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Abstract. The main aim of this paper is to prove that there exists a martingale f € H, /> such
that the Fejér means of the two-dimensional Walsh—Fourier series of f is not uniformly bounded
in the space weak-L 3.

1. Introduction. The first result with respect to the a.e. convergence of the Walsh—
Fejér means o, f is due to Fine [I]. Later, Schipp [5] showed that the maximal operator
o*f := sup,, |onf| is of weak type (1,1), from which the a.e. convergence follows by
a standard argument. Schipp’s result implies by interpolation also the boundedness of
o*: L, — L, (1 <p < o). This fails to hold for p = 1 but Fujii [2] proved that o* is
bounded from the dyadic Hardy space H; to the space L;. Fujii’s theorem was extended
by Weisz [§]. Namely, he proved that the maximal operator of the Fejér means of the
one-dimensional Walsh—Fourier series is bounded from the martingale Hardy space H,(G)
to the space L,(G) for p > 1/2. Simon [6] gave a counterexample, which shows that this
boundedness does not hold for 0 < p < 1/2. In the endpoint case p = 1/2 Weisz [11]
proved that o* is bounded from the Hardy space H;/2(G) to the space weak-L;,/5(G).
In [3] the author proved that the maximal operator ¢* is not bounded from the Hardy
space Hy/3(G) to the space Ly/5(G). By interpolation it follows that o* is not bounded
from the Hardy space H, to the space weak-L,, for any 0 < p < 1/2.

For the two-dimensional Walsh—Fourier series Weisz [9] [I0] proved that the following
is true.

THEOREM W1. Let p > 1/2. Then the mazimal operator c* is bounded from the Hardy
space Hy, to the space L.
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The author [4] proved that in Theorem W1, for the maximal operator o*, the assump-
tion p > 1/2 is essential. Moreover, we prove that the following is true.

THEOREM G. The mazximal operator o* is not bounded from the Hardy space Hy/o to
the space weak-Ly /5.

Weisz [9, [10] considered the norm convergence of Fejér means of the two-dimensional
Walsh—Fourier series. In particular, the following is true.

THEOREM W2. Letp > 1/2. Then
lonmfllm, <cpllflla, (f € Hp).

In [9] Weisz conjectured that for the uniformly boundedness of the operator o, ,,, from
the Hardy space H,(G x G) to the space H,(G x G) the assumption p > 1/2 is essential.
We give an answer to the question, moreover, we prove that the operator o, , is not
uniformly bounded from the Hardy space H;,2(G x G) to the space weak-L; /5(G x G).
In particular, the following is true.

THEOREM 1.1. There exists a martingale f € Hy/5(G x G) such that

sup ||an,nf||weak-L1/2 = +oo.
n

2. Dyadic Hardy spaces. Let P denote the set of positive integers, N := P U {0}.
Denote by Zs the discrete cyclic group of order 2, that is Zs = {0, 1}, where the group
operation is the modulo 2 addition and every subset is open. The Haar measure on Zs is
given such that the measure of a singleton is 1/2. Let G be the complete direct product
of the countable infinite copies of the compact groups Z5. The elements of G are of the
form x = (zo,x1, ..., Tk, ...) with 25 € {0,1} (k € N). The group operation on G is the
coordinate-wise addition, the measure (denoted by p) and the topology are the product
measure and topology. The compact Abelian group G is called the Walsh group. A base
for the neighborhoods of G can be given in the following way:

In(z) =G, In(z) :=I(z0,...,2n-1) ={y €G:y=(T0,.. -, T-1,Yn, Ynt1,---)}
(x € G, neN).
These sets are called the dyadic intervals. Let 0 = (0 : ¢ € N) € G denote the null element
of G, I, := I,(0) (n € N). Set e,, :== (0,...,0,1,0,...) € G the n-th coordinate of which
is 1 and the rest are zeros (n € N).
For k € N and = € G denote by

the k-th Rademacher function.
The dyadic rectangles are of the form

I/ (z,y) :=I,(z) x In,(y).

The o-algebra generated by the dyadic rectangles {I, »(z,y) : (z,y) € G x G} is
denoted by Fj, .
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The norm (or quasinorm) of the space L,(G x G) is defined by
» 1/p
= ([ Il ante) ™ ©<p<+o0)
GXG

The space weak-L,(G x G) consists of all measurable functions f for which

I f lweak-L,(Gxa) = iu% (] f] > )\)l/p < +o00.
>

Let us denote by f = (f™™) n,m € N) a two parameter martingale with respect to
(Ey,m,n,m € N) (for details see, e.g. [7, [10]). The maximal function of a martingale f is
defined by

f*: sup ’f(n,’m)|'
n,meN

If f € L1(G x G), the maximal function can also be given by
1
= swp ol [ ) dutuo)
n,meN N(In,m(xa v)) I (z,y)
For 0 < p < oo the Hardy martingale space H,(G x G) consists of all martingales for
which

, (z,y) e GxG.

£z, = 11"y < o0

3. Walsh system and Fejér means. Let n € N, thenn = Y n;2%, n; € {0,1} (i € N),
i=0

i.e. n is expressed in the number system of base 2. Let |n| := max{j € N : n; # 0}, that
is, 21"l < p < 2Inl+L,
The Walsh—Paley system is defined as the sequence of Walsh—Paley functions:

wp () = H(Tk(x))"" = r|n|(x)(—1)zlen¥lﬂ_l7lk’;k (x € G, neP).
k=0
The Walsh—Dirichlet kernel is defined by

n—1
D, (z) = Z wg ().
k=0
Recall that
. ifxel,
D2n (1’) = 1 . "
0, ifzxeG\I,.

The Fejér kernel of order n of the Walsh—Fourier series is defined by

K,(z) = % Z_: Dy (z).
k=0

The rectangular partial sums of the double Walsh—Fourier series are defined as follows:
M—-1N-1

Sunfla,y) =3 £, jywi(a)w; (y),

<

where the number

Fli.g) = / £ y)wn()w; (v) ds(, )
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is said to be the (i, j)-th Walsh-Fourier coefficient of the function f.

If f € L1(G x G) then it is easy to show that the sequence (Son om (f) : n,m € N) is a
martingale. If f is a martingale, that is f = (f™) : n,m € N) then the Walsh-Fourier
coefficients must be defined in a little bit different way:

fag) = gm [ D) da.y) @)
min(k,l)—oo Jaxa

The Walsh—Fourier coefficients of f € Li(G x G) are the same as the ones of the
martingale (Sgn om (f) : n, m € N) obtained from f.

For n,m € P and a martingale f the Fejér mean of order (n,m) of the double
Walsh—Fourier series of the martingale f is given by

n—1m-—1

Unmfl'y ZZS’L]f'Ty

ZOJO

For the martingale f the maximal operator is defined by

o f(z,y) = sup |onmf (2, y)].

n,m

A function a € Lo is called a rectangle p-atom if there exists a dyadic rectangle R
such that

supp(a) C R,
lall2 < |R|1/2_1/p
Joalz,y)du(z) = [, a(z,y)du(y) =0 forall z,y € G.

The basic result of atomic decomposition is

THEOREM W3. A martingale f = (f™™) : n,m € N) is in H, (0 < p < 1) if there
S

)
exists a sequence (ag,k € N) of rectangle p-atoms and a sequence (ur,k € N) of real

numbers such that for every n,m € N |
o0 o0
Zﬂkszn,zmak = flmm), Z |px|P < oo.
k=0 k=0

Moreover,

171, < inf(Z l?) .

In this paper the constant C' are absolute constants and may denote different constants
in different contexts.

4. Auxiliary result. In order to prove the theorem we need the following lemma.
LEMMA 4.1 ([]). Let2 < A€ P and ga :=2%4 + 22472 4 .+ 22420, Then
qa—1|Kq,_, (z)] > 2273

for x € I} = IQA(O,...70,21,0,...,0,21,xzsﬂ,...,xm,l), m=0,1,...,4A—3,
m S
s=m+2,m+3,...,A—1.
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5. Proof of the main result. Proof of Theorem . Since 2™ /m 1 oo it is easy to
show that there exists an increasing sequence of positive integers {my, : k € P} such that

o0

1
>~ <o @)
k=1 T
k—1
98my 98my,
| (4)
= my mg
28mk71 QM
_ 5
mi—1 kmy, o
Let
f(A’B)(Z',y) = Z Alal($7y)a
{l:2m;<min(A,B)}
where \; := % and

a(z,y) = 24mi (D22'm.l+1 (x) — Dyzm, (l‘)) (D22m1+1 (y) — Do2m, (y)) .

First, we prove that the martingale f := (f(AvB) : A, B € N) belongs to the Hardy
space Hy/2(G x G). Indeed, since [|a;][2 < 2™ and

0, if min(A4, B) < 2my,
ax(z,y), if min(A, B) > 2my,

SzA,zBak(xvy) = {
we can write

f(A’B) (I, y) = Z )\lal(‘xa y) = Z AkSZA,ZBak(xv y)

{l:2m;<min(A,B)} k=0

From and Theorem W3 we conclude that f € Hy /(G x G).

Now, we investigate the Fourier coeflicients. Since

/ FAB (@, yywi(x)w;(y) du(z, y)
GxG

07 (17]) ¢ U;iO{Qka’ e 22mk+1 - 1} X {22mk’ ey 22mk+1 - 1}7
=20,  (i,5) € {22mn ... 22t 1) {22 92mitl _ 1) min(A, B) < 2my,
24mk

L (i,4) € {22me . 22matl ) {22me . 92mitl _ 1) min(A, B) > 2my,

mg

we can write (see (2]))

mk’

0, (i,7) ¢ Upe {220, ... 22metl — ) o {22me  22metl 1},

(6)

o {247% (7,7]) c {Qka’ e 922mp+1 _ ]_}><{22mk7 e 922mp+1 _ ]_}, keP,
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Let g, = 22mi 4 92mr=2 4 4 92 4 90 Then we can write

Gmy,—1qm, —1

O'qu,quf(%y): Z Z S,Jf z,y)
1=0 7=0

qu
22"Lk 1 227nk 1 my, —1 221nk 1
“a X X Swlewtgs 33 Sufey
qu i=0 j=0 mki 52my, (7)
22™Mk _1 Gmy, — qmy, — 1 qmy, — -1
toa 2 Z Sil@y) + = > D Sif(y)
QWLk i=0 22mk i 22mk] 22mk
:I+II+III+IV.

Let (i,7) € {22 ... g, — 1} x {22 ... ¢y, — 1}. Then from @ we have

i—1 7—1

Siif(@y) =3 F pwy(@)w,(y)

v=0 p=0

k—12mtl_1omitl_
:ZZ quuwy Z Zf”ﬂwu) (y)
=1 v=2"™ p=2" v=22"k §=22"k (8)
k—1 odm
=3 o (Do (#) = Doy () (D1 (4) = Do, (1)
=1
2477"”c
+ (Di(2) = Doy, (2)) (Dj(y) = Doz, (9))-

mg
Substituting in IV, we obtain

k—1
1 m 24ml
IV = (g = 27 Y = (Dyomss (@) = Do (0) (Do (4) = Do (0)
Mk =1
my —1 qm, —1
1ot e T 9)
P > (Di() = Dyzme () (D;(y) = Dyzms ()
mk k i=22my j=g2my,
= IV, + IVs.
Since

Djjp2my. () = Dopmy (@) + wozmy (x)Dj(x), j=0,1,...,2°™ —1,

we can write

1 24mk Qmy—1—1 Gmy—1—1
IV, = pa— Wozmy, (T)Wo2my, () D;(z) D;(y)
m ) =0 j=0 (10)
1 2%k
= qT . w227nk (fL')/LUQZ'mk (y)qfnkflKka71 (.’L’)quk71 (y)'
mg

Since
|Dan ()] <2, meN, zeG,
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by and we obtain
k—1 Sml 2 &
| <C 11
vl Z € (11)

Combining (9)-(11)) we have

Cq?, _
1V > TZI‘anWl@” ’KQMk—l(y)| -

Cc2me
kmk '

Let
(1,7) € ({2%™ ... g, — 1} x {0,1,...,22™ —1})
U({0,1,...,27™ — 1} x {22 ... gy, — 1})
U({0,1,...,22™ — 1} x {0,1,...,2%™ —1}).
Then from @, and it is easy to show that

k—12%2mitl 1 92mutl_g k—1

~ L 98my C2mk
Sijfyl <> > ANEDS le < kfnk .

=0 p=22my H:QQ"”Z =0

Consequently,

22mk 22171 k1

24me QM Ok
|I|<f Z Z 1S5 f(@,y)| < C= < (13)

Ty, kM kmy,

2my _ ka mi M
2 (qu 2me) g 2

I < 14
1] < o < O (14)
Cc2mk
111 < . 15
< (15)
Combining @, @f we obtain
Cqryy 1 c2me
|O—¢Imk-,¢Imkf($7y)| > mZ ’Kka—l(x)| |quk 1 | - k)mk : (16)
Let (,y) € Iy ™2 x I52%2 (1y,15) € {0,1,...,mx — 3} x {0,1,...,my — 3}. Then
from Lemma [£.1] we can write
Gng—1| Ky 1 (@) 2 C21 and gy 1| Ky, (y)] = 22,
consequently,
q72—nk71|quk,1(x)| |quk71(y){ Z C24l1+4l27
C Cc2mk
> Y ogalitals _ _ 17
‘Uqr,anr,,%f(xvy)’ = Ema, (17)
Let
A(my,) = {(ll,lz)ioélz <mp—3,0<1; < %, i+l > %}
and
Cc2mk
A 1= .
my
Since (see and (l1,12) € A(my))
C c2mk _ C2mk
|crqu,quf(x,y)} > —2Mk — > = ay for sufficiently large k,
mi kmk mg
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we have
,u{(gmy) cGxG: |0qqumkf(x,y)| > ak}

11,1 l2,l
> Y p{(@y) € LT X I oy g, (@, 9)] > ar)
(11,l2)EA(my)

[me/4]  mp—3 1 1 1
11,00 +2 lo,lo+2
S5 SHED DD DERTED SEND SIRTID SENUERp
11=0 ly=[my/4]—11 21;+5=0 Tamy, —1=0 T2154+5=0 T2my, —1=0

[mk/4 mE—3

1 ka
> C Z Z 22l1+2l2 Z ka/2 :

ll_O lg—[mk/ﬁl] l1

Consequently,
2 2Mk m%
ok (1{(2,9) 10y g, f(@,9)] = Car}) = C=— Tk

my 2™k

=Cmp — o0 as k — oo,

SllipHquk’q"”kf||weak—L1/2
= sgpﬁu}gx\(u{(m,y) €GxG:oq, q. fl@,y)> /\})2 = +o0.
>

Theorem is proved. m
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