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Abstract. The main meaning of the common extension for two linear operators is the following:

given two vector subspaces G1 and G2 in a vector space (respectively an ordered vector space)

E, a Dedekind complete ordered vector space F and two (positive) linear operators T1 : G1 → F ,

T2 : G2 → F , when does a (positive) linear common extension L of T1, T2 exist?

First, L will be defined on span(G1 ∪ G2). In other results, formulated in the line of the

Hahn–Banach extension theorem, the common extension L will be defined on the whole space E,

by requiring the majorization of T1, T2 by a (monotone) sublinear operator. Note that our first

Hahn–Banach common extension results were proved by using two results formulated in the line

of the Mazur–Orlicz theorem. Actually, for the first of these last mentioned results, we extend the

name common extension to the case when E is without order structure, instead of G1, G2 there

are some arbitrary nonempty sets, instead of T1, T2 there are two arbitrary maps f1, f2, and,

in addition, we are given two more maps g1 : G1 → E, g2 : G2 → E and a sublinear operator

S : E → F . In this case we ask: When is it possible to obtain a linear operator L : E → F ,

dominated by S and related to the maps f1, f2, g1, g2 by some inequalities?

To extend positive linear operators between ordered vector spaces, some authors (Z. Lipecki,

R. Cristescu and myself) have used a procedure which includes the introduction of an additional

set and a corresponding map. Inspired by this technique, in this paper we also solve some common

positive extensions problems by using an additional set.

1. Preliminaries. In this paper the terminology, the notation and some mentioned
results are classical for the theory of the ordered vector spaces and linear operators (see,
for example [1], [2] and [11]); X0 and X will be real vector spaces, E0 and E will be
ordered vector spaces and, generally, F will be a Dedekind complete ordered vector space
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(that is, every nonempty ordered bounded set in F has a supremum or, equivalently, an
infimum).

For the main meaning of the common extension problem we consider two vector sub-
spaces (or sets) G1, G2 in E0, E = span(G1 ∪G2) and two linear operators (or arbitrary
maps) T1 : G1 → F , T2 : G2 → F and we are interested to give (necessary and) sufficient
conditions for the existence of a (positive) linear operator L : E −→ F such that L ex-
tends T1 and T2, that is L(v1) = T1(v1) and L(v2) = T2(v2) for all v1 ∈ G1 and v2 ∈ G2.
Obviously, a necessary condition for this is that the operators T1 and T2 are consistent
(in the terminology introduced in [9]) that is, T1 = T2 on G1 ∩G2.

Such results, for the case of linear functionals, appeared in [12] and [9]. The importance
of this problem appears, for example, in [9], [14], [15], [16] and [13].

The primary result in this sense is the following:

Theorem 1.1. Let X0 and Y be two vector spaces, G1 and G2 two vector subspaces of
X0, X = span(G1 ∪ G2) and Tj : Gj → Y , j ∈ {1, 2}, two linear operators. Then, the
following are equivalent :

(i) There exists L : X → Y , a common linear extension of T1, T2.
(ii) If v1 + v2 = 0, with v1 ∈ G1, v2 ∈ G2, then T1(v1) + T2(v2) = 0.

(iii) T1 = T2 on G1 ∩G2.

Note that, for the proof of (ii)⇒ (i), we define L : X → Y by L(v1 + v2) = T1(v1) +
T2(v2) for all v1 ∈ G1 and v2 ∈ G2 and, according to (ii), it follows that L is well-defined.

For a finite family (Tj)j∈{1,...,n} of linear operators, Theorem 1.1 becomes:

Theorem 1.2. Let X0 and Y be two vector spaces, (Gj)j∈{1,...,n} a family of vector
subspaces of X0 and Tj : Gj → Y , j ∈ {1, . . . , n} a family of linear operators. Then, the
following are equivalent :

(i) There exists L : span(G1∪ . . .∪Gn)→ Y , a common linear extension of T1, . . . , Tn.
(ii) If v1 + v2 + . . . + vn = 0, then T1(v1) + T2(v2) + . . . + Tn(vn) = 0, where vj ∈ Gj

for each j ∈ {1, . . . , n}.
(iii) For each two sets N1, N2 so that N1 ∩ N2 = ∅ and N1 ∪ N2 = {1, . . . , n},∑

k∈N1

Tk(vk) =
∑
j∈N2

Tj(vj) if
∑
k∈N1

vk =
∑
j∈N2

vj, where vi ∈ Gi for i ∈ {1, . . . , n}.

It is easy to prove that (iii) from Theorem 1.2 is equivalent to the following condition:

(iii′) For any k ∈ {2, 3, . . . , n}, Tk = T1 +T2 + . . .+Tk−1 on Gk ∩ span(G1 ∪ . . .∪Gk−1),
that is Tk(vk) = T1(v1)+T2(v2)+ . . .+Tk−1(vk−1) for any vk = v1 +v2 + . . .+vk−1,
where vj ∈ Gj , j ∈ {1, . . . , k}.

The following result is a version of Theorem 1.1 in the ordered vector spaces setting,
all the linear operators which appear being positive.

Theorem 1.3. Let E0 be an ordered vector space and let F be a Dedekind complete
ordered vector space. Let also G1, G2 be two vector subspaces of E0 and let T1 : G1 → F ,
T2 : G2 → F be two positive linear operators. Let us consider the following statements,
where E = span(G1 ∪G2):

(i) There exists L : E → F , a positive common linear extension of T1 and T2;



COMMON EXTENSIONS FOR LINEAR OPERATORS 301

(ii) If v1 + v2 ≤ 0, where v1 ∈ G1, v2 ∈ G2, then T1(v1) + T2(v2) ≤ 0;
(iii) If v1 + v2 ≥ 0, where v1 ∈ G1, v2 ∈ G2, then T1(v1) + T2(v2) ≥ 0;
(iv) If v1 + v2 = 0, where v1 ∈ G1, v2 ∈ G2, then T1(v1) + T2(v2) = 0;
(v) T1 = T2 on G1 ∩G2.

Then, we have: (i)⇔ (ii)⇔ (iii)⇒ (iv)⇔ (v).

The proof of Theorem 1.3 is immediate. Also, the corresponding result which gener-
alizes this theorem for a family (Tj)j∈{1,...,n} of positive linear operators can easily be
formulated.

2. Common extensions in the line of Mazur–Orlicz and Hahn–Banach theo-
rems. In the following result having as a consequence the Mazur–Orlicz theorem (see
Corollary 2.3 below), we meet another meaning for the common extension problem. We
will consider two nonempty sets A1, A2, four maps g1 : A1 → X, g2 : A2 → X,
f1 : A1 → F , f2 : A2 → F and a sublinear operator S : X → F such that all these
maps satisfy an inequality which implies that f1 ≤ S ◦ g1 and f2 ≤ S ◦ g2. Then we
can extend simultaneously these inequalities, obtaining the existence of a linear operator
L : E → F dominated by S and such that f1 ≤ L ◦ g1 and f2 ≤ L ◦ g2.

Actually, this result will be applied to obtain a common extension (for two positive
linear operators) in the main meaning considered in this paper and in the line of the
Hahn–Banach theorem.

Theorem 2.1. Let X be a vector space, F a Dedekind complete ordered vector space, A1

and A2 two nonempty arbitrary sets, S : X → F a sublinear operator, and gj : Aj → X

and fj : Aj → F , j ∈ {1, 2}, four maps. Then, the following are equivalent :

(i) There exists L : X → F a linear operator such that

a) L ≤ S on X, and
b) f1 ≤ L ◦ g1 on A1 and f2 ≤ L ◦ g2 on A2.

(ii) The inequality
n∑
i=1

λif1(a1i) +
m∑
j=1

µjf2(a2j) ≤ S
( n∑
i=1

λig1(a1i) +
m∑
j=1

µjg2(a2j)
)

(2.1)

holds for all n, m ∈ N∗, {a11, . . . , a1n} ⊂ A1, λ1 ≥ 0, . . . , λn ≥ 0, {a21, . . . , a2m} ⊂
A2, µ1 ≥ 0, . . . , µm ≥ 0.

Proof. First, we remark that we can suppose that m = n, taking λn+1 = · · · = λm = 0,
if n < m, respectively µm+1 = · · · = µn = 0, if m < n.

Obviously, (i)⇒ (ii). Indeed, using successively (i) b), the linearity of L from (i) and
(i) a), we obtain

n∑
i=1

λif1(a1i) +
n∑
j=1

µjf2(a2j) ≤
n∑
i=1

λi(L ◦ g1)(a1i) +
n∑
j=1

µj(L ◦ g2)(a2j)

= L
( n∑
i=1

λig1(a1i) +
n∑
j=1

µjg2(a2j)
)
≤ S

( n∑
i=1

λig1(a1i) +
n∑
j=1

µjg2(a2j)
)
.
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To prove that (ii) implies (i), we use the technique of the auxiliary sublinear operator,
and apply the existence form of the Hahn–Banach theorem (“For every sublinear operator
S1 : X → F there exists a linear operator L1 : X → F such that L1 ≤ S1 on X.”). For
every x ∈ X, put S1(x) the infimum of the set{

S
(
x+

n∑
i=1

λig1(a1i) +
n∑
i=1

µig2(a2i)
)
−

n∑
i=1

λif1(a1i)−
n∑
i=1

µif2(a2i)
}
,

where the infimum is taken over all finite subsets {a11, . . . , a1n} ⊂ A1, {a21, . . . , a2n} ⊂
A2, {λ1, . . . , λn} ⊂ R+, {µ1, . . . , µn} ⊂ R+ and n ∈ N∗. Note that S1(x) exists because,
using condition (ii) and the sublinearity of S, we have

n∑
i=1

λif1(a1i) +
n∑
i=1

µif2(a2i) ≤ S
( n∑
i=1

λig1(a1i) +
n∑
i=1

µig2(a2i)
)

≤ S
(
x+

n∑
i=1

λig1(a1i) +
n∑
i=1

µig2(a2i)
)

+ S(−x).

Hence

−S(−x) ≤ S
(
x+

n∑
i=1

λig1(a1i) +
n∑
i=1

µig2(a2i)
)
−

n∑
i=1

λif1(a1i)−
n∑
i=1

µif2(a2i).

This inequality holds in the Dedekind complete ordered vector space F .
It is straightforward to prove that S1 is a sublinear operator. Then, using the existence

form of the Hahn–Banach theorem ([11], p. 44), there exists a linear operator L : X → F

such that
L(x) ≤ S1(x), x ∈ X. (2.2)

Using the definition of S1 we remark that

S1(x) ≤ S(x), x ∈ X. (2.3)

(2.2) and (2.3) imply (i) a), that is L(x) ≤ S(x) for all x ∈ X.
Now we prove (i) b), that is, for example, that

f1 ≤ L ◦ g1 on A1. (2.4)

But, for every a1 ∈ A1, we have

L(−g1(a1)) ≤ S1(−g1(a1)) ≤ S(−g1(a1) + g1(a1))− f1(a1) = −f1(a1)

and by using the linearity of L, we obtain (2.4).

Remark 2.2. We can easily extend Theorem 2.1 for any p sets A1, . . . , Ap and 2p maps
gi : Ai → X, fi : Ai → F , i ∈ {1, . . . , p}, instead of A1, A2 and g1, g2, f1, f2.

Corollary 2.3 (The vectorial form of the Mazur–Orlicz theorem [10]). Let X be a
vector space, F a Dedekind complete ordered vector space and S : X → F a sublinear
operator. Let A be an arbitrary nonempty set, and f : A→ F and g : A→ X two maps.
The following conditions are equivalent :

(i) There exists a linear operator L : E −→ F with the properties

a) L ≤ S on X, and b) f ≤ L ◦ g on A.
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(ii) The inequality
n∑
i=1

λif(ai) ≤ S
( n∑
i=1

λig(ai)
)

holds for all finite subsets {a1, . . . , an} ⊂ A and {λ1, . . . , λn} ⊂ R+.

Proof. Put in Theorem 1.2, A1 = A, A2 = {0} ⊂ X, g1 = g, f1 = f , g2 = 0, f2 = 0.

The following result is the version of Theorem 2.1 for ordered vector spaces.

Theorem 2.4. Let E be an ordered vector space, F a Dedekind complete ordered vector
space, and K1, K2 two nonempty convex sets, and S : E → F a monotone sublinear
operator. For each i ∈ {1, 2}, let Pi : Ki → E be a convex operator and Qi : Ki → F a
concave operator. Then, the following conditions are equivalent :

(i) There exists a positive linear operator L : E → F such that

a) L ≤ S on E, and

b) Q1 ≤ L ◦ P1 on K1 and Q2 ≤ L ◦ P2 on K2.

(ii) The inequality

λQ1(a1) + µQ2(a2) ≤ S(λP1(a1) + µP2(a2)) (2.5)

holds for all a1 ∈ K1, a2 ∈ K2, λ ≥ 0 and µ ≥ 0.

Proof. First we remark that inequality (2.5) is equivalent to inequality (2.1) from Theo-
rem 2.1. Indeed, it is obvious that (2.1) implies (2.5), if we put in (2.1) m = n = 2, and
Ai = Ki, gi = Pi and fi = Qi, i ∈ {1, 2}. To prove the converse, if a11, . . . , a1n ∈ K1,
a21, . . . , a2n ∈ K2, λ1 ≥ 0, . . . , λn ≥ 0, µ1 ≥ 0, . . . , µn ≥ 0, we can suppose that
λ := λ1 + . . . + λn > 0 and µ := µ1 + . . . + µn > 0. Let αi = λi

λ and βi = µi

µ , for each
i ∈ {1, . . . , n}. It follows that α1 + . . .+ αn = 1, β1 + . . .+ βn = 1 and hence, using that
P1, P2 are convex operators and Q1, Q2 are concave operators, we obtain:

P1

( n∑
i=1

αia1i

)
≤

n∑
i=1

αiP1(a1i), P2

( n∑
i=1

βia2i

)
≤

n∑
i=1

βiP2(a2i),

and

Q1

( n∑
i=1

αia1i

)
≥

n∑
i=1

αiQ1(a1i), Q2

( n∑
i=1

βia2i

)
≥

n∑
i=1

βiQ2(a2i).

Then, using (2.5) and the condition that S is a monotone operator we have:
n∑
i=1

λiQ1(a1i) +
n∑
i=1

µiQ2(a2i) = λ
n∑
i=1

λi
λ
Q1(a1i) + µ

n∑
i=1

µi
µ
Q2(a2i)

= λ

n∑
i=1

αiQ1(a1i) + µ

n∑
i=1

βiQ2(a2i) ≤ λQ1

( n∑
i=1

αia1i

)
+ µQ2

( n∑
i=1

βia2i

)
≤ S

(
λP1

( n∑
i=1

αia1i

)
+ µP2

( n∑
i=1

βia2i

))
≤ S

(
λ
( n∑
i=1

αiP1(a1i)
)

+ µ
( n∑
i=1

βiP2(a2i)
))
.
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Moreover, to prove (ii) ⇒ (i), we use that any linear operator L : E → F dominated by
a monotone and positive homogeneous operator S : E → F is a positive operator (see,
for example [4], Remark 2.3).

Corollary 2.5 (Mazur–Orlicz theorem for ordered vector spaces, see [4], Theorem 2.4).
Let E be an ordered vector space, F a Dedekind complete ordered vector space and S :
E → F a monotone sublinear operator. Let K be a nonempty convex set, P : K → E a
convex operator, and Q : K → F a concave operator. Then the following conditions are
equivalent :

(i) There exists a positive linear operator L : E −→ F with the properties:

a) L ≤ S on E, and b) Q ≤ L ◦ P on K.

(ii) The inequality Q ≤ S ◦ P holds on K.

Now we remember two vectorial forms of the Hahn–Banach extension theorem, for
cases in which the domain space is an arbitrary vector space, respectively an ordered
vector space.

Theorem 2.6. Let X be a vector space, F a Dedekind complete ordered vector space,
and S : X → F a sublinear operator. Let G be a vector subspace of X and T : G→ F a
linear operator. The following conditions are equivalent :

(i) There exists a linear operator L : X −→ F with the properties

a) L ≤ S on X, and b) L = T on G.

(ii) T ≤ S on G.

Theorem 2.7. Let E be an ordered vector space, F a Dedekind complete ordered vector
space and S : E → F a monotone sublinear operator. Let G be a vector subspace of E
and T : G→ F a positive linear operator. Then, the following are equivalent :

(i) There exists a positive linear operator L : E → F such that

a) L ≤ S on E, and b) L = T on G.

(ii) T ≤ S on G.

Remark that Corollary 2.3 (the Mazur–Orlicz theorem) is a generalization of Theorem
2.6 (the vectorial form of the Hahn–Banach extension theorem).

The following common extension result will be formulated in the line of the Hahn–
Banach extension theorem with a vector space as the domain space (see Theorem 2.6).

Theorem 2.8. Let X be a vector space, F a Dedekind complete ordered vector space,
and S : X → F a sublinear operator. Let G1 and G2 be two vector subspaces of X and
T1 : G1 → F , T2 : G2 → F two linear operators. The following conditions are equivalent :

(i) There exists a linear operator L : X → F with the properties:

a) L ≤ S on X, and

b) L = T1 on G1, L = T2 on G2.
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(ii) The following inequality holds for all v1 ∈ G1 and v2 ∈ G2,

T1(v1) + T2(v2) ≤ S(v1 + v2). (2.6)

Proof. Obviously, (i) implies (ii). To prove the converse we can apply Theorem 2.1 for
Ai = Gi, fi = Ti and gi = the inclusion of Gi in X, for each i ∈ {1, 2}. We obtain a linear
operator L : X → F such that L ≤ S on X and Ti ≤ L on Gi, for i ∈ {1, 2}. Actually,
we have even Ti = L on Gi, that is L is an extension of Ti, because Ti ≤ L on Gi, and Ti
and L are linear. (Indeed, if, for example v1 ∈ G1, we have: T1(−v1) ≤ L(−v1) and hence
−T1(v1) ≤ −L(v1). It follows that L(v1) ≤ T1(v1) ≤ L(v1)). Therefore L is a common
extension of T1, T2.

Note that inequality (2.6) implies that

1) T1 ≤ S on G1 and T2 ≤ S on G2.
2) T1 = T2 on G1 ∩G2.

Indeed, to prove 2), let v ∈ G1 ∩ G2 and put in (2.6) v1 = v and v2 = −v. Then
T1(v) + T2(−v) ≤ S(0) = 0 and hence T1(v) ≤ T2(v); similarly, T2(v) ≤ T1(v) and
therefore T1(v) = T2(v).

The following common extension result will be formulated in the line of the Hahn–
Banach extension theorem with an ordered vector space as the domain space (see Theo-
rem 2.7).

Theorem 2.9. Let E be an ordered vector space, F a Dedekind complete ordered vector
space and S : E → F a monotone sublinear operator. Let G1 and G2 be two vector
subspaces of X and T1 : G1 → F , T2 : G2 → F two positive linear operators. Then, the
following are equivalent :

(i) There exists a positive linear operator L : E → F such that

a) L ≤ S on E,

b) L = T1 on G1, L = T2 on G2.

(ii) T1(v1) + T2(v2) ≤ S(v1 + v2), for all v1 ∈ G1 and v2 ∈ G2.

Proof. We apply Theorem 2.4.

The following result is a consequence of Theorem 2.9.

Corollary 2.10. Let E, F , G1, G2 and T1, T2 be like in the previous theorem. Then,
the following are equivalent :

(i) There exists a positive linear operator L : E → F such that L = T1 on G1 and
L = T2 on G2.

(ii) There exists a monotone sublinear operator S : E → F such that

T1(v1) + T2(v2) ≤ S(v1 + v2)

for all v1 ∈ G1 and v2 ∈ G2.

In the following result, which is a consequence of Corollary 2.10, the condition that
the sublinear operator S is monotone is dropped.
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Theorem 2.11. Let E be an ordered vector space, F a Dedekind complete ordered vector
space and G1, G2 two vector subspaces of E. Let also T1 : G1 → F and T2 : G2 → F be
two positive linear operators. Then, the following are equivalent :

(i) There exists a positive linear operator L : E → F such that L = T1 on G1 and
L = T2 on G2.

(ii) There exists S : E → F a sublinear operator such that

v1 + v2 ≤ v ⇒ T1(v1) + T2(v2) ≤ S(v) (2.7)

where v1 ∈ G1, v2 ∈ G2 and v ∈ E.

Proof. (i) ⇒ (ii). We put S = L and use that L is a positive linear common extension
of T1 and T2. We have v1 + v2 ≤ v ⇒ L(v1) + L(v2) ≤ L(v)⇒ T1(v1) + T2(v2) ≤ S(v).

(ii)⇒ (i). Conversely, let S : E → F be a sublinear operator satisfying (2.7). We apply
the technique of the auxiliary sublinear operator, defining S1 : E → F by the formula

S1(v) = inf{S(w) | w ∈ E,w ≥ v}, for each v ∈ E.

This infimum exists in F , because the set {S(w) | w ∈ E, w ≥ v} is minorized in F

by −S(−v). Indeed, we have for v1 = v2 = 0, and u ≥ 0: 0 = T1(0) + T2(0) ≤ S(u) =
S(v+u−v) ≤ S(v+u)+S(−v), hence −S(−v) ≤ S(v+u), for all u ≥ 0, or, equivalently,
−S(−v) ≤ S(w), for all w ∈ E, w ≥ v.

Obviously S1 ≤ S on E. In addition the operator S1 has the following properties:

1) S1 is sublinear,
2) S1 is monotone,
3) T1(v1) + T2(v2) ≤ S1(v1 + v2) for all v1 ∈ G1, v2 ∈ G2.

Now, we can apply Corollary 2.10, (ii)⇒ (i), for S1 instead of S, obtaining a positive
common linear extension of T1 and T2.

Remark 2.12. Many results of this paper, including Theorem 2.9, can easily be gener-
alized in the line of the Maharam theorem (1972).

Theorem 2.13 (Maharam theorem). Let E be a vector lattice with an order unit e ∈ E+

and (Gδ)δ∈∆ a family of subspaces of E such that e ∈ span
( ⋃
δ∈∆

Gδ
)
. Let also F be a

Dedekind complete ordered vector space and let {Tδ : Gδ → F | δ ∈ ∆} be a family of
positive linear operators. Then, the following conditions are equivalent :

(i) There exists T : E → F a positive linear extension of the family (Tδ)δ∈∆ (that is,
T (x) = Tδ(x) for all δ ∈ ∆ and x ∈ Gδ).

(ii) The inequality 0 ≤ Tδ(vδ) holds for every family (vδ)δ∈∆ ∈ Φ((Gδ)), satisfying
0 ≤

∑
δ∈∆

vδ, where Φ((Gδ)δ∈∆) is the collection of all families {vδ ∈ Gδ | δ ∈ ∆}

such that vδ 6= 0 for at most finitely many δ ∈ ∆.

This theorem was originally proved by D. Maharam in [9] (see also [13], Theorem 6.3).
The following result (see [4], Theorem 5.4) is an easy generalization of Theorem 2.13,

because if the ordered vector space E has an order unit e > 0 and G ⊆ E is a vector
subspace so that e ∈ G, then G is a majorizing subspace of E.
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Theorem 2.14. Let E be an ordered vector space and let (Gδ)δ∈∆ be a family of subspaces
of E, such that there exists at least one which is majorizing, say Gδ0 . Let F be a Dedekind
complete ordered vector space and let {Tδ : Gδ → F | δ ∈ ∆} be a family of positive linear
operators. Then the following conditions are equivalent :

(i) The family {Tδ : Gδ → F | δ ∈ ∆} has a positive common linear extension
T : E → F .

(ii) The implication
∑
δ∈∆

vδ ≥ 0 ⇒
∑
δ∈∆

Tδ(vδ) ≥ 0 holds for every family (vδ)δ∈∆ ∈

Φ((Gδ)δ∈∆).

Remark 2.15. If we generalize Corollary 2.10 in the line of the Maharam theorem, we
obtain Theorem 2.14, and hence Theorem 2.13 too, as consequences. To prove this it
suffices to prove that Corollary 2.10 implies the version of Theorem 2.14 for ∆ = {1, 2}.
For this aim it is necessary to prove that (ii′)⇒ (ii) if at least one of the subspaces G1,
G2, say G1, is majorizing, where (ii) and (ii′) are the following statements:

(ii) There exists a monotone sublinear operator S such that

T1(v1) + T2(v2) ≤ S(v1 + v2)

for all v1 ∈ G1 and v2 ∈ G2.
(ii′) If v1 + v2 ≤ 0, then T1(v1) + T2(v2) ≤ 0 for all v1 ∈ G1 and v2 ∈ G2.

Suppose that (ii′) is valid. Let us define T : span(G1 ∪G2)→ F by the equality

T (v1 + v2) = T1(v1) + T2(v2)

for all v1 ∈ G1 and v2 ∈ G2.
The operator T has the following properties: 1) T is well-defined, according to (ii′);

2) T is linear; 3) T is positive.
Because we supposed that G1 is a majorizing subspace, it follows that the subspace

G = span(G1 ∪ G2) is majorizing, too. Define S : E → F , S(x) = T (x), for all x ∈ E,
(that is S(x) = inf{T (z) | z ∈ G, z ≥ x}). It is known that S is a monotone sublinear
operator and T ≤ S on E. We have: T1(v1) + T2(v2) = T (v1 + v2) ≤ S(v1 + v2) for all
v1 ∈ G1 and v2 ∈ G2, that is, (ii) is valid.

3. Common positive extensions using an additional set. In the following result we
will give a sufficient condition for the existence of a positive linear operator L satisfying
the converse inequalities of Theorem 2.1(i) b). This condition is an implication between
two inequalities and next we will simplify the form of the left and respectively of the
right member of these inequalities. Note that, instead of majorization of L by a sublinear
operator S, we will assume the existence of an additional set M and of two maps h :
M → E and r : M → F , obtaining that L ◦ h ≤ r on M .

Theorem 3.1. Let E0 be an ordered vector space, F a Dedekind complete ordered vector
space, and let A1, A2 and M be arbitrary nonempty sets. Let also gj : Aj → E0, fj :
Aj → F , j ∈ {1, 2} and h : M → (E0)+, r : M → F be arbitrary maps, and E =
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span(g1(A1) ∪ g2(A2) ∪ h(M)) ⊆ E0. Suppose that

n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) ≤
n∑
i=1

h(zi)

⇒
n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) ≤
n∑
i=1

r(zi), (3.1)

where n ∈ N∗, and a1i ∈ A1, a2i ∈ A2, zi ∈M , αi ∈ R, βi ∈ R, for each i ∈ {1, . . . , n}.
Then, there exists a positive linear operator L : E → F such that

a) L ◦ g1 ≤ f1 on A1, L ◦ g2 ≤ f2 on A2,
b) L ◦ h ≤ r on M .

Proof. Step 1. Remark that condition (3.1) is equivalent to the following condition:

n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) ≤
n∑
i=1

λih(zi)

⇒
n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) ≤
n∑
i=1

λir(zi), (3.2)

where n ∈ N∗, and a1i ∈ A1, a2i ∈ A2, zi ∈ M , αi ∈ R, βi ∈ R, λi ≥ 0, for each
i ∈ {1, . . . , n}.

Obviously, (3.2)⇒ (3.1). To prove that (3.1)⇒ (3.2), we analyze three cases:
Case 1. Suppose that λ1 ∈ N∗, . . . , λn ∈ N∗. We define the elements (yi)λ1+...+λn

i=1 ∈M
as follows:

y1 = . . . = yλ1 = z1

yλ1+1 = . . . = yλ1+λ2 = z2

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
yλ1+...+λn−1+1 = . . . = yλ1+...+λn

= zn.

We set m = λ1 + . . .+ λn ∈ N∗ ⇒ m ≥ n because λi ≥ 1 for all i ∈ {1, . . . , n}. Now, we
have:

n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) ≤
m∑
i=1

h(yi)

(3.1)⇒
n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) ≤
m∑
i=1

r(yi) =
n∑
i=1

λir(zi).

Case 2. Assume that λi ∈ Q+, for all i ∈ {1, . . . , n}. Let us suppose that λi = pi

qi
,

where pi ∈ N and qi ∈ N∗ for all i ∈ {1, . . . , n}. Denote by q the least common multiple
of q1, . . . , qn. It follows that for all i ∈ {1, . . . , n} there exist ki ∈ N such that q = kiqi. If

n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) ≤
n∑
i=1

pi
qi
h(zi) =

n∑
i=1

piki
q

h(zi),
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then
n∑
i=1

qαig1(a1i) +
n∑
i=1

qβig2(a2i) ≤
n∑
i=1

pikih(zi)

Case 1⇒
n∑
i=1

qαif1(a1i) +
n∑
i=1

qβif2(a2i) ≤
n∑
i=1

pikir(zi)

⇒
n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) ≤
n∑
i=1

piki
q

r(zi) =
n∑
i=1

pi
qi
r(zi) =

n∑
i=1

λir(zi).

Case 3. Suppose that λi ∈ R+, for all i ∈ {1, . . . , n}. We apply Case 2 and use that
F is Archimedean.

Step 2. We will prove that there exists a monotone sublinear operator S : E → F

such that
S ◦ g1 ≤ f1 on A1, S ◦ g2 ≤ f2 on A2, and S ◦ h ≤ r on M.

Define S : E → F by the formula

S(x) = inf
{ n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) +
n∑
i=1

λir(zi)
∣∣∣

x ≤
n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) +
n∑
i=1

λih(zi), n ∈ N∗, and a1i ∈ A1, a2i ∈ A2,

zi ∈M, αi ∈ R, βi ∈ R, λi ≥ 0 for all i ∈ {1, . . . , n}
}

for each x ∈ E. (Remember that E = span(g1(A1) ∪ g2(A2) ∪ h(M)) ⊆ E0.)
First we will prove that the above infimum exists in F . Let

x =
m∑
j=1

α′jg1(a′1j) +
m∑
j=1

β′jg2(a′2j) +
m∑
j=1

λ′jh(z′j)

≤
n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) +
n∑
i=1

λih(zi),

where a′1j ∈ A1, a′2j ∈ A2, z′j ∈ M , α′j ∈ R, β′j ∈ R, λ′j ∈ R, j ∈ {1, . . . ,m} are fixed
and a1i ∈ A1, a2i ∈ A2, zi ∈ M , αi ∈ R, βi ∈ R, λi ≥ 0, i ∈ {1, . . . , n} are arbitrary.
Obviously, we can suppose that m = n. Then we can write:

n∑
j=1

α′jg1(a′1j) +
n∑
j=1

β′jg2(a′2j)−
n∑
j=1

αjg1(a1j)−
n∑
j=1

βjg2(a2j)

≤
n∑
j=1

λjh(zj)−
n∑
j=1

λ′jh(z′j).

Since (3.2) holds, −λ′j ≤ |λ′j | for each j ∈ {1, . . . , n} and h takes positive values, we
obtain the inequality:
n∑
j=1

α′jf1(a′1j)+
n∑
j=1

β′jf2(a′2j)−
n∑
j=1

αjf1(a1j)−
n∑
j=1

βjf2(a2j) ≤
n∑
j=1

λjr(zj)+
n∑
j=1

|λ′j |r(z′j),
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and hence,
n∑
j=1

α′jf1(a′1j)+
n∑
j=1

β′jf2(a′2j)−
n∑
j=1

|λ′j |r(z′j) ≤
n∑
j=1

αjf1(a1j)+
n∑
j=1

βjf2(a2j)+
n∑
j=1

λjr(zj).

So, the set appearing in the definition of S(x) is minorized in F and hence there exists
its infimum (denoted by S(x)).

It is straightforward to prove that S is sublinear and monotone. Moreover we have:
1) S ◦ gj ≤ fj on Aj , for each j ∈ {1, 2}. (Indeed, for example, for j = 1 and a1 ∈ A1,

we have g1(a1) = 1 · g1(a1) + 0 · g2(a2) + 0 ·h(z), with some a2 ∈ A2 and z ∈M , it follows
that S(g1(a1)) ≤ 1 · f1(a1) + 0 · f2(a2) + 0 · r(z).)

2) S ◦ h ≤ r on M . (Indeed, if z ∈ M , then for some a1 ∈ A1 and a2 ∈ A2, we have
h(z) = 0·g1(a1)+0·g2(a2)+1·h(z) and hence S(h(z)) ≤ 0·f1(a1)+0·f2(a2)+1·r(z) = r(z).)

Step 3. Now we will prove the existence of a positive linear operator L : E → F such
that

a) L ◦ gj ≤ fj on Aj for each j ∈ {1, 2}, and
b) L ◦ h ≤ r on M .

We apply Step 2 and the existence form of the Hahn–Banach theorem. Also, we apply
the remark mentioned at the end of the proof of Theorem 2.4.

Now we will simplify successively the form of the left members in the inequalities
which appear in (3.1).

Theorem 3.2. Let E0 be an ordered vector space, F a Dedekind complete ordered vector
space, and let G1, G2 be two ordered vector spaces and M a nonempty set. Let also h :
M → (E0)+ and r : M → F be two maps, Pj : Gj → E0 linear operators and Tj : Gj → F

positive linear operators, where j ∈ {1, 2}. Let E = span(P1(G1)∪P2(G2)∪h(M)) ⊆ E0.
Then, the following conditions are equivalent :

(i) There exists a positive linear operator L : E → F such that

a) L ◦ Pj = Tj on Gj for j ∈ {1, 2}, and

b) L ◦ h ≤ r on M .

(ii) The following implication holds

P1(v1) + P2(v2) ≤
n∑
i=1

h(zi)⇒ T1(v1) + T2(v2) ≤
n∑
i=1

r(zi), (3.3)

where n ∈ N∗, v1 ∈ G1, v2 ∈ G2 and zi ∈M , for all i ∈ {1, . . . , n}.

Proof. (i)⇒ (ii) is immediate. Indeed, if P1(v1) + P2(v2) ≤
n∑
i=1

h(zi), then, because L is

a positive linear operator, we have

L(P1(v1) + P2(v2)) ≤
n∑
i=1

L(h(zi))
(i)⇒ T1(v1) + T2(v2) ≤

n∑
i=1

r(zi).

(ii) ⇒ (i) is a consequence of Theorem 3.1. Indeed, let us prove that, for example,
L ◦ P1 = T1 on G1. If v1 ∈ G1, then, because L ◦ P1 ≤ T1 on G1 we have L(P1(−v1)) ≤
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T1(−v1) and since L, P1 and T1 are linear, it follows that −L(P1(v1)) ≤ −T1(v1), that is
L ◦ P1 ≥ T1 on G1.

We remark that the form of the left-hand side in the inequalities appearing in (3.3) can
be still simplified, if G1 and G2 are two vector subspaces of the ordered vector space E0.

Theorem 3.3. Let E0 be an ordered vector space, F a Dedekind complete ordered vector
space, and let G1, G2 be two ordered vector subspaces of E0 and M an arbitrary set. Let
also h : M → (E0)+, and r : M → F be two maps, and T1 : G1 → F , T2 : G2 → F

two positive linear operators. Let E = span(G1 ∪G2 ∪ h(M)) ⊆ E0. Then, the following
conditions are equivalent :

(i) There exists a common positive linear extension L of T1, T2 to the space E (that is
L = Tj on Gj, for j ∈ {1, 2}) such that L ◦ h ≤ r on M .

(ii) The following implication holds

v1 + v2 ≤
n∑
i=1

h(zi)⇒ T1(v1) + T2(v2) ≤
n∑
i=1

r(zi), (3.4)

for n ∈ N∗, v1 ∈ G1, v2 ∈ G2 and zi ∈M , for each i ∈ {1, . . . , n}.

Proof. Apply Theorem 3.2 for Pj = ij , the inclusion of Gj in E0 for j ∈ {1, 2}.

A new step to simplify the right members of the inequalities that arise in (3.4) is to
choose M an arbitrary subset of (E0)+ and to take h = i, the inclusion of M in E0.

Theorem 3.4. Let E0 be an ordered vector space, F a Dedekind complete ordered vector
space, and let G1, G2 be two ordered vector subspaces of E0 and M an arbitrary subset of
(E0)+. Let also r : M → F be a map, and T1 : G1 → F , T2 : G2 → F two positive linear
operators. Denote by E the vector space span(G1 ∪ G2 ∪M) ⊆ E0. Then the following
statements are equivalent :

(i) There exists a common positive linear extension L of T1, T2 to the space E such
that L ≤ r on M .

(ii) The following implication holds

v1 + v2 ≤
n∑
i=1

zi ⇒ T1(v1) + T2(v2) ≤
n∑
i=1

r(zi), (3.5)

where n ∈ N∗, v1 ∈ G1, v2 ∈ G2 and zi ∈M , for each i ∈ {1, . . . , n}.

Remark 3.5.
1) Note that this theorem generalizes a result formulated without proof in [5], and

applied in [6]; for the proof, see Theorem 1, p. 63 in [7]. Also, Theorem 3.4 generalizes
Theorem 6.4 in [4]. This result is the consequence of our Theorem 3.4, obtained taking
G2 = {0} and T2 = 0 (the null operator on G2).

2) If, additionally, the cone (E0)+ in Theorem 3.4 is generating and M = (E0)+, then
E = E0 and thus Theorem 3.4 gives the existence of a common extension of T1, T2 to
the whole E0.

3) We have also E = E0 if E0 has a positive algebraic basis, chosen instead of M .
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Note that we can also simplify the form of the right-hand side in the inequalities
appearing in condition (ii) in all previous theorems of this section. It suffices to choose
as M a nonempty set closed under addition (in an arbitrary ordered vector space E1 for
Theorem 3.1 and Theorem 3.2) and to assume that the maps −h and r are subadditive.
So, for example (3.1) becomes

n∑
i=1

αig1(a1i) +
n∑
i=1

βig2(a2i) ≤ h(z)⇒
n∑
i=1

αif1(a1i) +
n∑
i=1

βif2(a2i) ≤ r(z),

for n ∈ N∗, z ∈M , and a1i ∈ A1, a2i ∈ A2, αi ∈ R, βi ∈ R, for each i ∈ {1, . . . , n}. Also,
(3.5) becomes: v1 +v2 ≤ z ⇒ T1(v1)+T2(v2) ≤ r(z), where v1 ∈ G1, v2 ∈ G2 and z ∈M .

Remark 3.6. As consequences of the results included in this section, we obtain respec-
tively Theorems 6.1, 6.2, 6.3 and 6.4 from [4].

4. Other common positive linear extensions using an additional set. The fol-
lowing common extension result is in the line of a result of R. Cristescu, concerning the
extension of a positive linear operator. This result by R. Cristescu generalizes a result
obtained by Z. Lipecki (see Corollary 4.3 below) for the extension of a positive linear
operator defined on a majorizing vector subspace of an ordered vector space. Note that
in the following theorem, F , the range of the operators is an ordered vector space, not
necessary Dedekind complete.

Theorem 4.1. Let E0 and F be two ordered vector spaces, G1, and G2 be two vector
subspaces of E0 and M ⊆ E0 a nonempty set. Let also T1 : G1 → F , T2 : G2 → F

be positive linear operators and P : E0 → F a monotone sublinear operator such that
P = T1 on G1 and P = T2 on G2. Let E = span(G1 ∪G2 ∪M) and suppose that

P
( n∑
i=1

zi

)
=

n∑
i=1

P (zi) (4.1)

where n ∈ N∗ and z1, . . . , zn ∈M .
Then, there exists a positive linear operator L : E → F such that

a) L = T1 on G1, L = T2 on G2, and
b) L = P on M .

Proof. Define L : E → F by the following equality:

L
(
v1 + v2 +

n∑
i=1

αizi

)
= T1(v1) + T2(v2) +

n∑
i=1

αiP (zi),

where n ∈ N∗, v1 ∈ G1, v2 ∈ G2 and zi ∈ M , αi ∈ R, for all i ∈ {1, . . . , n}. We intend
to prove that L is well-defined. First, we will prove that (4.1)⇒ (4.2), where (4.2) is the
following statement:

P
( n∑
i=1

λizi

)
=

n∑
i=1

λiP (zi) (4.2)

with n ∈ N∗, zi ∈ M , λi ∈ R+, for all i ∈ {1, . . . , n} (actually the statements (4.1)
and (4.2) are equivalent). Of course, it suffices to prove the inequality “≥” in (4.2). Fix
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λ ∈ R+ with λi ≤ λ, for all i ∈ {1, . . . , n}. Then, the subadditivity of P , the property
of P to be positive homogeneous together with our assumption (4.1) yield:

P
( n∑
i=1

λizi

)
≥ P

(
λ

n∑
i=1

zi

)
− P

( n∑
i=1

(λ− λi)zi
)

≥ λ
n∑
i=1

P (zi)−
n∑
i=1

(λ− λi)P (zi) =
n∑
i=1

λiP (zi).

Next we show that

v1 + v2 +
n∑
i=1

λizi ≥ 0 =⇒ T1(v1) + T2(v2) +
n∑
i=1

λiP (zi) ≥ 0 (4.3)

if v1 ∈ G1, v2 ∈ G2, λ1, . . . , λn ∈ R, z1, . . . , zn ∈M . Indeed, put I = {1 ≤ i ≤ n | λi ≥ 0},
and J = {1 ≤ j ≤ n | λj < 0}. We have

v1 + v2 +
∑
i∈I

λizi ≥
∑
j∈J

(−λj)zj ,

and hence, by the monotonicity of P , it follows that

P
(
v1 + v2 +

∑
i∈I

λizi

)
≥ P

(∑
j∈J

(−λj)zj
)
.

Now, we will use again the subadditivity of P and the equalities P = T1 on G1, P = T2

on G2, obtaining

T1(v1) + T2(v2) + P
(∑
i∈I

λizi

)
≥ P

(∑
j∈J

(−λj)zj
)
.

According to (4.2) we have

T1(v1) + T2(v2) +
∑
i∈I

λiP (zi) ≥
∑
j∈J

(−λj)P (zj),

and hence

T1(v1) + T2(v2) +
n∑
i=1

λiP (zi) ≥ 0.

Now we will prove that L is well-defined. Let

v′1 + v′2 +
m∑
i=1

αiz
′
i = v′′1 + v′′2 +

n∑
j=1

βjz
′′
j ,

where v′1, v′′1 ∈ G1, v′2, v
′′
2 ∈ G2, m, n ∈ N∗, z′i ∈ M , αi ∈ R for all i ∈ {1, . . . ,m}, and

z′′j ∈M , βj ∈ R for all j ∈ {1, . . . , n}. Then

(v′1 − v′′1 ) + (v′2 − v′′2 ) +
m∑
i=1

αiz
′
i +

n∑
j=1

(−βj)z′′j = 0,

so, according to (4.3),

T1(v′1 − v′′1 ) + T2(v′2 − v′′2 ) +
m∑
i=1

αiP (z′i) +
n∑
j=1

(−βj)P (z′′j ) ≥ 0.
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It follows that

T1(v′1) + T2(v′2) +
m∑
i=1

αiP (z′i) = T1(v′′1 ) + T2(v′′2 ) +
n∑
j=1

βjP (z′′j )

⇒ L
(
v′1 + v′2 +

m∑
i=1

αiz
′
i

)
= L

(
v′′1 + v′′2 +

n∑
j=1

βjz
′′
j

)
,

that is L is well-defined. It is straightforward to prove that L is a linear operator. By
(4.3) it follows that L is positive, too.

Clearly, L extends T1 and T2. (Indeed, for example, taking v1 ∈ G1, v2 = 0 ∈ G2 and
z ∈ M we can write v1 = v1 + 0 + 0 · z and therefore L(v1) = T (v1) + T2(0) + 0 · P (z),
that is L = T1 on G1.) Also, obviously, L = P on M .

Remark 4.2. The conditions of Theorem 4.1 determine L uniquely. Suppose by contra-
diction that there exists L1 : span(G1 ∪ G2 ∪M) → F such that: a) L1 is positive and
linear; b) L1 = T1 on G1, L1 = T2 on G2; c) L1 = P on M . Then we have

L1

(
v1 + v2 +

n∑
i=1

αizi

)
= L1(v1) + L1(v2) +

n∑
i=1

αiL1(zi)

= T1(v1) + T2(v2) +
n∑
i=1

αiP (zi) = L
(
v1 + v2 +

n∑
i=1

αizi

)
,

and so L1 = L.

Taking in Theorem 4.1 G1 = G, T1 = T and G2 = {0} ⊂ E0, T2 : G2 → F , T2(0) = 0,
and E = span(G∪M), we obtain a result of R. Cristescu (see [3]). This result generalizes
a theorem of Z. Lipecki (see [8]). Actually this Lipecki’s result is a consequence of our
Theorem 4.1. Remember that a vector subspace G of an ordered vector space E0 is called
a majorizing subspace if for each x ∈ E0, there exists v ∈ G such that x ≤ v (or,
equivalently, there exists u ∈ G such that u ≤ x).

Also, if G is a majorizing vector subspace of E0, F a Dedekind complete ordered
vector space, and T : G→ F is a positive linear operator, the operator T : E → F (well-)
defined by T (x) = inf{T (v) | v ∈ G, v ≥ x}, x ∈ E0 is monotone and sublinear. Also
T = T on G, and if L : E0 → F is a positive linear operator which extends T , then L ≤ T
on E0.

Corollary 4.3 ([8]). Let E0 be an ordered vector space, F a Dedekind complete ordered
vector space, G a majorizing vector subspace of E0, M ⊆ E0 a nonempty set and T :
G→ F a positive linear operator. Then, the following are equivalent :

(i) T extends to a (unique) positive linear operator L : E → F such that L = T on M ;

(ii) T
( n∑
i=1

zi
)

=
n∑
i=1

T (zi), where n ∈ N∗, and z1, . . . , zn ∈M .

Proof. (ii)⇒ (i) follows from Theorem 4.1.
Conversely, if L : E → F is a positive linear extension of T such that L = T on M ,
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we have, for n ∈ N∗, and z1, . . . , zn ∈M ,
n∑
i=1

T (zi) =
n∑
i=1

L(zi) = L
( n∑
i=1

zi

)
≤ T

( n∑
i=1

zi

)
.

Hence, according to the subadditivity of T , we have
n∑
i=1

T (zi) = T
( n∑
i=1

zi
)
.

The following common positive linear extension result is a consequence of Theorem
4.1, formulated in the line of Corollary 4.3.

Corollary 4.4. Let E0 be an ordered vector space, F a Dedekind complete ordered
vector space, G1 and G2 be two vector subspaces of E0, one of them, say G1, majorizing,
and M a nonempty subset of E0. Let T1 : G1 → F and T2 : G2 → F be two positive linear
operators such that T 1 = T2 on G2. Let E = span(G1 ∪ G2 ∪M). Then the following
statements are equivalent :

(i) There exists a positive linear operator L1 : E1 → F such that

a) L = T1 on G1, L = T2 on G2, and

b) L = T 1 on M .

(ii) T
( n∑
i=1

zi
)

=
n∑
i=1

T (zi), where n ∈ N∗, and z1, . . . , zn ∈M .

Proof. (ii)⇒ (i) is obviously, according to Theorem 4.1 applied for P = T 1.
(i)⇒ (ii) can be proved like in Corollary 4.3, by putting T1 instead of T .

The following result is a consequence of Theorem 4.1 for the case when the set M ⊆ E0

is closed under addition.

Corollary 4.5. Let E0 and F be two ordered vector spaces, G1 and G2 be two vector
subspaces of E0, and M a nonempty subset of E0, closed under addition. Let P : E0 → F

be a monotone sublinear operator, and T1 : G1 → F , T2 : G2 → F two positive linear
operators such that P = T1 on G1 and P = T2 on G2. Let E = span(G1 ∪ G2 ∪M).
Then, the following are equivalent :

(i) There exists a positive linear operator L : E → F such that

a) L = T1 on G1, L = T2 on G2, and

b) L = P on M .

(ii) P is additive on M .
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[6] R.-M. Dăneţ, Some consequences of a theorem about the extension of positive linear

operators, Rev. Roumaine Math. Pures Appl. 33 (1988), 721–729.
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