
MARCINKIEWICZ CENTENARY VOLUME
BANACH CENTER PUBLICATIONS, VOLUME 95

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 2011

ON THE THEOREM
OF GÉZA GRÜNWALD AND JÓZEF MARCINKIEWICZ

LÁSZLÓ SZILI

Department of Numerical Analysis, Eötvös Loránd University
Budapest, Pázmány P. sétány 1/C, H–1117, Hungary

E-mail: szili@ludens.elte.hu

PÉTER VÉRTESI

Alfréd Rényi Mathematical Institute of the Hungarian Academy of Sciences
Budapest, Reáltanoda u. 13–15, H–1053, Hungary

E-mail: vertesi@renyi.hu or veter@renyi.hu

Abstract. This survey is a tribute to Géza Grünwald and Józef Marcinkiewicz dealing with
the so called Grünwald–Marcinkiewicz Theorem.

1. Preface. In 1910, exactly hundred years ago, two outstanding mathematicians were
born: (in alphabetical order) the Hungarian Géza Grünwald and the Polish Józef Marcin-
kiewicz. But we must note some other similarities. They proved in the same year (1935)
the first version of their famous result (as today called) the Grünwald–Marcinkiewicz
Theorem (G–M Theorem, for short). Both improved this first version and got the final
form already in the next year; the theorem was a part of their PhD dissertations. And,
finally, both were killed during the second world war: Géza Grünwald became a holocaust
victim in 1942 while Józef Marcinkiewicz died in 1940 in the Katyn massacre.

Paraphrasing what Antoni Zygmund (who was a teacher, a friend and a collaborator
of Józef Marcinkiewicz) wrote, we may say that the short period of their mathematical
activity left a definite imprint on mathematics. Considering what they might have done
one may view their early death as a great blow to mathematics (cf. [21, p. 1]).

In this survey which is a tribute to their memories, we deal with the above men-
tioned Grünwald–Marcinkiewicz Theorem. First we consider its preliminaries (Part 2),
then the theorem, some parts of the proof (Part 3), finally we see some related results,
developments and problems in Part 4.
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For the interested reader we may suggest three survey papers and their references
written by A. Zygmund [21], Pál Turán [17] and P. Vértesi [20].

2. Preliminaries. Interpolation. Lagrange interpolation. Lebesgue function.
Lebesgue constant. Optimal Lebesgue constant. Divergence of interpolation.
What is interpolation? “Perhaps it would be interesting to dig to the roots of the theory
and to indicate its historical origin. Newton, who wanted to draw conclusions from the
observed location of comets at equidistant times as to their location at arbitrary times
arrived at the problem of determining a ‘geometric’ curve passing through arbitrarily
many given points. He solved this problem by the interpolation polynomial bearing his
name” (P. Turán [18]).

2.1. Let us begin with some definitions and notation. Let C = C(I) denote the space
of continuous functions on the interval I := [−1, 1], and let Pn denote the set of algebraic
polynomials of degree at most n. ‖ · ‖ stands for the usual maximum norm on C. Let X
be an interpolatory matrix (array), i.e.,

X =
{
xkn = cosϑkn; k = 1, . . . , n; n = 1, 2, . . .

}
,

with
−1 ≤ xnn < xn−1,n < . . . < x2n < x1n ≤ 1 (1)

and 0 ≤ ϑkn ≤ π, and consider the corresponding Lagrange interpolation polynomial

Ln(f,X, x) :=
n∑
k=1

f(xkn)`kn(X,x), n ∈ N. (2)

Here, for n ∈ N,

`kn(X,x) :=
ωn(X,x)

ω′n(X,xkn)(x− xkn)
, 1 ≤ k ≤ n,

with

ωn(X,x) :=
n∏
k=1

(x− xkn),

are polynomials of exact degree n − 1. They are called the fundamental polynomials
associated with the nodes {xkn : k = 1, . . . , n}.

The main question is for what choices of the interpolation array X we can expect that
(uniformly, pointwise, etc.) Ln(f,X)→ f (n→∞).

Since, by the Chebyshev alternation theorem, the best uniform approximation Pn(f)
to f ∈ C from Pn interpolates f in at least n+ 1 points, there exists, for each f ∈ C, an
interpolation matrix Y for which

‖Ln+1(f, Y )− f‖ = En(f) := min
P∈Pn

‖f − P‖

goes to 0 as n→∞. However, for the whole class C, the situation is different.
To formulate the corresponding negative result we quote some estimates and introduce

further definitions.
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By the classical Lebesgue estimate,

|Ln(f,X, x)− f(x)| ≤ |Ln(f,X, x)− Pn−1(f, x)|+ |Pn−1(f, x)− f(x)|
≤ |Ln(f − Pn−1, X, x)|+ En−1(f) (3)

≤
( n∑
k=1

|`k,n(X,x)|+ 1
)
En−1(f),

therefore, with the notation

λn(X,x) :=
n∑
k=1

|`kn(X,x)|, n ∈ N, (4)

Λn(X) := ‖λn(X,x)‖, n ∈ N, (5)

(Lebesgue function and Lebesgue constant (of Lagrange interpolation), respectively) we
have for n ∈ N

|Ln(f,X, x)− f(x)| ≤ {λn(X,x) + 1}En−1(f) (6)

and
‖Ln(f,X)− f‖ ≤ {Λn(X) + 1}En−1(f). (7)

“After . . . the approximation theorem of Karl Weierstrass, it was hoped that there
exists a (non-equidistant) system of nodes for which the Lagrange interpolation poly-
nomials converge uniformly for every function continuous in [−1, 1]. The mathematical
world was awakened from this dream in 1914 by Georg Faber [4] who showed that there
is no such system.” (P. Turán [18, p. 25]).

Namely, he proved the then rather surprising lower bound

Λn(X) ≥ 1
12

log n, n ≥ 1, (8)

for any interpolation array X. Based on this result he obtained

Theorem 2.1. For any fixed interpolation array X there exists a function f ∈ C for
which

lim sup
n→∞

‖Ln(f,X)‖ =∞. (9)

2.2. The previous estimates show clearly the importance of the Lebesgue function
λn(X,x) and the Lebesgue constant Λn(X). During the last about 100 years, there were
proved very general relations concerning their behaviour and applied to obtain divergence
theorems for Ln(f,X).

First, we state the counterpart of (8). Namely, using an estimate of L. Fejér

Λn(T ) =
2
π

log n+O(1),

one can see that the order log n in (8) is best possible (here T is the Chebyshev matrix,
i.e. xkn = cos 2k−1

2n π) .
The next statement, the more or less complete pointwise estimation is due to P. Erdős

and P. Vértesi from 1981.
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Theorem 2.2. Let ε > 0 be given. Then, for any fixed interpolation matrix X ⊂ [−1, 1]
there exist sets Hn = Hn(ε,X) of measure ≤ ε and a number η = η(ε) > 0 such that

λn(X,x) > η log n

if x ∈ [−1, 1] \Hn and n ≥ 1.

2.3. Let us say some words about the optimal Lebesgue constant . In 1961, P. Erdős,
improving an earlier result of P. Turán and himself, proved that∣∣∣Λ∗n − 2

π
log n

∣∣∣ ≤ c,
where

Λ∗n := min
X⊂I

Λn(X), n ≥ 1,

is the optimal Lebesgue constant. As a consequence of this result, the closer investigation
of Λ∗n attracted the attention of many mathematicians.

In 1978, Ted Kilgore, Carl de Boor and Alan Pinkus proved the so–called Bernstein-
Erdős conjectures concerning the optimal interpolation array X.

Using this result, P. Vértesi in 1990 obtained the value of Λ∗n within the error o(1).
Namely,

Λ∗n =
2
π

log n+ χ+O
(( log log n

log n

)2)
,

where χ = 2
π (γ + log 4

π ) = 0.521251 . . . and γ = 0.577215 . . . is the Euler constant.

3. The Theorem

3.1. In Part 2, we saw that the Lebesgue function is at least is order log n on a “big”
set (cf. Theorem 2.2). However, for the matrix

E =
{
xkn = −1 +

k

n
, k = 0, 1, 2, . . . , 2n; n = 1, 2, 3, . . .

}
the above order is much bigger, namely it grows exponentially with n. Using this fact
S. Bernstein in 1918 proved as follows.

Theorem 3.1. For the function f1(x) = |x|

lim sup
n→∞

|Ln(f1, E, x)| =∞ if x ∈ (−1, 1), x 6= 0.

But an analogous result for the matrix T , where the order of the Lebesgue function
is the smallest possible remained open until 1935.

3.2. The so called Grünwald–Marcinkiewicz Theorem says as follows

Theorem 3.2 (Grünwald–Marcinkiewicz). There exists a function f ∈ C for which

lim sup
n→∞

|Ln(f, T, x)| =∞

for every x ∈ [−1, 1].
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3.3. Remarks
A. Józef Marcinkiewicz considered the trigonometric interpolation based on the equi-

distant nodes 2kπ
2n+1 but it differs only formally from the Lagrange interpolation based on

the Chebyshev matrix T =
{

cos 2k−1
2n π

}
.

B. Originally both Géza Grünwald and Józef Marcinkiewicz proved the existence of
g ∈ C for which the sequence {Ln(T, g, x)} diverges almost everywhere (see [7], [9]).
A. Zygmund writes [21, p. 16]: “It is curious that a year later (in 1936) both authors
could, independently of each other, strengthen their examples by constructing continuous
functions whose Chebyshev interpolating polynomials diverge everywhere.” (cf. [8], [11]).

C. Theorem 3.2 is important for two reasons.
First, it shows, dramatically, that Lagrange interpolation polynomials may be very

poor approximating tools even for the “very good” matrix T . Actually, this theorem clearly
shows the limitations of Lagrange interpolation even on these nodes.

Second, it is well known that there are many similarities between the approximation
properties of

(i) the partial sums of the Fourier-Chebyshev expansion of f ∈ C and
(ii) the interpolating polynomials Ln(f, T ).

These similarities can be used with great effect. For example, a result known for (i)
will suggest an analogous result for (ii) if we consider continuous functions with bounded
variation. However, the analogy is not perfect. The famous result of Carleson implies that
if f ∈ C then the partial sums of the Fourier-Chebyshev expansion of f converge to f
a.e. in [−1, 1]. On the other hand, Theorem 3.2 shows that this is certainly not the case
for the interpolating polynomials Ln(f, T ).

3.4. Let say some words on the proofs. We quote some parts of the structure given by
Józef Marcinkiewicz [11] (cf. I. P. Natanson [13, Chapter 2, §3]).

3.4.1.

Lemma 3.3. If Sn =
{

2k−1
2n π, k = 1, 2, . . . , n

}
then Sn ∩ Sn+1 = ∅. Moreover, let S ={

p
qπ, (p, q) = 1, otherwise arbitrary

}
. If Q ⊂ S and Q is finite, then there exist arbitrarily

large values of n for which

(Sn ∩Q) \ {0} = (Sn+1 ∩Q) \ {0} = ∅.

This simple and (at first sight) innocently-looking statement is fundamental. When-
ever one may prove a similar relation for a pointsystem, there is a good chance to get a
G–M type everywhere divergence theorem.

3.4.2. Another observation is a slight generalization of the Weierstrass theorem. Namely

Lemma 3.4. If ϕ ∈ C and {t1, t2, . . . , ts} are s fixed distinct points in [−1, 1], then there
is a polynomial R with {

R(tk) = ϕ(tk), 1 ≤ k ≤ s
‖R− ϕ‖ ≤ 2.

Notice that the lemma does not say anything on the degree of R!
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3.4.3. Here is another fundamental statement.

Lemma 3.5. If p > 2 is an integer, then there exists a polynomial Rp(x) with ‖Rp‖ ≤ 2
but for arbitrary x ∈

[
− cos πp , cos πp

]
= Ip one can find a u = u(x) > p such that

|Lu(Rp, T, x)| > p.

The final part of the proof of this lemma strongly uses another simple observation.
Namely if x = cosϑ ∈ Ip, then

2
p
≤ sinϑ = sin(n+ 1)ϑ cosnϑ− sinnϑ cos(n+ 1)ϑ ≤ |cosnϑ|+ |cos(n+ 1)ϑ| ,

or in other words,

max(|Tn(x)|, |Tn+1(x)|) ≥ 1
p

;

this bound will be used at the lower estimation of max(λn(T, x), λn+1(T, x)).

3.4.4. The other parts, lemmas and their combinations are left to the interested reader;
we emphasize that the proof of Géza Grünwald is different; however, of course, his steps
solve problems analogous to the above ones (cf. [8]).

4. Some related results, developments and problems

4.1. As the Part 3.3.C shows the similarities between the partial sums of Fourier–
Chebyshev expansion of f ∈ C and Ln(f, T ) interpolating polynomials are quite limited.
Another dramatic example of this distinction is given by the next statements which is a
reformulation of a statement of Józef Marcinkiewicz [10]:

For any fixed x ∈ [−1, 1] there exists a function f ∈ C for which

lim sup
n→∞

∣∣∣ 1
n

n∑
k=1

Lk(f, T, x)
∣∣∣ =∞.

In other words, the arithmetic means of Lagrange interpolating polynomials of a
continuous function can diverge at any given point. This is in marked contrast to the
celebrated theorem of L. Fejér about the arithmetic means of the partial sums of Fourier
series [5].

Remark. Many-many years later, in 1991, P. Erdős and G. Halász [1] proved as follows.

Given a positive sequence {εn} converging to zero however slowly, one can construct
a function f ∈ C such that for almost all x ∈ [−1, 1]

1
n

∣∣∣ n∑
k=1

Lk(f, T, x)
∣∣∣ ≥ εn log log n

for infinitely many n.

4.2. While it is quite straightforward to obtain the analogue of the Grünwald–Mar-
cinkiewicz Theorem for the interpolation based on the roots of the Jacobi polynomi-
als P (α,β)

n (x) (cf. [16, Chapter 4]) whenever |α| = |β| = 1
2 , the general case, i.e. when

α, β > −1, arbitrary, was settled only in 1976 by A.A. Privalov [15] but only the “almost
everywhere” version. Namely, he proved
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Theorem 4.1. If α, β > −1 are fixed, then there is an f ∈ C with

lim sup
n→∞

∣∣Ln(f,X(α,β), x)
∣∣ =∞ a.e. in [−1, 1].

(Above, Ln(f,X(α,β)) is the corresponding Lagrange interpolatory polynomial.)

One of the main difficulties is that we do not know the exact place of the nodes
{x(α,β)

kn }, i.e. we do not have the complete analogue of Lemma 3.3.

4.3. For an arbitrary point system it was proved by P. Erdős and P. Vértesi [3] in 1981.

Theorem 4.2. Let X ⊂ [−1, 1] be any point group [interpolatory array ]. Then there
exists a continuous function f(x) so that for almost all x

lim sup
n→∞

|Ln(f,X, x)| =∞.

It is easy to see that (generally) “a.e.” cannot be replaced by “everywhere”.

4.4. For higher order Hermite–Fejér interpolation one can also get the corresponding
G–M theorem. First we give the corresponding definitions.

Let m ∈ N and let f ∈ C. Then, for each n ∈ N there is a unique polynomial
Hmn(f, T, x) such that

• degHmn(f, T, x) ≤ mn− 1,
• Hmn(f, T, xkn) = f(xkn) (k = 1, 2, . . . , n),
• H(j)

mn(f, T, xkn) = 0 (k = 1, 2, . . . , n; j = 1, 2, . . . ,m− 1),

where H(j)
mn(f, T, x) denotes the j-th derivative of Hmn(f, T, x) with respect to x.

We refer to Hmn(f, T, x) as a higher order Hermite-Fejér interpolation polynomial
(the order being mn− 1) corresponding to the function f and the n-th row of the matrix
of nodes T . Recently there has been considerable interest in such polynomials.

In the casem = 1 the interpolation polynomials Hmn(f, T, x) are merely the Lagrange
interpolation polynomials Ln(f, T, x). In the case m = 2, the interpolation polynomials
Hmn(f, T, x) become the well known Hermite–Fejér interpolation polynomials which be-
have quite differently from Lagrange interpolation polynomials. Namely, as it was proved
by L. Fejér (see [6])

lim
n→+∞

‖H2n(f, T, x)− f(x)‖ = 0 for any f ∈ C.

What happens when m > 2? It appears that, in many ways, the behaviour of
Hmn(f, T, x) is determined by the parity of m. If m is even, then Hmn(f, T, x) behave
like H2n(f, T, x) (cf. [19]):

lim
n→+∞

‖Hmn(f, T, x)− f(x)‖ = 0 for any f ∈ C (m = 2, 4, 6, . . . ).

However for odd m we can prove (cf. T. M. Mills, R. Sakai, P. Vértesi; [12], [19]) as
follows.

Let m = 1, 3, 5, . . . be fixed. Then there exists a function f ∈ C such that, for all
x ∈ [−1, 1],

lim sup
n→∞

|Hmn(f, T, x)| = +∞.

That means, we got a G–M type theorem for Hmn(f, T ) (m is odd).
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4.5. In the paper F. Pintér, P. Vértesi [14], the analogue of the G–M theorem was
obtained for Lagrange interpolation by entire functions of exponential type.

4.6. Finally we mention some problems.
A. Try to get the G–M theorem for X(α,β).
B. Find those arrays X for which G–M theorem holds true.
C. Extend the G–M theorem on infinite intervals using weighted norm.
D. Prove the theorem of Erdős and Halász for every x ∈ [−1, 1] (see 4.1). Prove it for

other arrays X.
E. Prove the above problems for higher order Hermite–Fejér interpolation.
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09/1/KMR-2010-0003.
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