.org/10.1090/S0002-9947-1959-0103953-5
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Methods used in the theory of singular Calderón–Zygmund integrals both Marcinkiewicz’s
decomposition and Marcinkiewicz’s interpolation theorem are particularly useful and still
used in various versions and variants.

[As67] J. M. Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 126
(1967), 181–199 [generalization of the Marcinkiewicz–Zygmund theorem].

[CZ52] A. P. Calderón, A. Zygmund, On the existence of certain singular integrals, Acta Math.
88 (1952), 85–139.

[Dy01] E. M. Dyn’kin, Methods of the theory of singular integrals: Hilbert transform and
Calderón–Zygmund theory, in: Commutative Harmonic Analysis I, Encyclopaedia
Math. Sci. 15, Springer, Berlin, 1991, 167–259 [Marcinkiewicz interpolation theorem,
p. 174; Marcinkiewicz integral, p. 240].

[FW94] H. Fejzić, C. E. Weil, Repairing the proof of a classical differentiation result, Real Anal.
Exchange 19 (1993/94), 639–643 [Marcinkiewicz–Zygmund theorem].

4.3.2. Differentiation of integrals and maximal functions. The classical Lebesgue theo-
rem (1923) tells that if f ∈ L1

loc(R1) and F (x) =
∫ x

0
f(t) dt, then F ′(x) = f(x) for almost

all x ∈ R1 (shortly a.e.), i.e.,

lim
h→0

F (x+ h)− F (x)
h

= f(x) a.e.

or, equivalently,

lim
h→0

1
h

∫ x+h

x

f(y) dy = f(x) a.e.

An n-dimensional version has the form: if f ∈ L1
loc(Rn), then

lim
|Q|→0

1
|Q|

∫
Q

f(y) dy = f(x) for almost all x ∈ Rn,

where Q denotes an n-dimensional cube with sides parallel to the coordinate system.
Even a stronger assertion is true

lim
|Q|→0

1
|Q|

∫
Q

|f(y)− f(x)| dy = 0 a.e. in Rn.

An important tool in the proof of Lebesgue (and theorems of singular integrals and
convergence almost everywhere) is a maximal function of Hardy–Littlewood

Mf(x) := sup
Q3x

1
|Q|

∫
Q

|f(y)| dy,

where supremum is taken over all cubes Q in Rn containing the point x. Note that
we can equivalently analyze the maximal function, where instead of cubes Q we take
n-dimensional balls B(x, r) with centre at x and radius r > 0

Mbf(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)

|f(y)| dy.

Hardy and Littlewood [HL30] defined the maximal function M in the one-dimensional
case and showed the boundedness in Lp(R1) for p > 1 (they did not prove the weak type
(1, 1) of M , which is a surprise). Next important step was done by F. Riesz (1932) who

http://dx.doi.org/10.1090/S0002-9947-1967-0204583-1
http://dx.doi.org/10.1007/BF02392130
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proved the following inequality

(Mf)∗(t) ≤ Af∗∗(t) = A
1
t

∫ t

0

f∗(s) ds for any t > 0,

where f∗ denotes the decreasing rearrangement of |f(x)|. From here we are getting the
weak type (1, 1) of the maximal function.

N. Wiener (1939) considered the maximal function Mf in the n-dimensional case
and proved, with the help of the Vitali covering theorem, its important property, i.e. the
weak type (1, 1). It is necessary to mention here that the same year Marcinkiewicz and
Zygmund also investigated the two-dimensional maximal function (from which without
difficulties we get the n-dimensional case for n ≥ 2) and they proved its weak type (1, 1)
([MZ39b], Lemma 2, p. 551). This fact was noted only by Stein and Wainger ([SW78],
p. 1245).

Theorem 15 (Wiener 1939, Marcinkiewicz–Zygmund 1939). The maximal function M

is of weak type (1, 1), that is, for any f ∈ L1(Rn) and arbitrary λ > 0 the following
inequality holds ∣∣{x ∈ Rn : Mf(x) > λ}

∣∣ ≤ B

λ

∫
Rn

|f(x)| dx. (34)

Wiener (1939) proved even a stronger version of the weak (1, 1) inequality∣∣{x ∈ Rn : Mf(x) > λ}
∣∣ ≤ B

λ

∫
{x∈Rn:|f(x)|>λ/2}

|f(x)| dx ∀λ > 0, (35)

and Stein [St69] showed the following reverse weak (1, 1) inequality for the maximal
function

1
λ

∫
{x∈Rn:|f(x)|>λ}

|f(x)| dx ≤ C
∣∣{x ∈ Rn : Mf(x) > λ}

∣∣ ∀λ > 0.

The classical Theorem 15 can be found in many books on analysis or harmonic anal-
ysis. We can mention as examples the books from part 4.1.1: Stein [St70, pp. 5–11], Stein
and Weiss [SW71, pp. 55–56], Sadosky [Sa79, pp. 199–202], de Guzmán [Gu81, pp. 133–
134], Jørsboe and Mejlbro [JM82, pp. 10–11], Kashin and Saakyan [KS84, pp. 444–445],
García-Cuerva and Rubio de Francia [GR85, pp. 144–145], Torchinsky [To86, pp. 77–78],
Brudny̆ı and Krugljak [BK91, pp. 79–80], Folland [Fo99, p. 96], Duoandikoetxea [Du01,
p. 31], Arias de Reyna [Ar02, pp. 4–6], DiBenedetto [Di02, p. 378], Nikolski [Ni02, p. 31],
Taylor [Ta06, pp. 140–141], Grafakos [Gr08, pp. 80–81], Linares and Ponce [LP09, p. 34].

Further studies of the Wiener and Stein inequalities (for arbitrary measures in Rn)
can be found, e.g., in the paper [AKMP].

Note that if we have the weak type (1, 1) of the maximal function, then it is not
difficult to prove the Lebesgue theorem, but equivalence with the Lebesgue theorem is
not so easy and it was proved by Stein in [St61].

Let us now discuss the classical theorem of Jessen, Marcinkiewicz and Zygmund on
strong differentiation of integrals proved in 1935 in the paper [MJZ35]. Let the rectangle
P in Rn, n ≥ 2, means the product of n nonempty one-dimensional intervals and let δ(P)
be its diameter. Let also P0 ⊂ Rn be a fixed rectangle, for example, P0 = Rn or P0 = In,
I = [0, 1] and f ∈ L1(P0).
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We say that the integral of the function f is strongly differentiable at the point x ∈ P0

if the limit

lim
δ(P)→0

1
|P|

∫
P

f(y) dy

exists and is finite, where P ⊂ P0 is any rectangle containing x. This limit is called the
strong derivative of the integral of a function f at point x.

Saks ([Sa33], pp. 231–232 and [Sa34]) and Buseman–Feller ([BF34], pp. 243–247)
showed the existence of a function f ∈ L1(I2) whose integral is nowhere strongly differen-
tiable. Zygmund ([Zy34], Theorem 1) however proved that for any function f ∈ Lp(P0),
p > 1, the strong derivative of the integral of a function f exists almost everywhere and
is equal to f(x).

Jessen, Marcinkiewicz and Zygmund ([MJZ35], Theorem 2) proved strong differentia-
bility of the integral of any function f ∈ L1(log+ L)n−1.

Theorem 16 (Jessen–Marcinkiewicz–Zygmund 1935). Let P0 ⊂ Rn be a fixed rectangle.
If a function f is measurable and |f(x)| (log+ |f(x)|)n−1 is integrable on the rectangle
P0, then the strong derivative of the integral of the function f exists for almost all points
in P0 and is equal to f(x).

Jessen, Marcinkiewicz and Zygmund ([MJZ35], Theorem 8) also demonstrated that
the statement in Theorem 16 is in some sense the best possible. Namely, let Φ : [0,∞) →
[0,∞) be an increasing function vanishing only at zero and having the property

lim inf
u→∞

Φ(u)
u

> 0.

Denote by LΦ(In) the Orlicz class of all functions f on In such that Φ(|f |) ∈ L1(In). The
authors of that work showed that if every function f ∈ LΦ(In) has almost everywhere
strongly differentiable integral, then f(log+ |f |)n−1 ∈ L1(In). Thus the largest Orlicz
class for which all functions have almost everywhere strongly differentiable integrals is
the class LΦ0 generated by the Orlicz function Φ0(u) = u(log+ u)n−1 !

The paper [MJZ35] is cited quite often, and on the conference on “Development of
mathematics 1900–1950” held in Luxembourg in 1992, this paper was listed among the
most important ones published in the year 1935 (cf. [DEMP], p. 22).

The maximal function appropriate to the strong differentiation is the strong maximal
function

MSf(x) := sup
P3x

1
|P|

∫
P

|f(y)| dy,

where supremum is taken over all rectangles P from Rn containing the point x.
Note that the functionMS is not of the weak type (1, 1). Namely, if we take as f , for ex-

ample, the characteristic function of the unit ball, then for large coordinates x1, x2, . . . , xn

of a point x the quantity MSf(x) is of order (|x1| · . . . · |xn|)−1 and the inequality for
weak type (1, 1) cannot be true. On the other hand, MSf(x) is pointwise bounded by
the composition of one-dimensional maximal functions in each coordinate independently
MSf(x) ≤M1(M2(. . . (Mnf(x)) . . .). Each of these maximal functions Mk, 1 ≤ k ≤ n, is
bounded in Lp, p > 1, therefore the function MS is bounded in Lp(Rn) for 1 < p ≤ ∞.
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To prove the Jessen–Marcinkiewicz–Zygmund theorem with the help of the strong
maximal function we need a proper replacement of the inequality on week type (1, 1) by
another estimate. An apropriate estimate was given by de Guzmán [Gu74]: the strong
maximal function satisfies for any λ > 0 the best possible inequality∣∣{x ∈ Rn : MSf(x) > λ}

∣∣ ≤ Cn

∫
Rn

|f(x)|
λ

log
(
1 +

|f(x)|
λ

)n−1

dx, (36)

i.e., MS : L(1 + (log+ L)n−1)(Rn) → L1,∞(Rn) is bounded.
A geometrical proof, with the help of the corresponding covering lemma, was given

by A. Córdoba and R. Fefferman [CF75]. This proof is repeated in the appendix of the
book [Gu75].

An inequality of type (36) for the strong maximal function Ms, where by definition
the supremum is taken over all rectangles P contained in In, that is, the inequality∣∣{x ∈ In : Msf(x) > 4λ}

∣∣ ≤ Dn

∫
In

|f(x)|
λ

(
log+ |f(x)|

λ

)n−1

dx, (37)

was proved for n = 2 by Flett [Fl55] with D2 = 4 and 1 + log(·) in place log+(·), and for
n ≥ 2 by Fava [Fa72].

Books containing the problem of differentiation of integrals are, for example, the
following ones:

[Sa33] S. Saks, Théorie de l’intégrale, Monografje Matematyczne II, Warszawa, 1933.
[Sa37] S. Saks, Theory of the Integral, 2nd rev. ed., Monografie Matematyczne VII, Warszawa-

Lwów, 1937.
[Gu75] M. de Guzmán, Differentiation of Integrals in Rn, Lecture Notes in Math. 481, Springer,

Berlin, 1975; Russian transl.: Mir, Moscow, 1978.
[Gu81] M. de Guzmán, Real Variable Methods in Fourier Analysis, North-Holland Math. Stud.

46, North-Holland, Amsterdam, 1981.

There are books, where Theorem 16 is cited as the Jessen–Marcinkiewicz–Zygmund the-
orem:

[KoK91] V. Kokilashvili, M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World
Scientific, River Edge, NJ, 1991 [Jessen, Marcinkiewicz and Zygmund result, p. 142].

[Ko07] A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions,
Lect. Notes Unione Mat. Ital. 4, Springer, Berlin and UMI, Bologna, 2007 [Theorem
1.3 (Jessen, Marcinkiewicz and Zygmund), p. 5].

[St93] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilla-
tory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, 1993 [pp.
76 and 661].

[Zh96] L. Zhizhiashvili, Trigonometric Fourier Series and Their Conjugates, Math. Appl.
372, Kluwer, Dordrecht, 1996 [Jessen, Marcinkiewicz and Zygmund result, pp. 130,
149, 152, 188, 189, 279].

Various discussion on Theorem 16, different proofs and generalizations can be found
in many papers. Below are presented some publications related to the above problems,
and those in which Jessen–Marcinkiewicz–Zygmund theorem is mentioned: Saks (1935),
Burkill (1951), Smith (1956), Zygmund (1967), Bruckner (1971), Fava (1972), de Guzmán
(1974, 1976, 1986), Cordoba and Fefferman (1975), Strömberg (1977), Stein and Wainger
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(1978), Fava, Gatto and Gutiérez (1980), Bagby (1983), Soria (1986), Stokolos (1998,
2005, 2008), Kuchta, Morayne and Solecki (2001), Hagelstein (2004).

[AKMP] I. U. Asekritova, N. Ya. Krugljak, L. Maligranda, L. E. Persson, Distribution and
rearrangement estimates of the maximal function and interpolation, Studia Math. 124
(1997), 107–132.

[Ba83] R. J. Bagby, A note on the strong maximal function, Proc. Amer. Math. Soc. 88
(1983), 648–650.

[Ba83a] R. J. Bagby, Maximal functions and rearrangements: some new proofs, Indiana Univ.
Math. J. 32 (1983), 879–891.

[Br71] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly 78 (1971), no. 9,
Part 2, 1–51.

[Bu51] J. C. Burkill, On the differentiability of multiple integrals, J. London Math. Soc. 26
(1951), 244–249.

[BF34] H. Busemann, W. Feller, Zur Differentiation der Lebesgueschen Integrale, Fund. Math.
22 (1934), 226–256.

[Ch95] L. Chevalier, Fonction maximale forte et intégrale de Marcinkiewicz, J. Anal. Math.
65 (1995), 161–178.

[CF75] A. Cordoba, R. Fefferman, A geometric proof of the strong maximal theorem, Ann. of
Math. (2) 102 (1975), 95–100.

[Du07] J. Duoandikoetxea, The Hardy–Littlewood maximal function and some of its variants,
in: Advanced Courses of Mathematical Analysis. II, World Sci. Publ., Hackensack,
NJ, 2007, 37–56.

[Fa72] N. Fava,Weak type inequalities for product operators, Studia Math. 42 (1972), 271–288.
[FGG80] N. A. Fava, E. A. Gatto, C. Gutiérrez, On the strong maximal function and Zygmund’s

class L(log+L)n, Studia Math. 69 (1980), 155–158.
[Fl55] T. M. Flett, Some remarks on a maximal theorem of Hardy and Littlewood, Quart. J.

Math., Oxford Ser. (2) 6 (1955), 275–282.
[Gu74] M. de Guzmán, An inequality for the Hardy–Littlewood maximal operator with respect

to a product of differentiation bases, Studia Math. 49 (1974), 185–194.
[Gu76] M. de Guzmán, Differentiation of integrals in Rn, in: Measure Theory (Oberwolfach,

1975), Lecture Notes in Math. 541, Springer, Berlin, 1976, 181–185.
[Gu86] M. de Guzmán, The evolution of some ideas in the theory of differentiation of integrals,

in: Aspects of Mathematics and its Applications, North-Holland, Amsterdam, 1986,
377–385.

[Ha04] P. A. Hagelstein, Córdoba–Fefferman collections in harmonic analysis, Pacific J. Math.
216 (2004), 95–109.

[Ha04a] P. A. Hagelstein, Rearrangements and the local integrability of maximal functions,
Pacific J. Math. 216 (2004), 111–126.

[HL30] G. H. Hardy, J. E. Littlewood, A maximal inequality with function-theoretic applica-
tions, Acta Math. 54 (1930), 81–116.

[KMS01] M. Kuchta, M. Morayne, S. Solecki, A martingale proof of the theorem by Jessen,
Marcinkiewicz and Zygmund on strong differentiation of integrals, in: Séminaire de
Probabilités XXXV, Lecture Notes in Math. 1755 Springer, Berlin, 2001, 158–161.

[Le97] A. K. Lerner, On estimates for strong maximal functions, Izv. Vyssh. Uchebn. Zaved.
Mat. 1997, no. 7, 36–48; English transl.: Russian Math. (Iz. VUZ) 41 (1997), no. 7,
33–45.

http://dx.doi.org/10.1090/S0002-9939-1983-0702293-X
http://dx.doi.org/10.1512/iumj.1983.32.32060
http://dx.doi.org/10.1112/jlms/s1-26.4.244
http://dx.doi.org/10.1007/BF02788770
http://dx.doi.org/10.2307/1970976
http://dx.doi.org/10.1093/qmath/6.1.275
http://dx.doi.org/10.2140/pjm.2004.216.95
http://dx.doi.org/10.2140/pjm.2004.216.111
http://dx.doi.org/10.1007/BF02547518
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[Sa34] S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math.
22 (1934), 257–261.

[Sa35] S. Saks, On the strong derivatives of functions of intervals, Fund. Math. 25 (1935),
235–252.

[Sm56] K. T. Smith, A generalization of an inequality of Hardy and Littlewood, Canad. J.
Math. 8 (1956), 157–170.

[So86] F. Soria, Examples and counterexamples to a conjecture in the theory of differentiation
of integrals, Ann. of Math. (2) 123 (1986), 1–9.

[St61] E. M. Stein, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140–170.
[St69] E. M. Stein, Note on the class LlogL, Studia Math. 32 (1969), 305–310.
[SW78] E. M. Stein, S. Wainger, Problems in harmonic analysis related to curvature, Bull.

Amer. Math. Soc. 84 (1978), 1239–1295.
[St98] A. M. Stokolos, On a problem of A. Zygmund, Mat. Zametki 64 (1998), 749–762;

English transl.: Math. Notes 64 (1998), 646–657.
[St05] A. Stokolos, Zygmund’s program: some partial solutions, Ann. Inst. Fourier (Grenoble)

55 (2005), 1439–1453.
[St08] A. Stokolos, Properties of the maximal operators associated with bases of rectangles in

R3, Proc. Edinb. Math. Soc. (2) 51 (2008), 489–494.
[St77] J.-O. Strömberg, Weak estimates on maximal functions with rectangles in certain

directions, Ark. Mat. 15 (1977), 229–240.
[Wi39] N. Wiener, The ergodic theorem, Duke Math. J. 5 (1939), 1–18.
[Zy34] A. Zygmund, On the differentiability of multiple integrals, Fund. Math. 23 (1934),

143–149.
[Zy67] A. Zygmund, A note on the differentiability of integrals, Colloq. Math. 16 (1967),

199–204.

4.3.3. The Marcinkiewicz multiplier theorem and Marcinkiewicz sets. Suppose there is
given a Fourier series f(x) ∼

∑
cne

inx of a function f ∈ Lp[0, 2π], p ≥ 1. We ask what
conditions the sequence of numbers (λn)n∈Z must satisfy that the series

∑
λncne

inx

is also the Fourier series of some function from Lp[0, 2π]. In other words, we consider
the multiplier transformation Tλ defined by a sequence of numbers λ = (λn)n∈Z by the
formula

Tλf ∼
∑

λncne
inx if f ∼

∑
cne

inx,

and ask under what assumptions on λ the operator Tλ is bounded in Lp[0, 2π].
For p = 2 such a characterization is λ ∈ l∞, and for p = 1 the answer is also known

(see [To86, p. 129]). The question for 1 < p < ∞, p 6= 2 is much more difficult and
still unsolved. A certain condition of the sequence of numbers (λn)n∈Z which implies
boundedness of the operator Tλ in Lp[0, 2π] for p > 1 was given by Marcinkiewicz in the
paper [M39f].

Theorem 17 (Marcinkiewicz’s multiplier theorem 1939). Let 1 < p < ∞. If a sequence
λ = (λn)n∈Z is bounded and sums of differences over dyadic blocks are bounded, that is,

sup
n

∑
2n≤|k|<2n+1

|λk − λk−1| ≤M <∞, (38)

then the operator Tλ is bounded in Lp[0, 2π] and ‖Tλf‖p ≤ C(supn∈Z |λn|+M)‖f‖p for
f ∈ Lp.

http://dx.doi.org/10.4153/CJM-1956-019-5
http://dx.doi.org/10.2307/1971350
http://dx.doi.org/10.2307/1970308
http://dx.doi.org/10.1090/S0002-9904-1978-14554-6
http://dx.doi.org/10.1007/BF02316290
http://dx.doi.org/10.5802/aif.2129
http://dx.doi.org/10.1007/BF02386043
http://dx.doi.org/10.1215/S0012-7094-39-00501-6
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We can define the space of multipliersMp for 1 ≤ p ≤ ∞, as the space of all sequences
(λn)n∈Z such that ‖

∑
λkck(f)eikx‖p ≤ C‖f‖p for any trigonometric polynomial f with

a constant C > 0 independent of f . The infimum over all such C defines a norm and the
space Mp becomes a Banach space. Figà–Talamanca (1965) additionally proved that this
is a dual space for 1 < p ≤ 2 and was even able to find its predual.

The following statements are true: M2 = l∞, Mp = Mp′ , where 1
p + 1

p′ = 1 and
Mp ⊂Mq ⊂ l∞ if 1 ≤ p ≤ q ≤ 2. Theorem 16 of Marcinkiewicz means that if a sequence
λ is bounded and satisfies (38), then it belongs to Mp.

Much more important, because of applications, is the corresponding Marcinkiewicz
theorem for multiple series. For simplicity, let us write it in the two-dimensional case.
Consider the multiplier transformation Tλ given by a double sequence λ = (λnm)n,m∈N
with the formula

Tλf ∼
∑

λnmcnme
i(nx+my) as far as f ∼

∑
cnme

i(nx+my)

and dyadic intervals Ik = {i ∈ Z : 2k−1 ≤ |i| < 2k}, Jl = {j ∈ Z : 2l−1 ≤ |j| < 2l}, and
let

∆1λnm = λn+1,m − λn,m, ∆2λnm = λn,m+1 − λn,m and ∆1,2 = ∆1 ·∆2.

Theorem 17′ (Marcinkiewicz’s multiplier theorem 1939). Let 1 < p <∞. If for a double
sequence λ = (λnm)n,m∈Z the following suprema are finite:

A = sup
n,m

|λn,m|, B1 = sup
k,m

∑
n∈Ik

|∆1λn,m|, B2 = sup
n,l

∑
m∈Jl

|∆2λn,m|,

B1,2 = sup
k,l

∑
n∈Ik

∑
m∈Jl

|∆1,2λn,m|,

then the operator Tλ is bounded in Lp([0, 2π]2) and ‖Tλf‖p ≤ C(A+B1 +B2 +B1,2)‖f‖p

for f ∈ Lp.

As concrete examples of multipliers (λnm) Marcinkiewicz presented the following ones
([M39f], Thm 3):

m2

n2 +m2
,

n2

n2 +m2
,

|mn|
n2 +m2

,

and informed that in this way some problem posed by Schauder is solved.
The corresponding multiplier theorem can be formulated also for the Fourier transform

F in Lp(Rn). For a bounded measurable function m on Rn we define an operator Tm as
follows:

Tmf(x) = F−1[m(·)Ff(·)](x), f ∈ L1(Rn) ∩ L2(Rn). (39)

The function m is said to be an Lp-multiplier if

‖Tmf‖p ≤ Cp‖f‖p, for all f ∈ L2(Rn) ∩ Lp(Rn).

In this case Tm(·) can be extended to Lp(Rn). The smallest constant Cp is the norm of this
operator in Lp(Rn) and it is denoted by the symbol ‖Tm‖p. Note that ‖Tm‖2 = ‖m‖∞ and
ifm is an Lp-multiplier, 1 < p <∞, then it also is an Lp′ -multiplier and ‖Tm‖p′ = ‖Tm‖p,
where 1

p + 1
p′ = 1.
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The Marcinkiewicz’s multiplier theorem for the Fourier transform has the following
form (let us formulate, for simplicity, only the one-dimensional case):

Theorem 17′′ (Marcinkiewicz’s multiplier theorem 1939). Let m : R → R be a bounded
function of class C1 on each dyadic set (−2k+1,−2k)∪ (2k, 2k+1) for k ∈ Z. Assume that
the derivative m′ of the function m satisfies the condition

sup
k∈Z

(∫ −2k

−2k+1
|m′(t)| dt+

∫ 2k+1

2k

|m′(t)| dt
)
≤ A <∞. (40)

Then m is an Lp-multiplier for all 1 < p <∞ and

‖Tm‖p ≤ Cmax
(
p,

1
p− 1

)6

(‖m‖∞ +A).

The next known result on multipliers for Fourier integrals is the Hörmander–Mikhlin
theorem. In 1956 Mikhlin [Mi56] proved Marcinkiewicz’s result on Fourier integrals, and
in 1960 Hörmander, in the paper [Ho60], gave a further generalization and simplification
of the proofs. This result is sometimes called Hörmander–Mikhlin multiplier theorem,
which in the simplest one-dimensional case has form: Let m : R → C be a bounded
function on R \ {0} and satisfying either the Mikhlin condition |xm′(x)| ≤ A or weaker
the Hörmander condition

sup
R>0

R

∫
R<|x|<2R

|m′(x)|2 dx ≤ A2 <∞. (41)

Then m is an Lp-multiplier for all p ∈ (1,∞) and

‖Tm‖p ≤ Cmax
(
p,

1
p− 1

)
(‖m‖∞ +A).

Moreover, Tm is of weak type (1, 1).
Observe that in the one-dimensional case Theorem 17′′ is stronger than the Hörman-

der–Mikhlin theorem, i.e., from the condition (41) follows the condition (40). But if we
write these statements in higher dimensions, then the criteria of being multiplier in the
Marcinkiewicz’s theorem and the Hörmander–Mikhlin theorem are not comparable (see
[Gr08], pp. 361–370). In addition, the assumption in the Marcinkiewicz theorem does not
guarantee the weak type (1, 1) of the mapping Tm (see Kislyakov [Ki88], p. 161).

Problems of Fourier multipliers with an extensive literature can be found in the books
listed below, and further generalizations of the Marcinkiewicz and Hörmander–Mikhlin
theorems, either weakening assumptions about λ or m or considering multipliers from
spaces Lp to Lq for 1 ≤ p ≤ q ≤ ∞, and also investigating multipliers for functions with
values in Banach spaces, can be found in many works. Below some of them are cited.

The Fourier transform can be consider on groups. Let G be a compact Abelian group.
A subset E of its dual group is called a Marcinkiewicz set if the multiplier m = χE is of
weak type (1, 1). The name “Marcinkiewicz set” as well as “quasi-Marcinkiewicz set” (and
also a class of Marcinkiewicz systems and quasi-Marcinkiewicz systems) was introduced
and studied by Kwapień and Pełczyński [KP80], and further information regarding these
sets, together with examples, can be found in the paper by Kislyakov [Ki01].

We note further that Marcinkiewicz in a joint paper with Kaczmarz [MK38] gave
conditions under which the sequence of numbers λ = (λn) is an Lp-Lq-multiplier, and
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also that the expansions are with respect to any bounded orthonormal system on [0, 1]
which is complete in L1[0, 1].
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Math. Ser. 30, Princeton Univ. Press, Princeton NJ, 1970 [IV. 6. The Marcinkiewicz
multiplier theorem, pp. 108–112].

[La71] R. Larsen, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss.
175, Springer, New York, 1971 [Marcinkiewicz, p. 12, 132].

[EG77] R. E. Edwards, G. I. Gaudry, Littlewood–Paley and Multiplier Theory, Ergeb. Math.
Grenzgeb. 90, Springer, Berlin–New York, 1977 [1.1.4. The weak Marcinkiewicz multi-
plier theorem, pp. 5–17; Chapter 8. Strong forms of Marcinkiewicz multiplier theorem
and Littlewood–Paley theorem for R, T and Z, pp. 148–179].

[Ni77] S. M. Nikolskĭı, Approximation of Functions of Several Variables and Imbedding The-
orems, 2nd ed., Nauka, Moscow, 1977 (Russian) [Marcinkiewicz theorem and Marcin-
kiewicz multipliers, pp. 57–64].

[GR85] J. García-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985
[Theorem 5.130. Marcinkiewicz multiplier theorem, pp. 511–512].

[To86] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure Appl. Math. 123,
Academic Press, Orlando, 1986 [Marcinkiewicz multiplier theorem, pp. 326–327].

[Ste95] A. I. Stepanets, Classification and Approximation of Periodic Functions, Math. Appl.
333, Kluwer, Dordrecht, 1995 [3. Multiplicators. Marcinkiewicz theorem, pp. 266–268].

[Du01] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math. 29, Amer. Math. Soc., Prov-
idence, 2001 [8.4. The Marcinkiewicz multiplier theorem, pp. 166–168].

[Ste05] A. I. Stepanets, Methods of Approximation Theory, VSP, Leiden, 2005 [5. Marcinkie-
wicz theorem, pp. 448–450].

[Gr08] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts Math. 249, Springer,
New York, 2008 [2.5. Two multiplier theorems, pp. 359–370].

[ABG93] N. Asmar, E. Berkson, T. A. Gillespie, Spectral integration of Marcinkiewicz multipli-
ers, Canad. J. Math. 45 (1993), 470–482.

[Bo68] J. Bournaud, Sur les multiplicateurs de FLp (R), C. R. Acad. Sci. Paris Sér. A-B 267
(1968), A919–A921.

[Ca88] A. Carbery, Differentiation in lacunary directions and an extension of the Marcinkie-
wicz multiplier theorem, Ann. Inst. Fourier (Grenoble) 38 (1988), 157–168.

[CS75] W. C. Connett, A. L. Schwartz, Unifying multiplier theorems of Hörmander, Marcin-
kiewicz, and Michlin type, Bull. Amer. Math. Soc. 81 (1975), 570–572.

[GT77] G. Gasper, W. Trebels,Multiplier criteria of Marcinkiewicz type for Jacobi expansions,
Trans. Amer. Math. Soc. 231 (1977), 117–132.

[GK01a] L. Grafakos, N. J. Kalton, The Marcinkiewicz multiplier condition for bilinear opera-
tors, Studia Math. 146 (2001), 115–156.

[Ho60] L. Hörmander, Estimates for translation invariant operators in Lp spaces, Acta Math.
104 (1960), 93–140.

[Ki88] S. V. Kislyakov, Fourier coefficients of continuous functions and a class of multipliers,
Ann. Inst. Fourier (Grenoble) 38 (1988), 147–183.

[Ki91] S. V. Kislyakov, Classical themes of Fourier analysis, in: Commutative Harmonic
Analysis I, Encyclopaedia Math. Sci. 15, Springer, Berlin, 1991, 113–165.

[Ki01] S. V. Kislyakov, Banach spaces and classical harmonic analysis, in: Handbook of the
Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001, 871–898.

http://dx.doi.org/10.4153/CJM-1993-024-7
http://dx.doi.org/10.5802/aif.1127
http://dx.doi.org/10.1090/S0002-9904-1975-13741-4
http://dx.doi.org/10.1090/S0002-9947-1977-0467139-8
http://dx.doi.org/10.4064/sm146-2-2
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[Ki09] S. V. Kislyakov, Weak type (1, 1) in the strengthened Marcinkiewicz theorem, Funkt-
sional. Anal. i Prilozhen. 43 (2009), no. 3, 89–92; English transl.: Funct. Anal. Appl.
43 (2009), 236–238.

[Ko67] V. Kokilashvili, On extensions of some Marcinkiewicz and Littlewood–Paley theorems,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 239–243.

[KP80] S. Kwapień, A. Pełczyński, Absolutely summing operators and translation-invariant
spaces of functions on compact abelian groups, Math. Nachr. 94 (1980), 303–340.

[LMR68] W. Littman, C. McCarthy, N. Rivière, Lp-multiplier theorems, Studia Math. 30 (1968),
193–217.

[Mi56] S. G. Mikhlin, On the multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR (N.S.)
109 (1956), 701–703.

[TW01] T. Tao, J. Wright, Endpoint multiplier theorems of Marcinkiewicz type, Rev. Mat.
Iberoamericana 17 (2001), 521–558.

[Ve03] A. Venni, Marcinkiewicz and Mihlin multiplier theorems, and R-boundedness, in: Evo-
lution Equations. Applications to Physics, Industry, Life Sciences and Economics
(Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl. 55, Birkhäuser,
Basel, 2003, 403–413.

4.3.4. Convergence of Riemann sums and Marcinkiewicz–Salem conjecture (1940). Mar-
cinkiewicz, while staying in Paris, has written together with Raphaël Salem the paper
[MS40], published in 1940, concerning Riemann sums.

Let T = [0, 1) = R/Z with normalized Lebesgue measurem. For a measurable function
f on T and n ∈ N we define the n-th Riemann sum of f as

Rnf(x) =
1
n

n−1∑
k=0

f
(
x+

k

n

)
, x ∈ T. (42)

In particular, when x = 0, we have the usual Riemann sums

Rnf =
1
n

n−1∑
k=0

f
(k
n

)
.

– If f is Riemann integrable on T, then for any x ∈ R we have

lim
n→∞

Rnf(x) =
∫ 1

0

f(t) dm. (43)

– If f is only Lebesgue integrable on T, then

lim
n→∞

∥∥∥Rnf(·)−
∫ 1

0

f(t) dm
∥∥∥

L1(T)
= 0. (44)

Then it is natural to pose the question on pointwise convergence of these sums. The
first investigations were done by Hahn (1914) who wanted to approximate Lebesgue
integrals by the Riemann integrals. However, the first result is due to Jessen (1934):

– if f ∈ L1(T) and if (nk) is an increasing sequence of natural numbers in which next
term divides the previous one, then

lim
k→∞

Rnk
f(x) =

∫ 1

0

f(t) dm for almost all x.

http://dx.doi.org/10.1007/s10688-009-0030-1
http://dx.doi.org/10.1002/mana.19800940118
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Remark 2 (Marcinkiewicz–Salem 1940). The Jessen result is in some sense the best
one, i.e., for the sequence (2n)n≥1 and for any positive increasing function w satisfying
limx→∞

w(x)
ln x = 0 we can find a function f such that∫

T
|f |w(|f |) dm <∞ and

∫
T

sup
k≥0

|R2kf | dm = +∞.

– Ursell (1937) and Marcinkiewicz–Salem (1940) showed the existence of a function
f ∈ L1(T) such that lim supn→∞ |Rnf(x)| = +∞ for any x.

– Rudin (1964) showed even more, i.e., the existence of a function f ∈ L1(T) such
that lim supn→∞R2n+1f(x) = +∞.

From this it follows that we cannot have convergence almost everywhere even for
bounded functions.

Theorem 18 (Marcinkiewicz–Salem 1940).
(a) If ∫

T
[f(x+ t)− f(x)]2 dx = O(tε), ε > 0, (45)

then the sequence (Rnf)n≥1 is convergent almost everywhere to
∫

T f dm.
(b) If ∫

T

∫
T

[f(x+ t)− f(x)]2

t |ln(t/2)|
dt dx <∞, (46)

then the sequence of averages
(
Anf = 1

n

∑n
k=1Rkf

)
fn≥1 is convergent almost everywhere

to
∫

T f dm.
(c) If ∫

T
|f(x+ t)− f(x)| dx = O

( 1
| ln t|p

)
, p > 1, (47)

then the sequence of averages (Anf)n≥1 is convergent almost everywhere to
∫

T f dm.

Note that condition (46) holds when for example∫
T
[f(x+ t)− f(x)]2 dx = O

( 1
ln2 |ln t|

)
,

which is essentially weaker than (45). Moreover, if f is non-decreasing and
∫

T |f(x)|q dx
is finite for some q > 1, then (47) holds.

It is time to formulate a famous conjecture, namely the following one:

Marcinkiewicz–Salem conjecture (1940). If f ∈ L2(T), then the sequence of av-
erages (Anf = 1

n

∑n
k=1Rkf)n≥1 is convergent almost everywhere.

Let us mention the result of Bourgain (1990) connected with this hypothesis: If f ∈
L2(T), then the sequence (Rnf) has logarithmic density, i.e.,

1
lnN

N∑
n=1

1
n
Rnf →

∫
T
f dm a.e.

More information, proofs, connection with number theory and generalizations related to
convergence almost everywhere can be found in the Ruch–Weber paper (2006) and other
papers mentioned below:
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[Bo90] J. Bourgain, Problems of almost everywhere convergence related to harmonic analysis
and number theory, Israel J. Math. 71 (1990), 97–127.

[Je34] B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. of Math.
(2) 35 (1934), 248–251.

[RW06] J.-J. Ruch, M. Weber, On Riemann sums, Note Mat. 26 (2006), no. 2, 1–50.
[Ru64] W. Rudin, An arithmetic property of Riemann sums, Proc. Amer. Math. Soc. 15 (1964),

321–324.
[We04] M. Weber, A theorem related to Marcinkiewicz–Salem conjecture, Results Math. 45

(2004), 169–184.
[We05] M. Weber, Almost sure convergence and square functions of averages of Riemann sums,

Results Math. 47 (2005), 340–354.

4.3.5. Marcinkiewicz’s theorem on universal primitive functions (1935). Luzin (1915)
showed that every Lebesgue measurable and almost every finite function on an interval
[a, b] is almost everywhere derivative of a continuous function (a proof can be found in the
Saks book [Sa37], pp. 217–218). Marcinkiewicz (1935) generalized this theorem in [M35a]
by proving the following remarkable fact: there is a continuous function F , which is a
generalized primitive function (antiderivative) for every a.e. finite Lebesgue measurable
function f , that is, F is a universal generalized primitive function. Marcinkiewicz showed
also that most functions are universal primitive functions, since in the class of continuous
functions the functions which are not universal generalized primitive functions form a set
of the first category in C[a, b]. Marcinkiewicz not only proved the existence of universal
primitive function, but he also the first to use the word “universal” in such context and
the first to show that a set of universal elements is residual.

Theorem 19 (Marcinkiewicz’s theorem on universal primitive functions 1935). Let [a, b]
⊂ R and let (hn)∞n=1 be a fixed sequence of nonzero real numbers converging to zero.
Then there exists a continuous function F : [a, b] → R having the following property : if
f : [a, b] → R is any Lebesgue measurable function, then there is a subsequence (hnk

) of
(hn)∞n=1 such that

lim
k→∞

F (x+ hnk
)− F (x)

hnk

= f(x) almost everywhere on [a, b].

Such functions F constitute a residual set in C[a, b].

Note that one and the same function F works for all functions f . Of course the
subsequence depends on f . The function F may be called generalized primitive function
(antiderivative) of f with respect to the given sequence (hn)∞n=1 and it is clear that such
an F may be a generalized primitive function of many functions not equivalent to f .

Marcinkiewicz’s Theorem 19 with proof can be found in the books by Saks (1937),
Bruckner (1978), Stromberg (1981) and Wise-Hall [WH93]:

[Sa37] S. Saks, Theory of the Integral, 2nd rev. ed., Monografie Matematyczne VII, Warszawa-
Lwów, 1937 [Marcinkiewicz theorem, p. 218].

[Br78] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Sprin-
ger, Berlin-New York, 1978 [Theorem 3.3. Marcinkiewicz, pp. 82–83].

http://dx.doi.org/10.1007/BF02807252
http://dx.doi.org/10.2307/1968429
http://dx.doi.org/10.1090/S0002-9939-1964-0159918-8
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[St81] K. R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth International,
Belmont, 1981 [Marcinkiewicz theorem with the proof, pp. 316–317].

[WH93] G. L. Wise, E. B. Hall, Counterexamples in Probability and Real Analysis, Oxford
Univ. Press, New York, 1993 [Marcinkiewicz theorem with the proof in Example 3.15,
pp. 78–79].

Several authors have obtained strengthenings, generalizations and variants of Mar-
cinkiewicz Theorem 19. Hoàng Tu.y [HT59], [HT60] shows theorem for essential left and
right derivative numbers of f at almost each x, a martingale version is due to Lamb
[La74], Aversa and Carrese [AC83] obtain an n-dimensional version for interval func-
tions, Grande [Gr84] gives a Banach space-valued generalization, that is, for functions
f : [0, 1] → X, where X is a Banach space. Cater [Ca89] replaces the difference quo-
tient (F (x + h) − F (x))/h by certain higher-order difference quotients, and Gan and
Stromberg [GS94] obtain the generalization of Marcinkiewicz’s theorem for functions
f : [0, 1]n → Rn. Smooth universal Marcinkiewicz functions were constructed by Krotov
in [Kr91].

Joó [Jo89] studied the problem when one replaces a.e. convergence by convergence in
Lp[0, 1] for any 0 < p < 1. He (also Herzog and Lemmert [HL06]) showed the existence of
a universal primitive F in the space C[0, 1] such that to each function f ∈ Lp[0, 1] there is
a subsequence of (F (x+ λn)−F (x))/λn with limit f in Lp[0, 1]. Several authors showed
that one cannot choose here p ≥ 1 (see Bogmér–Sövegjártó [BS87], Buczolich [Bu87]
and Horváth [Ho87]). Herzog and Lemmert [HL09] proved a universality theorem from
which we can deduce that F may be chosen to be Hölder continuous for each exponent
α ∈ (0, 1). Of course there are no Lipschitz continuous universal primitives since each
Lipschitz continuous function is differentiable almost everywhere.

The general definition of the universality was given by Grosse-Erdmann in 1999. He
presented this concept with several examples and references in a survey article [GE99].
Some related problems are raised in Laurinčikas [La03].

[AC83] V. Aversa, R. Carrese, A universal primitive for functions of many variables, Rend.
Circ. Mat. Palermo (2) 32 (1983), 131–138 (Italian).

[BS87] A. Bogmér, A. Sövegjártó, On universal functions, Acta Math. Hungar. 49 (1987), 237–
239.

[BL66] A. M. Bruckner, J. L. Leonard, Derivatives, Amer. Math. Monthly 73 (1966), no. 4,
Part II, 24–56 [Marcinkiewicz result, p. 29].

[Bu87] Z. Buczolich, On universal functions and series, Acta Math. Hungar. 49 (1987), 403–414.
[Ca89] F. S. Cater, Some higher-dimensional Marcinkiewicz theorems, Real Anal. Exchange 15

(1989/90), 269–274.
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121 (1994), 151–161.
[Gr84] E. Grande, Sur un théorème de Marcinkiewicz, Problemy Mat. 4 (1984), 35–41.
[GE99] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math.

Soc. (N.S.) 36 (1999), 345–381 [Theorem 12 (Marcinkiewicz), p. 362].
[HL06] G. Herzog, R. Lemmert, Universality of methods approximating the derivative, Bull.

Austral. Math. Soc. 73 (2006), 405–411.
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[La03] A. Laurinčikas, The universality of zeta-functions, Acta Appl. Math. 78 (2003), 251–271.

4.3.6. Marcinkiewicz theorem on Perron integral and Marcinkiewicz–Zygmund integral.
If a function f : [a, b] → R has derivative f ′ which is Riemann integrable, then from the
fundamental theorem of calculus we have the equality∫ b

a

f ′(x) dx = f(b)− f(a). (48)

The equality (48) is not always true, even if f is differentiable on [a, b], since the derivative
can be unbounded and thus not Riemann integrable on [a, b]. We would like to have such
an integral, which has sense for all derivatives and which ensure the equality (48). For
example for the function f(x) = x2 cos π

x2 for 0 < x ≤ 1 and f(0) = 0 it yields∫
In

|f ′(x)| dx =
1
2n
, where In =

[( 2
4n+ 1

)1/2

,
1

(2n)1/2

]
and, hence, ∫ 1

0

|f ′(x)| dx = ∞.

Thus f ′ is not Lebesgue integrable on [0, 1], nevertheless the improper integral

lim
ε→0+

∫ 1

ε

f ′(x) dx

exists. Consequently, the Lebesgue integral does not solve the problem.
Denjoy (1912) introduced an integral having the required property. The narrow Denjoy

integral of function f is defined by existence of a continuous indefinite integral F on
[a, b] such that F ′ = f almost everywhere in [a, b] with some technical conditions. This
integral is equivalent with the Perron integral defined in 1914 with the help of major and
minor function of f . For the Perron integral the formula (48) is true if the function f is
differentiable on [a, b].

Let f : [a, b] → R. Then function M : [a, b] → R is called a major function of f if
M(a) = 0 and DM(x) ≥ f(x) for x ∈ [a, b], and DM(x) = lim infh→0

M(x+h)−M(x)
h , and

http://dx.doi.org/10.4134/BKMS.2009.46.2.359
http://dx.doi.org/10.1090/S0002-9947-1974-0339328-1
http://dx.doi.org/10.1023/A:1025797802722
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function m : [a, b] → R is called a minor function of f if m(a) = 0 and Dm(x) ≤ f(x) for
x ∈ [a, b], where Dm(x) = lim suph→0

m(x+h)−m(x)
h .

A function f : [a, b] → R is said to be integrable in the sense of Perron (P-integrable)
on [a, b] if there exist major functionM of f and minor function m of f , and infM M(b) =
supmm(b) = I. Their common value I is called the Perron integral of f on [a, b] and is
denoted by (P)

∫ b

a
f(x) dx. If f is P-integrable on [a, b], then F (u) = (P)

∫ u

a
f(x) dx,

u ∈ [a, b], is continuous and F ′ = f almost everywhere on [a, b], and hence we are getting
that f is Lebesgue measurable (F need not be absolutely continuous). Moreover, if f is
P-integrable on [a, b] and nonnegative, then f is also Lebesgue integrable on [a, b].

One of the unexpected results on the Perron integral is Marcinkiewicz’s theorem
contained in the book by Saks ([Sa37], p. 253) and not published in any paper of Mar-
cinkiewicz (cf. Bullen [Bu90], p. 12).

Theorem 20 (Marcinkiewicz theorem on Perron integral 1937). A measurable function
f : [a, b] → R is Perron integrable if and only if it has one continuous major and one
continuous minor function.

This theorem was proved also by Tolstov [To39] and Denjoy [De49]. Generalizations
of Theorem 20 on other Perron type integrals and on functions having possibly infinite
values were formulated by McShane [Mc42], Frenkel and Cotlar [FC50], Sarkhel [Sa78].
Marcinkiewicz’s theorem is true for AP-integral (approximately continuous Perron in-
tegral), CP-integral (Cesàro–Perron integral) – see Bullen [Bu90]. Failure of the Mar-
cinkiewicz theorem for SCP-integral (symmetric Cesàro–Perron integral) was proved by
Sklyarenko [Sk99], for integrals defined by symmetric derivatives was proved by Skvortsov
and Thomson [ST96] (see Thomson [Th94]), and for Pd-integral (dyadic Perron integral)
was noticed by Skvortsov [Sk96]. Research, whether for a given integral Marcinkiewicz’s
theorem is true or not, continues to this day.

Marcinkiewicz’s theorem on existence of the Perron integral appeared in differential
equations (in Peano theorem) – see e.g. Bullen and Výborný [BV91].

In trigonometric series the fundamental problem was to define an integral in such
a way that if a trigonometric series 1

2a0 +
∑∞

n=1(an cosnx + bn sinnx) is convergent
everywhere to a function f(x), then f(x) is integrable and the coefficients an and bn are
given by usual Fourier formulas. This problem was solved in many ways starting form
Denjoy (1916).

Marcinkiewicz and Zygmund [MZ36] also gave such a way by defining the inverse of
Borel derivative and using the Perron method. Now, a function M on [a, b] is major of
f : [a, b] → R, if M(a) = 0 and

BsM(x) = lim inf
h→0

1
h

∫ h

0

M(x+ t)−M(x− t)
2t

dt ≥ f(x),

and m on [a, b] is minor of f , if m(a) = 0 and

Bsm(x) = lim sup
h→0

1
h

∫ h

0

m(x+ t)−m(x− t)
2t

dt ≤ f(x).
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Marcinkiewicz–Zygmund integral (MZ-integral) is by definition

I = (MZ)
∫ b

a

f(x) dx := inf
M
M(b) = sup

m
m(b).

This integral has the required fundamental property: if the trigonometric series is con-
vergent everywhere to f(x), then f is integrable in the sense of Marcinkiewicz–Zygmund
on [0, 2π].

[Sa37] S. Saks, Theory of the Integral, 2nd rev. ed., Monografie Matematyczne VII, Warszawa-
Lwów, 1937 [Marcinkiewicz theorem, p. 253].
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289–292].

[Go94] R. A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud.
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[Sa78] D. N. Sarkhel, A criterion for Perron integrability, Proc. Amer. Math. Soc. 71 (1978),

109–112.
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599–606; English transl.: Math. Notes 65 (1999), 500–505.
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4.4. Fourier series and orthogonal series. Consider a trigonometric series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) (49)

http://dx.doi.org/10.4153/CMB-1991-027-x
http://dx.doi.org/10.1090/S0002-9904-1942-07766-4
http://dx.doi.org/10.1090/S0002-9939-1978-0499032-5
http://dx.doi.org/10.1007/BF02675365
http://dx.doi.org/10.1007/BF02310959
http://dx.doi.org/10.1007/BF01236361
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or, formally equivalent, series in the complex form
∞∑

n=−∞
cn e

inx, (50)

assuming b0 = 0 we get cn = (an − ibn)/2, c−n = (an + ibn)/2.
A trigonometric series (49) is a Fourier series of a 2π-periodic function f ∈ L1[−π, π],

if the coefficients (Fourier coefficients) are given by the formulas

an =
1
π

∫ π

−π

f(x) cosnx dx, bn =
1
π

∫ π

−π

f(x) sinnx dx,

cn = f̂(n) =
1
2π

∫ π

−π

f(x)einx dx.

(51)

The partial sums Snf , n ≥ 1, of a Fourier series of a function f are

Snf(x) =
∑
|k|≤n

f̂(n)einx =
1
2π

∫ π

−π

Dn(x− y)f(y) dy, (52)

where Dn is the Dirichlet kernel of the form

Dn(x) =
∑
|k|≤n

eikx =
sin(n+ 1/2)x

sin(x/2)
, n = 0, 1, . . . ,

with value 2n+ 1 at x = 0 (mod 2π). The Cesàro means σnf are

σnf(x) =
S0f(x) + S1f(x) + . . .+ Snf(x)

n+ 1
=

1
2π

∫ π

−π

Fn(x− y)f(y) dy,

where Fn denotes the Fejér kernel

Fn(x) =
D0f(x) +D1f(x) + . . .+Dnf(x)

n+ 1
=

1
n+ 1

sin2 n+1
2 x

sin2 x
2

.

For f ∈ Lp with 1 < p <∞ it yields that limn→∞ ‖f −Snf‖p = limn→∞ ‖f −σnf‖p = 0
and for f ∈ L1 we have limn→∞ ‖f − σnf‖1 = 0. On the other hand, if f ∈ L1, then the
Fourier sums can be divergent almost everywhere (Kolmogorov 1923) and the problem of
almost everywhere convergence of Fourier series became an important object of research
of many mathematicians around the world, including Marcinkiewicz and Zygmund.

4.4.1. Pointwise convergence of Fourier series. In this part we investigate 2π-periodic
functions, therefore functions or convergence of functions will be considered either on
[−π, π] or [0, 2π].

The first paper of Marcinkiewicz [M33] contains a short proof of Kolmogorov’s theorem
(1924) on convergence of partial sums of lacunary Fourier series: if f ∈ L2 and λn+1/λn >

q > 1, then Sλnf is convergent almost everywhere to f . A new proof deserved attention
because of its brevity and clarity.

In the second paper, Marcinkiewicz [M34] generalized results of Wiener (1924) on the
functions of finite p-variation with p > 0 (Wiener considered only the case p = 2). Recall
that the function f : [a, b] → R has finite p-variation, if

Vp(f) = Vp(f ; a, b) =
(
sup
Π

n∑
k=1

|f(xk)− f(xk−1)|p
)1/p

<∞,
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where supremum is taken over all partitions Π : a = x0 < x1 < . . . < xn−1 < xn = b

of the interval [a, b]. The collection of all such functions of finite p-variation is denoted
by Vp[a, b], and by Vp[0, 2π] we denote 2π-periodic functions having finite p-variation.
Marcinkiewicz showed that ([M34], Theorem 1 and 2) if f ∈ Vp[a, b] (0 < p < ∞), then
the function

ϕp(x) = lim sup
h→0

|f(x+ h)− f(x)|
|h|1/p

is finite almost everywhere and ϕp ∈ Lp[a, b] with ‖ϕp‖p ≤ Vp[a, b]. He also proved that
if f ∈ Vp[0, 2π] (0 < p <∞), then

ω(δ; f)p := sup
|h|≤δ

(∫ 2π

0

|f(x+ h)− f(x)|p dx
)1/p

≤ Vp(f ; 0, 3π) δ1/p for 0 < δ ≤ π. (53)

From this estimate we obtain the following results of Marcinkiewicz: If f ∈ Vp[0, 2π]
(p ≥ 1), then the coefficients of the Fourier series of a function f are of order O(n−1/p)
and the Fourier series is convergent almost everywhere to f .

The estimate (53) has appeared in textbooks and we can find it, for example, in
[Ta79], pp. 17–18.

In the next paper [M35d] from 1935 Marcinkiewicz improved the result of Hardy–
Littlewood (1932) on almost everywhere convergence of Fourier series.

Theorem 21 (Marcinkiewicz’s test 1935).
(a) If, for x belonging to the set E of positive measure, we have

1
t

∫ t

0

|f(x+ u)− f(x)| du = O
( 1

log 1/|t|

)
, (54)

then (Snf) is convergent almost everywhere in E.
(b) If f ∈ L1[−π, π] and∫ π

0

ω1(f, t)
dt

t
<∞, where ω1(f, t) =

1
2π

∫ π

−π

|f(x+ t)− f(x)| dx, (55)

then Snf(x) → f(x) for almost all x ∈ [−π, π].

Marcinkiewicz also showed that the result in (a) is the best possible one, in the
following sense (announced in [M35d] and proved in [M36a], Thm 2): if the function
ω : R → (0,∞) is even, nondecreasing in some interval (0, δ), 0 < δ ≤ 1/3 and such that
limt→0 ω(t) = 0, limt→0 ω(t) log 1

|t| = +∞, then there exists a function f ∈ L1 for which

1
t

∫ t

0

|f(x+ u)− f(x)| du = O[ω(t)]

almost everywhere in [0, 2π], but the Fourier series is divergent almost everywhere.
Theorem 21(a) with proof can be found e.g. in the books by Zygmund ([Zy59], II, pp.

170–172), Alexits ([Al61], pp. 320–326) and Bary ([Ba64], I, pp. 417–421), where also the
proof of optimality of this theorem appears ([Ba64], I, pp. 443–447). Moreover, Theorem
21(b) with proof can be found in the books written by Zygmund ([Zy59], II, p. 172),
Torchinsky ([To86], p. 7), Bruckners and Thomson ([BBT97], p. 683).

Marcinkiewicz (1939) proved an interesting generalization of the Plessner theorem
(1925), extending the case p = 2 to 1 ≤ p ≤ 2 (for p = 1 we obtain the usual Dini test):
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Theorem 22 (Marcinkiewicz 1939). Let 1 ≤ p ≤ 2. If f ∈ Lp and∫ 2π

0

∫ 2π

0

|f(x+ t)− f(x− t)|p

t
dt dx <∞, (56)

then the Fourier series of the function f is convergent almost everywhere.

Theorem 22, together with the proof, can be found e.g. in the book by Bary [Ba64],
I, pp. 379–380.

The year 1966 was a breakthrough for research on convergence almost everywhere
of Fourier series. Then the Swedish mathematician Lennart Carleson [Car66] proved the
Luzin conjecture from 1913 that if f ∈ L2(−π, π), then the Fourier series is convergent
almost everywhere. Equivalent formulation is: if (cn)∞n=−∞ ∈ l2 is a sequence of complex
numbers, then the series

∑∞
n=−∞ cne

inx is convergent almost everywhere. Hence, an
analogue for Fourier integrals can be deduced: if f ∈ L2(R), then the functions gα(x) =∫ α

−α
f(t)eitx dt are convergent almost everywhere, when α→∞. In 1967, Richard Hunt,

extended the result of Carleson to the spaces Lp(−π, π) for 1 < p < ∞, and since then
the assertion is called the Carleson–Hunt theorem. A new elegant proof of this theorem
was given by Charles Fefferman [Fe73] in 1973.

I guess that the theorem which Marcinkiewicz might most have liked to see is the
Carleson–Hunt theorem.

In the twenties also papers on almost everywhere divergence of Fourier series appeared.
In 1923 Kolmogorov constructed a function f ∈ L1 such that the partial Fourier sums
Snf are unbounded almost everywhere, and so divergent almost everywhere. He also
added an example of a function f ∈ L1 which Fourier sums S2nf are divergent almost
everywhere. Three years later, Kolmogorov noticed the existence of a function f ∈ L1

with divergent Fourier sums at every point.
In 1927 Kolmogorov together with Menshov published the paper [KM27] in which

they informed, without proof, about the existence of a function f ∈ L2 whose Fourier
series after a permutation of terms is divergent almost everywhere. It was not possible
to reproduce their proof despite requests addressed even to Kolmogorov. Thus, there was
not known neither a function nor permutation. A short method of construction was found
only in 1960 by Z. Zahorski [Za60] (see also [Ul83], p. 71).

In 1936 Marcinkiewicz modified the construction of Kolmogorov from 1923 in his
paper [M36a]. This necessary modification was not at all obvious.

Theorem 23 (Marcinkiewicz’s example 1936). There exists a function f ∈ L1[0, 2π] such
that the Fourier sums Snf are divergent almost everywhere on [0, 2π] and

lim sup
n→∞

|Snf(x)| <∞

for almost all x ∈ [0, 2π], that is, the Fourier series of function f is boundedly divergent
almost everywhere on [0, 2π].

The Kolmogorov and Marcinkiewicz constructions can be found in the Zygmund book
[Zy59], pp. 305–308 and 308–310, in the Bary book [Ba64], pp. 430–442, and in review
articles of Ul’yanov [Ul57], pp. 95–99 and 102–106, [Ul83], pp. 57–65.
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4.4.2. Orthogonal series. A sequence Φ = (ϕn)∞n=1, where ϕn : [a, b] → R (n = 1, 2, . . . )
is called an orthogonal system in L2[a, b], if∫ b

a

ϕm(t)ϕn(t) dt = 0 for m 6= n and
∫ b

a

ϕ2
n(t) dt = λn > 0 (m,n = 1, 2, . . . ).
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If, in addition, λ1 = λ2 = . . . = 1, then the system is called orthonormal.
We will discuss three results of Marcinkiewicz from the general theory of orthogonal

series: the problem of almost everywhere convergence of a subsequence of any orthonormal
system (1936), a generalization of the Hausdorff–Young inequality (1937) and the theorem
of Marcinkiewicz on Haar system (1937).

In 1936 Marcinkiewicz proved an interesting theorem for general orthonormal systems
([M36c], Thm A).

Theorem 24 (Marcinkiewicz 1936). For any orthonormal system Φ = (ϕn)∞n=1 of func-
tions defined on [0, 1] there exists an increasing sequence (Nk)∞k=1 of natural numbers
such that for any series

∞∑
n=1

anϕn(x) with
∞∑

n=1

|an|2 <∞, (57)

the sequence
(
SNk

(x) =
∑Nk

n=1 anϕn(x)
)∞
k=1

is almost everywhere convergent on [0, 1] and
we have the estimate ∥∥sup

m≥1
|SNm

(x)|
∥∥

2
≤ C

( ∞∑
n=1

|an|2
)1/2

,

with constant C independent of the system Φ.

A subsequence (Nk)∞k=1 depends only on the system Φ = (ϕn)∞n=1. For different or-
thonormal systems the sequence (Nk) can be different. For example, for the Haar system
we can take Nk = k and for the trigonometric system Nk = 2k.

If instead of (an) ∈ l2 we have a stronger assumption, then we can find a universal
sequence (Nk) good for all orthonormal systems, for example, if

∑∞
n=1 |an|2 lnn < ∞

and f ∈ L2[0, 1] is a sum of series
∑∞

n=1 anϕn(x) in the ‖ · ‖2-norm, then the sequence
S2n(x) =

∑2n

k=1 akϕk(x) is convergent almost everywhere to f(x).
By using Theorem 24 Marcinkiewicz showed the following ([M36c], Thm B): if 1 ≤

p < 6
5 , then there is an f ∈ Lp[0, 2π] and a rearrangement of the Fourier series of f such

that the new obtained series a0/2+
∑∞

k=1(ank
cosnk x+bnk

sinnk x) diverges unboundedly
almost everywhere in [0, 2π]. In 1957 Ul’yanov generalized this result to 1 ≤ p < 2 (see
Bary [Ba64], I, pp. 480–482).

Marcinkiewicz’s Theorem 24 is cited e.g. in the following books:

[KS58] S. Kaczmarz, H. Steinhaus, Theory of Orthogonal Series, Fizmatgiz, Moscow, 1958 (Rus-
sian).

[Si59] R. Sikorski, Real Functions, Vol. II, Monografie Matematyczne 37, PWN, Warszawa,
1959 (Polish) [Marcinkiewicz result, p. 148].

[Al61] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York,
1961 [2.10.2. Marcinkiewicz–Menchoff theorem, pp. 152–155 and 158].

[Ga70] A. M. Garsia, Topics in Almost Everywhere Convergence, Lectures in Advanced Math.
4, Markham, Chicago, 1970 [Marcinkiewicz theorem, pp. 79–80].

[KS84] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (Russian) [The-
orem 8.7. Marcinkiewicz theorem with the proof and estimate C ≤ 6

√
3, pp. 317–320].

Let Φ = (ϕn)∞n=1 be an arbitrary orthogonal system in L2(a, b) and let the interval
(a, b) be finite or infinite. If ‖ϕn‖2 ≤ C for any n ∈ N, then considering the Fourier
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coefficients

cn =
∫ b

a

f(x)ϕn(x) dx (58)

of the function f with respect to the system Φ we must assume that f ∈ L2(a, b) to
ensure the existence of the integrals (58). If ‖ϕn‖∞ ≤ C, then the integrals (58) exist
for f ∈ L1(a, b). Marcinkiewicz and Zygmund [MZ37b] assumed that ϕn ∈ Lr(a, b) for
2 ≤ r ≤ ∞. Then integrals (58) exist for f ∈ Lr′ , where 1

r + 1
r′ = 1.

Marcinkiewicz and Zygmund [MZ37b] gave the following generalization of the Haus-
dorff–Young theorem (for trigonometric system and r = ∞) and the F. Riesz theorem
(1923, for uniformly bounded orthonormal system and r = ∞).

Theorem 25 (Marcinkiewicz and Zygmund 1937). Let Φ = (ϕn)∞n=1 be an orthonormal
system in L2(a, b) such that ‖ϕn‖r = Mn <∞ for some r ∈ (2,∞] and arbitrary n ∈ N.
Assume also that p and q satisfy the equality r′

p + 2−r′

q = 1.
(a) If r′ ≤ p ≤ 2 and f ∈ Lp(a, b), then (

∑∞
n=1 |cn|q M2−q

n )1/q ≤ ‖f‖p.
(b) If 2 ≤ p ≤ r and the sequence a = (an)∞n=1 satisfies the conditions

Iq(a) =
( ∞∑

n=1

|an|q M2−q
n

)1/q

<∞ and
∞∑

n=1

|an|2 <∞,

then there exists f ∈ Lp(a, b) such that f = limn→∞
∑n

k=1 akϕn in Lp(a, b) and ‖f‖p ≤
Iq(a).

Note that if the numbers Mn are bounded from below by a positive constant, then
the inequality

∑∞
n=1 |an|q M2−q

n < ∞ implies
∑∞

n=1 |an|q < ∞ and so
∑∞

n=1 |an|2 <

∞ (the assumption 2 ≤ p ≤ r and the relation between p and q gives 1 ≤ q ≤ 2).
Hence, the condition of convergence

∑∞
n=1 |an|2 < ∞ may be omitted in the statement

of Theorem 25. This is, in particular, the case when the interval (a, b) is finite, because

Mn = ‖ϕn‖r ≥ (b− a)1/r−1/2‖ϕn‖2 = (b− a)1/r−1/2.

Marcinkiewicz and Zygmund also proved a generalization of the Paley theorem (1931,
r = ∞ and M1 = M2 = . . . = M).

Theorem 26 (Marcinkiewicz and Zygmund 1937). Let Φ = (ϕn)∞n=1 be an orthonormal
system in L2(a, b) such that ‖ϕn‖r = Mn <∞ for some r ∈ (2,∞] and arbitrary n ∈ N.
Assume also that M1 ≤M2 ≤ . . .Mn ≤ . . ..

(a) If r′ < p ≤ 2 and f ∈ Lp(a, b), then( ∞∑
n=1

|cn|pMr(p−2)/(r−2)
n n(r−1)(p−2)/(r−2)

)1/p

≤ A(p, r)‖f‖p.

(b) If 2 ≤ p < r and the sequence a = (an)∞n=1 satisfies the condition

Jr,p(a) =
( ∞∑

n=1

|an|pMr(p−2)/(r−2)
n n(r−1)(p−2)/(r−2)

)1/p

<∞,

then there exists f ∈ Lp(a, b) such that f = limn→∞
∑n

k=1 akϕn in Lp(a, b) and ‖f‖p ≤
B(p, r)Jr,p(a).

(c) Moreover, B(p, r) ≤ C r−2
r−p p for some C > 0 and A(p, r) = B(p′, r).
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Marcinkiewicz and Zygmund obtained the proof of Theorem 25 by using the interpo-
lation theorem of M. Riesz. In [Zy56] Zygmund proved the original Paley theorem using
the Marcinkiewicz interpolation theorem between strong type (2, 2) and weak type (1, 1)
of the linear operator Tf = (ncn) = (n

∫ b

a
f(t)ϕn(t) dt). An application of the Marcinkie-

wicz interpolation theorem gives also some other generalizations of the Hausdorff–Young
theorem (see Edwards [Ed82], pp. 192–197).

In [SW58] Stein and Weiss first proved a theorem on interpolation of operators with
change of measures, as a generalization of the Riesz–Thorin and Marcinkiewicz theorems,
and then used it to prove weighted version of the Paley theorem withM∗

n = max1≤k≤nMk

instead of Mn with the increases monotonically assumption. Bullen [Bu61] considers,
firstly, the cases of equality in the Hausdorff–Young theorems and then also observed
that the assumption of increasing monotonicity of (Mn) can be a little weaker, namely
that for some a > 1 and all m,n ∈ N, m < n, we have maxam+1≤k≤am+1 Mk ≤
Cmaxan+1≤k≤an+1 Mk. Moreover, Kirillov [Ki98] proved that the monotone increasing
assumption on the sequence (Mn) cannot be discarded.

In [Kol92] Kolyada gave a proof of the Marcinkiewicz–Zygmund Theorem 26(b) using
elementary inequalities for numbers and also extended this theorem to Orlicz classes.
Theorem 26 with new estimates in Lorentz spaces Lp,q was given by Kirillov [Ki99].

The Hausdorff–Young and Riesz theorems were also considered for some concrete
nonorthogonal systems but similar to orthogonal ones, as, for example, S. Verblunsky
(1954) considered in L2[0, 2π] the system (exp(iχnx))n∈Z, where χ−n = −χn and 0 =
χ0 < χ1 < . . . are positive solutions of the equation x + h tanπx = 0 with h > 0
fixed. In [Ro01] Rodionov studied expansions of functions in the space Lp with respect to
systems similar to orthogonal ones to include also the result by Verblunsky and proved
Marcinkiewicz–Zygmund type theorems for such systems.

[Ed82] R. E. Edwards, Fourier Series. Vol. 2. A Modern Introduction, 2nd ed., Grad. Texts in
Math. 85, Springer, New York–Berlin, 1982.

[Bu61] P. S. Bullen, Properties of the coefficients of orthonormal sequences, Canad. J. Math.
13 (1961), 305–315.

[Ki98] S. A. Kirillov, On a theorem of Marcinkiewicz and Zygmund, Mat. Zametki 63 (1998),
386–390; English transl.: Math. Notes 63 (1998), 338–341.

[Ki99] S. A. Kirillov, Norm estimates of functions in Lorentz spaces, Acta Sci. Math. (Szeged)
65 (1999), 189–201.

[Kol92] V. I. Kolyada, Some generalizations of the Hardy–Littlewood–Paley theorem, Mat. Za-
metki 51 (1992), 24–34; English transl.: Math. Notes 51 (1992), 235–244.

[Pa31] R. E. A. C. Paley, Some theorems on orthogonal functions I, Studia Math. 3 (1931),
226–238.

[Ri23] F. Riesz, Über eine Verallgemeinerung der Parsevalschen Formel, Math. Z. 18 (1923),
117–124.

[Ro01] T. V. Rodionov, Analogues of the Hausdorff–Young and Hardy–Littlewood theorems,
Izv. Ross. Akad. Nauk Ser. Mat. 65 (2001), no. 3, 175–192; English transl.: Izv. Math.
65 (2001), 589–606.

[SW58] E. M. Stein, G. Weiss, Interpolation of operators with change of measures, Trans. Amer.
Math. Soc. 87 (1958), 159–172.

http://dx.doi.org/10.4153/CJM-1961-026-7
http://dx.doi.org/10.1007/BF02317779
http://dx.doi.org/10.1007/BF01206385
http://dx.doi.org/10.1007/BF01192400
http://dx.doi.org/10.1070/IM2001v065n03ABEH000341
http://dx.doi.org/10.1090/S0002-9947-1958-0092943-6
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One of the classical orthonormal systems of functions is the Haar system {hn}∞n=1 in
which the functions are defined on the unit interval [0, 1] in the following way: h1(x) = 1
for all x ∈ [0, 1] and if n = 2m + k, k = 1, 2, . . . , 2m, m = 0, 1, . . . , then

hn(x) =


2m/2, if x ∈ ( 2k−2

2m+1 ,
2k−1
2m+1 ),

−2m/2, if x ∈ ( 2k−1
2m+1 ,

2k
2m+1 ),

0, if x /∈ (k−1
2m , k

2m ).

At interior points of discontinuity a Haar function is put equal to half the sum of its
limiting values from the right and from the left, and at the end points of [0, 1] to its
limiting values from within the interval.

Schauder [Sc28] proved that Haar system is a basis (Schauder basis) in Lp[0, 1] for
1 ≤ p < ∞. Marcinkiewicz continued studies of the Haar system by showing in [M37a]
that it is an unconditional basis for 1 < p <∞.

Theorem 27 (Marcinkiewicz 1937). For 1 < p <∞ the Haar system is an unconditional
basis in Lp[0, 1], that is, it remains a basis under any permutation of its elements.

This theorem is sometimes called the Paley–Marcinkiewicz theorem since Marcinkie-
wicz’s proof is a consequence of Paley’s results on the Walsh system. Gundy [Gu67],
Burkholder [Bu73] and Gapoškin [Ga74] gave simple proofs of this theorem. A gener-
alization of Marcinkiewicz’s Theorem 27 on reflexive Orlicz spaces was presented by
Gapoškin [Ga67], [Ga68], and on separable symmetric spaces X on [0, 1] with Boyd in-
dices 0 < αX ≤ βX < 1 by Semenov [Se69] (this theorem with the proof can be found in
the books [KPS82], pp. 181–182 and [LT79], pp. 156–158).

More information and the proof of Theorem 27 can be found in the books and papers
cited below:

[KS58] S. Kaczmarz, H. Steinhaus, Theory of Orthogonal Series, Fizmatgiz, Moscow, 1958
(Russian) [Marcinkiewicz theorems, pp. 449–450].

[Si70] I. Singer, Bases in Banach Spaces I, Grundlehren Math. Wiss. 154, Springer, Berlin,
1970 [Theorem 14.1. Marcinkiewicz theorem, pp. 407–409 and 633].

[Ol75] A. M. Olevskĭı, Fourier Series with Respect to General Orthogonal Systems, Ergeb.
Math. Grenzgeb. 86, Springer, New York, 1975 [Marcinkiewicz, p. 71].

[LT79] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, II. Function Spaces, Springer,
Berlin–New York, 1979 [Theorem 2.c.5, pp. 155–156].

[KPS82] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolation of Linear Operators, Nauka,
Moscow, 1978 (Russian); English transl.: Transl. Math. Monogr. 54, Amer. Math. Soc.,
Providence, 1982 [Theorem 9.6. for the Lp spaces was obtained by Marcinkiewicz, pp.
181–182 and 351].

[KS84] B. S. Kashin, A. A. Saakyan, Orthogonal Series, Nauka, Moscow, 1984 (Russian)
[Theorem 3.8. Marcinkiewicz theorem, pp. 92].

[NS97] I. Novikov, E. Semenov, Haar Series and Linear Operators, Math. Appl. 367, Kluwer
Acad. Publ., Dordrecht, 1997 [Marcinkiewicz theorem, pp. 36–39].

[Bu73] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1
(1973), 19–42.

http://dx.doi.org/10.1214/aop/1176997023
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[Ga67] V. F. Gaposhkin, The existence of unconditional bases in Orlicz spaces, Funkcional.
Anal. i Prilozhen. 1 (1967), no. 4, 26–32; English transl.: Functional Anal. Appl. 1
(1967), 278–284.

[Ga68] V. F. Gaposhkin, Unconditional bases in Orlicz spaces, Sibirsk. Mat. Zh. 9 (1968),
280–287; English transl.: Siberian Math. J. 9 (1968), 211–217.

[Ga74] V. F. Gaposhkin, The Haar system as an unconditional basis in Lp[0, 1], Mat. Zametki
15 (1974), 191–196; English transl.: Math. Notes 15 (1974), 108–111.

[Go70] B. I. Golubov, Series in the Haar system, in: Mathematical Analysis 1970, Itogi Nauki,
Akad. Nauk SSSR VINITI, Moscow, 1971, 109–146; English transl.: J. Soviet Math.
(New York) 1 (1973), 704–726.

[Gu67] R. F. Gundy, The martingale version of a theorem of Marcinkiewicz and Zygmund,
Ann. Math. Statist. 38 (1967), 725–734.

[GU58] R. S. Guter, P. L. Ul’yanov, On some results in the theory of orthogonal series, supple-
ment to the translation from German into Russian of the book: S. Kaczmarz, H. Stein-
haus, Theorie der Orthogonalreihen, Warszawa–Lwów 1935, GIFML, Moscow, 1958
(Russian) [Marcinkiewicz theorem on Haar functions, pp. 449–450]; English transl.:
Supplement to theory of orthogonal series, Amer. Math. Soc. Transl. II. Ser. 17 (1961),
219–250.

[Ha10] A. Haar, Zur Theorie der orthogonalen Funktionensysteme, Math. Ann. 69 (1910),
331–371.

[Kro78] V. G. Krotov, Unconditional convergence of the Fourier series in the Haar system
in the spaces Λpω, Mat. Zametki 23 (1978), 685–695; English transl.: Math. Notes 23
(1978), 376–382.

[Pa32] R. E. A. C. Paley, A remarkable series of orthogonal functions I, II, Proc. London
Math. Soc. (2) 34 (1932), 241–264 34 (1932), 265–279.

[Pe85] A. Pełczyński, Norms of classical operators in function spaces, Astérisque 131 (1985),
137–162 [2. The Marcinkiewicz–Paley inequality for the Haar system, pp. 144–146].

[Sc28] J. Schauder, Eine Eigenschaft des Haarschen Orthogonalsystems, Math. Z. 28 (1928),
317–320.

[Se69] E. M. Semenov, A certain method for obtaining interpolation theorems in symmetric
spaces, Dokl. Akad. Nauk SSSR 185 (1969), 1243–1246; English transl.: Soviet Math.
Dokl. 10 (1969), 507–511.

[Ul61] P. L. Ul’yanov, Divergent Fourier series, Uspekhi Mat. Nauk 16 (1961), no. 3, 61–142
[Theorem D. Marcinkiewicz result, pp. 68–69]; English transl.: Russian Math. Surveys
16 (1963), no. 3, 1–74.

[Wa91] G. Wang, Sharp square-function inequalities for conditionally symmetric martingales,
Trans. Amer. Math. Soc. 328 (1991), 393–419.

4.5. Approximation theory. We discussed earlier the approximation of functions by
Fourier series. Now, we instead concentrate on Lagrange type interpolation and trigono-
metric interpolation.

4.5.1. Marcinkiewicz’s theorem on Lagrange interpolation. The Lagrange interpolation
problem is to construct, for a given continuous function f : [a, b] → R and different n
points (nodes) x1, x2, . . . , xn from the interval [a, b], a polynomial Ln−1(f, x) of degree at
most n− 1 such that Ln−1(f, xk) = f(xk) for k = 1, 2, . . . , n. A polynomial of this type
can be found by using Lagrange’s interpolation formula. Then also an estimate on the
error f(x)− Ln−1(f, x) is of interest.

http://dx.doi.org/10.1007/BF02204783
http://dx.doi.org/10.1007/BF01236362
http://dx.doi.org/10.1214/aoms/1177698865
http://dx.doi.org/10.1007/BF01456326
http://dx.doi.org/10.1112/plms/s2-34.1.241
http://dx.doi.org/10.1112/plms/s2-34.1.265
http://dx.doi.org/10.1007/BF01181164
http://dx.doi.org/10.2307/2001887
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An interpolation process is given on [a, b] if there is given an infinite triangular matrix
of nodes (table of nodes) (xn,k)1≤k≤n,1≤n such that in every row we have different points
xn,k 6= xn,j for k 6= j from interval [a, b].

We do not necessarily have Ln−1(f, x) → f(x), but S. Bernstein constructed (for
certain interpolation points) other interpolation polynomials An(f, x) of degree mn > n

such that An(f, x) → f(x). G. Faber (1914) has shown that there is no table of nodes
that the corresponding interpolation process is uniformly convergent for any continuous
function, since for any table of nodes on [−1, 1] there is an f ∈ C[−1, 1] for which a
sequence of Lagrange polynomials Ln−1(f, x) satisfies lim supn→∞ |Ln−1(f, x)| = ∞. On
the other hand, we have Marcinkiewicz’s theorem concerning the possibility to construct
a table of nodes for every function separately (cf. [M36e], Thm 3).

Theorem 28 (Marcinkiewicz 1936). For any continuous function f on [a, b] there exists
an infinite triangular matrix of nodes such that the corresponding interpolation process
for f is uniformly convergent.

Theorem 28 can be found, for example, in the book by Daugavet [Da77], pp. 153–154.

4.5.2. Grünwald–Marcinkiewicz interpolation theorem. Given 2n + 1 distinct points
x0, x1, . . . , x2n on the x-axis, mod 2π, and any 2n+ 1 real numbers y0, y1, . . . , y2n, there
exists a trigonometric polynomial

Tn(x) =
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

of degree n (it has 2n+ 1 coefficients) such that Tn(xk) = yk (k = 0, 1, . . . , 2n) and such
a polynomial is unique. The most interesting case is when the points eix0 , eix1 , . . . , eix2n

are equally distributed on the unit circle, that is, when xk = x0 + 2πk
2n+1 , and the numbers

y0, y1, . . . , y2n are the values of a continuous function f(x) at the points x0, x1, . . . , x2n.
The polynomial Tn(x) = Tn(f, x) is then called the Lagrange interpolating polynomial for
the function f ; it depends also on the point x0, but for the sake of simplicity we may fix
the point x0 once for all and take x0 = 0. Polynomials Tn are given by the formulas

Tnf(x) =
1
π

∫ 2π

0

f(t)
sin(n+ 1

2 )(x− t)
2 sin 1

2 (x− t)
dω2n+1(t), (59)

where ω2n+1(t) is a step function having jumps 2π/(2n + 1) at the points xk and is
continuous elsewhere. If we replace here dω2n+1(t) by dt we obtain the classical formula
for the nth partial sums Snf(x) of the Fourier series of the function f . Since when n→∞
the graph of ω2n+1(t) approaches, after the subtraction of a suitable constant, the limit
g(t) = t, it is natural to conjecture that the behaviour of the sequence (Tn) is for n→∞
similar to the behaviour of the sequence (Sn).

It is actually so within certain limits. For example, already Faber showed that there
exists a continuous function f such that the sequence (Snf(x)) is uniformly convergent
while the sequence (Tn(f, x)) diverges at certain individual points. In 1933, Marcinkiewicz
in his PhD [M35b] constructed a continuous function f such that the sequence (Snf(x))
converges uniformly while the sequence (Tn(f, x)) diverges almost everywhere.
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At the time when the dissertation was published (as a paper [M35c]), the paper
[Gr35] of the Hungarian mathematician Géza Grünwald13 appeared. It contains a similar
result for the so-called Tchebyshev interpolation, which differs only formally from the La-
grange interpolation. The matrix of nodes in Tchebyshev interpolation is given by points
{xn,k = cos 2k−1

2n π}1≤k≤n,1≤n on the interval [−1, 1], and an interpolation polynomial by
Ln−1(f, x).

It is curious that a year later both authors could, independently of each other,
strengthen their examples by constructing continuous functions whose Tchebyshev in-
terpolating polynomials diverge everywhere.

Theorem 29 (Grünwald 1936, Marcinkiewicz 1936/37). There exists a function f ∈
C[−1, 1] such that the sequence (Ln−1(f, x))∞n=1 is divergent at every point x ∈ [−1, 1],
i.e., lim supn→∞ |Ln−1(f, x)| = ∞ for any x ∈ [−1, 1].

The proof of Theorem 29 is given, for example, in the books of Zygmund ([Zy59],
Vol. II, pp. 44–46) and Natanson [Na55]. The topic was developed later by G. Grünwald,
A. A. Privalov, P. Turán, P. Erdős and P. Vértesi. In particular, the last two authors have
shown in [EV80] the Grünwald–Marcinkiewicz theorem for any arrangement of nodes.

Theorem 29 is important for two reasons. On the one hand it shows that the Lagrange
approximation method is sometimes not a good approximation, even at the nodes. On the
other hand, we can see many similarities between approximation by the Fourier sums Snf

and the Lagrange polynomial interpolation Ln−1(f, ·). These similarities could be used,
although to a limited extent. For example, Marcinkiewicz in his master thesis noticed
that a continuous function f for which the sequence (Tnf(x)) diverges almost everywhere
(or even everywhere) can satisfy the condition f(x+h)−f(x) = O(1/ log(1/h)), i.e., the
sequence (Snf(x)) is convergent almost everywhere.

If we replace O by o the sequence (Tnf(x)) converges uniformly. Another example, is
the Carleson theorem (1964), which shows that if f ∈ C[−1, 1], then the partial Fourier
sums Snf(x) converge to f(x) almost everywhere on [−1, 1], but from Theorem 28 this is
not the case for the sequence (Tnf(x)). Marcinkiewicz proved in [M38i] that if f ∈ L1 is
periodic and F is the indefinite integral of the function f , then the derivatives of T ′n(F, x)
converge to f(x) and better imitate the behaviour of the partial sums Snf(x) than the
polynomials Tn(f, x).

It is also worth to mention about the following result of Marcinkiewicz from 1936
([M36b], Thm 1): there is a continuous 2π-periodic function f such that the arithmetic
means

T0f(x) + T1f(x) + . . .+ Tnf(x)
n+ 1

diverge at some points. This means that we do not have an obvious analogue of the
classical theorem of Fejér about the arithmetic means of the partial sums of Fourier
series.

13Géza Grünwald (born 18 October 1910 in Budapest – killed 7 September 1942, as holocaust
victim).
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This theorem, proofs and generalizations can be found in the following books and
papers:

[Na55] I. P. Natanson, Konstruktive Funktionentheorie, Akademie, Berlin, 1955 [II.3. Ein Bei-
spiel von Marcinkiewicz, pp. 379–388].

[Ch66] E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966
[information on Marcinkiewicz (1937) and Grünwald (1936) result, p. 233].

[Da75] P. J. Davis, Interpolation and Approximation, Dover, New York, 1975 [Marcinkiewicz,
p. 79].

[Da77] I. K. Daugavet, Introduction to the Theory of Approximation of Functions, Izdat.
Leningrad. Univ., Leningrad, 1977 (Russian) [Chapter 5, Theorem 1 (Marcinkiewicz),
pp. 153–154].

[SV90] J. Szabados, P. Vértesi, Interpolation of Functions, World Scientific, Singapore, 1990
[Grünwald–Marcinkiewicz result, p. 126].

[Ti94] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Dover, New
York, 1994 [information on Marcinkiewicz and Grünwald result, p. 579].

[EV80] P. Erdős, P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory
polynomials for arbitrary system of nodes, Acta Math. Acad. Sci. Hungar. 36 (1980),
71–89.

[Gr35] G. Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome,
Acta Sci. Math. (Szeged) 7 (1935), 207–221.

[Gr36] G. Grünwald, Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome
stetiger Funktionen, Ann. of Math. (2) 37 (1936), 908–918.

[Gr43] G. Grünwald, On the theory of interpolation, Acta Math. 75 (1943), 219–245.
[MV01] T. M. Mills, P. Vértesi, An extension of the Grünwald–Marcinkiewicz interpolation

theorem, Bull. Austral. Math. Soc. 63 (2001), 299–320.
[Of40] A. C. Offord, Approximation to functions by trigonometric polynomials, Duke Math. J.

6 (1940), 505–510.
[Re03] M. Revers, A survey on Lagrange interpolation based on equally spaced nodes, in: Ad-

vanced Problems in Constructive Approximation (Dortmund, 2001), Birkhäuser, Basel,
2003, 153–163.

4.5.3. Marcinkiewicz–Zygmund inequalities. In the proofs on the convergence of La-
grange interpolation, there are some inequalities used in the estimation error of Lagrange
interpolation – they compare a continuous norm and its discretization. We are talking
about the results originating in papers of Marcinkiewicz [M36b] and Marcinkiewicz–
Zygmund [MZ37a].

Theorem 30 (Marcinkiewicz inequalities 1936). If 1 < p <∞, then there exist constants
Ap, Bp > 0 such that for arbitrary trigonometric polynomial T of degree ≤ n the following
inequalities hold:

Ap

2n+ 1

2n∑
k=0

∣∣∣T( 2kπ
2n+ 1

)∣∣∣p ≤ ∫ 2π

0

|T (x)|p dx ≤ Bp

2n+ 1

2n∑
k=0

∣∣∣T( 2kπ
2n+ 1

)∣∣∣p.
Theorem 31 (Marcinkiewicz–Zygmund inequalities 1937). If 1 < p < ∞, then there
exist constants Cp, Dp > 0 such that for any complex polynomial P of degree ≤ n we have

http://dx.doi.org/10.1007/BF01897094
http://dx.doi.org/10.2307/1968627
http://dx.doi.org/10.1017/S0004972700019353
http://dx.doi.org/10.1215/S0012-7094-40-00640-8
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the following inequalities

Cp

n+ 1

n∑
k=0

∣∣P (e2πki/(n+1))
∣∣p ≤ ∫ 2π

0

|P (eiθ)|p dθ
2π

≤ Dp

n+ 1

n∑
k=0

∣∣P (e2πki/(n+1))
∣∣p.

Note that for p = 1 and p = ∞ the first inequalities in Theorems 30 and 31 are still
true, but the second ones are not true. Proofs of the inequalities in Theorem 30 can be
found in Marcinkiewicz’s paper ([M36b], Thms 9 and 10) and Marcinkiewicz–Zygmund’s
paper ([MZ37a], Thms 1 and 2), and also in the book by Zygmund ([Zy59], Theorem
7.5). Proofs of Theorem 31 are in the paper by Marcinkiewicz and Zygmund ([MZ37a],
Thm 10) and the Zygmund’s book ([Zy59], Theorem 7.10).

The above inequalities have been generalized in different ways, see the papers cited
below.

[Mi70] D. S. Mitrinović, Analytic Inequalities, Grundlehren Math. Wiss. 165, Springer, Berlin,
1970 [3.5.35. Marcinkiewicz and Zygmund inequalities, p. 261].

[Ku04] J. C. Kuang, Applied Inequalities, 3rd ed., Shangdong 2004 (Chinese) [42. Marcinkie-
wicz–Zygmund inequalities, p. 432].

[BKP09] A. Böttcher, S. Kunis, D. Potts, Probabilistic spherical Marcinkiewicz–Zygmund in-
equalities, J. Approx. Theory 157 (2009), 113–126.

[CZ99] C. K. Chui, L. Zhong, Polynomial interpolation and Marcinkiewicz–Zygmund inequal-
ities on the unit circle, J. Math. Anal. Appl. 233 (1999), 387–405.

[Da03] S. B. Damelin, Marcinkiewicz–Zygmund inequalities and the numerical approximation
of singular integrals for exponential weights: methods, results and open problems, some
new, some old, J. Complexity 19 (2003), 406–415.

[DJK02] S. B. Damelin, H. S. Jung, K. H. Kwon, Converse Marcinkiewicz–Zygmund inequali-
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4.6. Some other Marcinkiewicz’s results. Here we present six other themes in which
there are results of Marcinkiewicz, and which were cited in some books and papers.

4.6.1. Strong summability of Fourier series. From the Fejér theorem, for every f ∈ L1

we have convergence almost everywhere of σnf(x) → f(x), when n→∞, i.e.

1
n+ 1

n∑
m=0

[Smf(x)− f(x)] = o(1) a.e.

Hardy and Littlewood (1927) asked for the truth of the following stronger property

1
n+ 1

n∑
m=0

|Smf(x)− f(x)| = o(1) a.e.,

and then for strong summability Hr in the sense of Hardy of order r > 0, i.e., the property

1
n+ 1

n∑
m=0

|Smf(x)− f(x)|r = o(1) a.e. (60)

By the Hölder–Rogers inequality we can easily see that for larger r the result is stronger.
In 1939 Marcinkiewicz [M39d] gave a positive answer to the problem of Hardy–

Littlewood in the case r = 2, proving that: if f ∈ L1, then

1
n+ 1

n∑
m=0

[Smf(x)− f(x)]2 = o(1) a.e.

This theorem with a proof is e.g. in the book of Bary ([Ba64], II, pp. 24–31). Zygmund
[Zy42] generalized this theorem to any r > 0 in the property (60) and his proof is
completely different (cf. also Zygmund book [Zy59], II, pp. 185–186).

[Zy42] A. Zygmund, On the convergence and summability of power series on the circle of con-
vergence. II, Proc. London Math. Soc. (2) 47 (1942), 326–350.

[Ta55] K. Tandori, On strong summability of Fourier series, Magyar Tud. Akad. Mat. Fiz. Oszt.
Közl. 5 (1955), 457–465 (Hungarian).

4.6.2. Absolutely convergent Fourier series. A theorem of P. Lévy, generalizing a the-
orem of N. Wiener (see Zygmund [Zy59], I, p. 245 and Bary [Ba64], II, pp. 190–194),
states that if g(x) has an absolutely convergent Fourier series, and if f(x) is analytic
in the closed interval (min g(x),max g(x)), then f [g(x)] also has an absolutely conver-
gent Fourier series. Marcinkiewicz showed in [M40] that this result can be extended by
requiring less on f(x) and more on g(x).

http://dx.doi.org/10.1080/01630560802279264
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For 0 < s ≤ 1 and an open interval I ⊂ R denote by Gs(I) the class of infinitely
differentiable functions F on I satisfying inequalities of the type |F (n)(x)| ≤ Bnnn/s on
every closed subinterval of I. For 0 < p <∞ denote by Ap the class of functions f(t) =∑

n∈Z ane
int such that

∑
n∈Z |an|p < ∞. Marcinkiewicz proved that: if f(t) ∈ As (0 <

s ≤ 1), I contains the range of f and F ∈ Gs(I), then F (f) ∈ A1. Zygmund has pointed
out that the proof of Marcinkiewicz can be extended to show that in fact F (f) ∈ As. This
result is called the Wiener–Lévy–Marcinkiewicz theorem on absolutely convergent series.
Rivière and Sagher [RS66] proved the converse of Marcinkiewicz’s theorem, in stronger
form. Marcinkiewicz’s method was used by Kahane, Katznelson, Mallivan and others in
the so-called “symbolic calculus” in or between the algebras Ap. More information can be
found in [Ka68] and [Ka70].

The interest in the space Ap for 0 < p < 1 follows from the fact that this is a nontrivial
example of locally bounded algebra which is not a Banach algebra.

Marcinkiewicz also showed that ([M40]; see also Bary [Ba64], II, pp. 194–196): there
exist functions f(x) and g(x), both having absolutely convergent Fourier series, but such
that the Fourier series of f [g(x)] does not converge absolutely. The function f(x) is
equal to zero in (−π, 0) and at π, equal to (log x)−2 in (0, 1

2 ), and linear in ( 1
2 , π); and

g(x) = f(x).

[Ka70] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb. 50,
Springer, Berlin–New York, 1970 [VI.4. Method of Marcinkiewicz, pp. 77–80]; Russian
transl.: Mir, Moscow, 1976 [VI. 4. Method of Marcinkiewicz, pp. 96–99].

[Dy71] E. M. Dyn’kin, Individual theorems of Wiener–Levy type for Fourier series and integrals,
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 181–182
(Russian).

[Ka68] J.-P. Kahane, Sur les séries de Fourier à coefficients dans lp, in: Orthogonal Expansions
and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967), Southern Illinois
Univ. Press, Carbondale, Ill., 1968, 257–272.

[RS66] N. M. Rivière, Y. Sagher, The converse of Wiener–Levy–Marcinkiewicz theorem, Studia
Math. 28 (1966), 133–138.

[Ul02] P. L. Ul’yanov, On Lévy and Marcinkiewicz theorems for Fourier–Haar series, Izv. Nats.
Akad. Nauk Armenii Mat. 36 (2001), no. 4, 73–81. English transl.: J. Contemp. Math.
Anal. 36 (2001), no. 4, 77–85.

4.6.3. Thin sets related to trigonometric series. A set E ⊂ [0, 2π] is called a set of
uniqueness, or a U -set, if any trigonometric series a0

2 +
∑∞

n=1(an cosnx+bn sinnx) which
converges to zero for x /∈ E is identically zero; that is, such that an = bn = 0 for
all n. Otherwise E is a set of multiplicity (sometimes called an M -set or a Menshov set).
If E ⊂ [0, 2π] is an M -set, then there is a trigonometric series a0

2 +
∑∞

n=1(an cosnx +
bn sinnx) that converges to zero on [0, 2π]\E and that has nonzero coefficients. Analogous
definitions apply on the real line, and in higher dimensions. Every countable set is a U -set.
Every set E of positive measure is an M -set.

Marcinkiewicz and Zygmund proved that ([MZ37d]; see also Bary [Ba64], II, p. 364):
If E is a U -set and θ > 0 is such that E(θ) = {θx : x ∈ E} ⊂ [0, 2π], then E(θ) is a
U -set. For example, for 0 < θ < 1 the set E(θ) is again a U -set.

Marcinkiewicz [M38f], in honour of V. V. Nemytzkii, introduced the notion of an
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N -set (investigated earlier by P. Fatou (1906) and A. Rajchman (1922)): a set A ⊂
[0, 1] is an N -set if there is a trigonometric series a0

2 +
∑∞

n=1(an cos 2πnx+ bn sin 2πnx)
which converges absolutely in A but not everywhere, that is,

∑∞
n=1(|an| + |bn|) = ∞.

Equivalently (see [BKR95], pp. 467–468), a set A ⊆ [0, 1] is an N -set if and only if there
are non-negative reals (ρn)∞n=1 with

∑∞
n=1 ρn = ∞ such that the series

∑∞
n=1 ρn sinπnx

absolutely converges for x ∈ A; if and only if there are reals ρn ≥ 0, kn ≥ 1, n = 1, 2, . . . ,
such that

∑∞
n=1 ρn = ∞ and the series

∑∞
n=1 ρn sin knx converges for x ∈ E. Every

countable set is of type N . If E is of type N and D countable, then E +D is of type N .
Marcinkiewicz [M38d] proved that we cannot replace D by an arbitrary set of type N ,
that is, the sum of two N -sets is not an N -set in general. The sum of two sets of type N
may be the whole interval (0, 2π), and so not of type N .

Theorem 32 (Marcinkiewicz 1938). There exist two sets A and B of type N such that
A+B is not of type N .

A proof of this theorem can be found, e.g., in the Zygmund book ([Zy59], I, pp. 238–
239) and Bary book ([Ba64], II, pp. 305–306). Arbault gave in [Ar52] a simple proof of
this theorem.

[KS63] J.-P. Kahane, R. Salem, Ensembles parfaits et séries trigonométriques, Hermann,
Paris, 1963; 2nd ed., Paris, 1994.

[Ar52] J. Arbault, Sur l’ensemble de convergence absolue d’une série trigonométrique, Bull.
Soc. Math. France 80 (1952), 253–317.

[BKR95] L. Bukovský, N. N. Kholshchevnikova, M. Repický, Thin sets of harmonic analysis
and infinite combinatorics, Real Anal. Exchange 20 (1994/95), 454–509.

[Ka02] J.-P. Kahane, Sets of uniqueness and sets of multiplicity, in: Fourier Analysis and
Related Topics, Banach Center Publ. 56, Warsaw, 2002, 55–68 [4. Zygmund and Mar-
cinkiewicz, p. 58].

[Sa41] R. Salem, On some properties of symmetrical perfect sets, Bull. Amer. Math. Soc. 47
(1941), 820–828.

[Ul02a] P. L. Ul’yanov, On interconnections between the research of Russian and Polish math-
ematicians in the theory of functions, in: Fourier Analysis and Related Topics, Banach
Center Publ. 56, Warsaw, 2002, 119–130.

4.6.4. The Lévy–Raikov–Marcinkiewicz theorem on analytic properties of characteristic
functions. The following principle is well known in harmonic analysis: if µ is a positive
finite measure and its Fourier transform µ̂(t) =

∫
R e

−itx dµ(x) is “smooth” at the origin,
then it is “smooth” on the whole real line.

P. Lévy (1937) and D. Raikov (1938) (see, e.g., [LO77], Theorem 2.2.1, p. 24) showed
that if the Fourier transform µ̂ coincides in the real neighbourhood (−a, a) of the origin
with a function which is analytic in a rectangle {z : |Re z| < a, −R < Im z < R}, then µ̂
admits analytic continuation to the strip {z : |Im z| < R}. As a generalization of the real
analyticity in (−a, a) ⊂ R, one can consider weaker property of a function g to be the
boundary value of a function which is analytic in a complex upper half-neighbourhood
of (−a, 0):

(A) g coincides in a real neighbourhood (−a, a) of the origin with a function which is
analytic in a rectangle {z : |Re z| < a, 0 < Im z < R} and continuous in its closure.

http://dx.doi.org/10.1090/S0002-9904-1941-07577-4
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Marcinkiewicz [M38e] (see also [LO77], Theorem 2.2.3, p. 25) showed that the principle
also works with this generalized real analyticity. The result can be stated in the following
form:

The Lévy–Raikov–Marcinkiewicz theorem (1937–1938): if µ is a finite nonnegative
Borel measure whose Fourier transform µ̂ satisfies assumption (A), µ̂ admits analytic
continuation into the strip {z : 0 < Im z < R} and is representable there by the absolutely
convergent integral.

The extension of this result to general classes of measures and distributions, assuming
non-negativity only on some half-line (b,+∞) were given by Ostrovskii and Ulanovskii
in [OU03] and [OU04].

[Ka72] T. Kawata, Fourier Analysis in Probability Theory, Probability and Math. Statist. 15,
Academic Press, New York–London, 1972 [theorem given by Marcinkiewicz, pp. 456–
457].

[LO77] Ju. V. Linnik, I. V. Ostrovskĭı, Decomposition of Random Variables and Vectors, Transl.
Math. Monogr. 48, Amer. Math. Soc., Providence, 1977 [Theorem 2.2.3. Marcinkiewicz
theorem, pp. 25–27 and 360].

[OU03] I. Ostrovskii, A. Ulanovskii, On the Lévy–Raikov–Marcinkiewicz theorem, C. R. Math.
Acad. Sci. Paris 336 (2003), 237–240.

[OU04] I. Ostrovskii, A. Ulanovskii,On the Lévy–Raikov–Marcinkiewicz theorem, J. Math. Anal.
Appl. 296 (2004), 314–325.

4.6.5. The circular structure of the set of limit points of partial sums of Taylor series.
For a complex power series

∑
anz

n, let Sn(z) =
∑n

k=1 akz
k, sn(x) := Sn(eix) for x ∈ R,

and σn(x) = s0(x)+...+sn(x)
n+1 (the (C, 1)-mean). For each x, let L(x) denote the set of limit

points of {σn(x)}. Marcinkiewicz and Zygmund [MZ41] proved the following theorem (see
also Zygmund [Zy59], II, pp. 178–179): If E := {x : limn→∞ σn(x) = σ(x) exists} then,
for almost all x ∈ E and for every α ∈ L(x), the whole circumference {z : |z − σ(x)| =
|α− σ(x)|} is included in L(x).

The question of the angular equidistribution of {sn(x)} almost everywhere in E was
considered by Kahane [Ka83]. Examples suggest that not only the limit points of {σn(x)}
but the partial sums sn(x) themselves lie on L(x), and Katsoprinakis [Kat89] proved a
general result in this direction when E is uncountable. A related result by Katsoprinakis
and Nestoridis [KN89] also answers a question posed by Kahane. A final result is due to
Nestoridis [Ne92] and concerns power series

∑
ckz

k with lim inf |ck| > 0 and E an infinite
subset of the unit circle (see also [NP90]). In the paper [KP99] there is an extension of
Marcinkiewicz–Zygmund’s (C, 1) result into (C, k) summability with k ≥ 1.

[Ka83] J.-P. Kahane, Sur la structure circulaire des ensembles de points limites des sommes
partielles d’une série de Taylor, Acta Sci. Math. (Szeged) 45 (1983), 247–251.

[Kat89] E. S. Katsoprinakis, On a theorem of Marcinkiewicz and Zygmund for Taylor series,
Ark. Mat. 27 (1989), 105–126.

[KN89] E. S. Katsoprinakis, V. N. Nestoridis, Partial sums of Taylor series on a circle, Ann.
Inst. Fourier (Grenoble) 39 (1989), 715–736.

[KP99] E. S. Katsoprinakis, M. Papadimitrakis, Extensions of a theorem of Marcinkiewicz–
Zygmund and of Rogosinski’s formula and an application to universal Taylor series,
Proc. Amer. Math. Soc. 127 (1999), 2083–2090.

http://dx.doi.org/10.1016/j.jmaa.2004.04.021
http://dx.doi.org/10.1007/BF02386363
http://dx.doi.org/10.5802/aif.1184
http://dx.doi.org/10.1090/S0002-9939-99-05150-3
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[Ne92] V. Nestoridis, Limit points of partial sums of Taylor series, Mathematika 38 (1991),
239–249.

[NP90] V. Nestoridis, S. K. Pichorides, The circular structure of the set of limit points of partial
sums of Taylor series, in: Séminaire d’Analyse Harmonique, Année 1989/90, Univ. Paris
XI, Orsay, 1990, 71–77.

4.6.6. Correction theorem. Let X0⊂X be two function spaces on [0, 1] with the Lebesgue
measure m. Recall that X0 is said to correct X if for every f ∈ X and any ε > 0 there
exists a function g = gε ∈ X0 such that m

(
{t ∈ [0, 1] : f(t) 6= g(t)}

)
< ε. The classical

N. N. Luzin theorem (1912) on C-property of a measurable function f : [a, b] → R states
that for any ε > 0 there exists a closed set F ⊂ [0, 1] such that m([0, 1] \ F ) < ε and f|F
is continuous. This means that C[0, 1] corrects L0[0, 1]-measurable functions on [0, 1]. In
other words, we can correct a measurable function on arbitrary small set in such a way
that the function is continuous. Marcinkiewicz showed that ([M36a], Thm 3): C1[0, 1]
corrects Lip1[0, 1]. Marcinkiewicz, in fact, assumed “pointwise” Lip1, that is, f(x + t) =
f(x) + O(t) for any x and showed similar results for higher order smoothness. Federer
[Fe44] obtained the analogous Lip1-C1 result in higher dimension, and Whitney [Wh51]
extended Federer’s result to higher order of smoothness. He also gave an example of
one variable function φ ∈ Lipα[0, 1] for any 0 < α < 1 for which the conclusion in
Marcinkiewicz’s theorem is not true. Since we have C1 ⊂ Lip1 ⊂

⋂
0<α<1 Lipα, then

Whitney example means that one could not weaken in the Marcinkiewicz theorem the
requirement of f being in Lip1 by f ∈

⋂
0<α<1 Lipα. In [BK03] the authors showed that

the Takagi–van der Waerden function is also such an example.

[BK03] J. B. Brown, G. Kozlowski, Smooth interpolation, Hölder continuity, and the Takagi–
van der Waerden function, Amer. Math. Monthly 110 (2003), no. 2, 142–147.

[Fe44] H. Federer, Surface area II, Trans. Amer. Math. Soc. 55 (1944), 438–456.
[Ki84] S. V. Kislyakov, A new correction theorem, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984),

305–330. English transl.: Math. USSR.-Izv. 24 (1985), 283–306.
[Ki95] S. V. Kislyakov, A sharp correction theorem, Studia Math. 113 (1995), 177–196.
[Wh51] H. Whitney, On totally differentiable and smooth functions, Pacific J. Math. 1 (1951),

143–159.

Marcinkiewicz proved also many other theorems, but they did not have that much
resonance as those presented previously.
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