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Abstract. In this paper we prove that a Gaussian white noise on the d-dimensional torus has
paths in the Besov spaces B;%Q (T%) with p € [1,00). This result is shown to be optimal in
several ways. We also show that Gaussian white noise on the d-dimensional torus has paths in

a the Fourier-Besov space l;;iép (T%). This is shown to be optimal as well.

1. Introduction. In [2] it has been proved that the Gibbs measures are invariant for
the nonlinear Schrodinger equation. Building on these ideas, in [II] and also in [I0] it
has been shown that the mean zero Gaussian white noise on the torus T is invariant for
the periodic Korteweg-de Vries equation (KdV). To prove this one needs that (KdV) is
well-posed for initial conditions from function spaces with a negative smoothness index,
such as Sobolev spaces H*P(T) with s < 0 and p € [1,00] and other classes of function
spaces. Here a negative smoothness index s is needed, because it is well-known that
Gaussian white noise is supported on [\, o H*P \ H~Y2P Tt seems that the first
results on the support of Gaussian white noise into this direction have been obtained
in [I2] for p = 2 and in [§] for other values of p. Note that both [I2] and [8] consider
processes on R? instead of the torus.

In many instances, Besov spaces are the right class of function spaces in order to prove
sharp results. This is also the case for regularity results for paths of Brownian motion and
other classical processes. Sharp results for such processes have been proved for instance
in [3, @, T3] using an equivalent wavelet definition of Besov spaces. In particular, in these
papers it has been shown that Brownian motion B : [0, 1] x  — R satisfies

P(B € BY2(0,1)) = 1.
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In [6, [16] this has been proved directly from the LP-incremental definition of Besov spaces.
Formally, one could say that white noise in dimension one is given by B, and therefore,
Gaussian white noise is in B, %2 almost surely. In this paper we combine some of the
ideas in [4, [6] with Fourier analysis to obtain sharp results on the regularity of Gaussian
white noise.

It might be helpful for non-experts to recall some elementary embedding results for
Besov spaces and Sobolev spaces. Here we follow the standard notation as in [14} [I5]. Of
course one has that B , = H*2. This is no longer true for B , and H*? with p # 2. One
has the following embedding results (see [I5] 2.3.3] for R? and [14, Chapter 3] for T%)

oo — HYP — B> ifp>2

By, — H"" — By, ifl1<p<2,

(1.1)

and, for any € > 0 and p, ¢, 7, s € [1, 00],

s+e s,T s—€
— ? s
Bp,q H BPJZ )

In the paper we consider the following question:

e On which Besov spaces is the d-dimensional Gaussian white noise W : Q — T¢
supported?

Our main result is that for all p € [1,00) one has
W e B;%Q (T?) almost surely.

Moreover, we show that this is optimal in several ways. In particular, the known results
on Sobolev spaces H*P(T) can easily be derived from our results.

Let us go back to the approach in [I0] to study the (KdV). In order to prove well-
posedness of the (KdV) with a white noise initial condition, a new class of function space
is introduced which is a Fourier-type Besov space denoted by ZA)f,)q(']T) (see Section . An
important step in the proof in [I0] of the invariance of Gaussian white noise for (KdV)
is that Gaussian white noise satisfies W € I;f,m(T) almost surely for all s < —1/p and
all p € [1,00). It is natural to ask what the optimal exponents (s,p,q) are for which
W e IA);,OO(T) almost surely. Our main result here is that for all p € [1,00) one has

Web, 4/P(T) almost surely.

Again this is optimal in several ways.
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After posting this paper on ArXiv, Arpad Bényi and Tadahiro Oh kindly pointed out
that there is some overlap with their paper [I], in which similar techniques are used to
characterize the exponents (s, p,q) for which a Brownian motion on T is in B, ,(T) and
in lA);q('JI‘). In fact, in dimension d = 1 some (but not all) of our results could alternatively
be deduced from theirs.
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2. Preliminaries. We will write a < b if there exists a universal constant C' > 0 such
that a < Cb, and a = b if a < b < a. If the constant C is allowed to depend on some
parameter ¢, we write a <; b and a ~; b instead.

2.1. Besov spaces of periodic functions. Let ¢ € C*(R?) be a fixed nonnegative
function ¢ with support in {t € R?: § < [t| < 2} and which satisfies

> ¢(277t) =1 fort e R\ {0},
JEL
Additionally assume that ¢(x) = 1 for all 271/2 < || < 2/2.
Define the sequence (¢;);>0 in C>°(R%) by
pi(t)=¢(277t) for j=1,2,... and @o(t)=1-> ¢;(t), teR™.
Jjz1
Then all the functions ¢; have compact supports.
Let T = [—m, 7] Let .Z : L*(T%) — ¢%(Z%) denote the Fourier transform, i.e.

(FHk) = fk) = (@m)~ | fl@)e™*"da, feL(T).

The space 2(T%) is the space of complex-valued infinitely differentiable functions
on T?. On 2(T?) one can define the seminorms

[l flla = sup [D“f(x)],

z€eTd

where a = (o, ..., aq) is a multiindex, and in this way 2(T?) is a locally convex space.
Its dual space 2'(T?) is called the space of distributions. In particular, one has g € 2'(T%)
if and only if there is a N € N and a ¢ > 0 such that
Ll <e D 1 lla
la|<N
For details we refer to [I4], Section 3.2]. In particular, recall the following two facts which

we will not need, but are useful to support the intuition.

e Any function f € 2(T?) can be represented as
flx)= Z are™?® in P(TY),
kezd
with (ag)gezae scalars such that

sup (1 + |k])"|ar| < oo for any m € N. (2.1)
kezd

In this case, one has ap = f(k) for each k € Z%. Conversely, if (aj)yeze satisfies
([23), then Y-, 54 ave™ ™ converges in 2(T).
e Any distribution g € 2/(T9) can be represented as
g= Z are™* in 2'(T?),
kezd

with (ag)gezae scalars such that

sup (1 + |k])"™]ag| < oo for some m € N. (2.2)
kezd
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In this case, one has a;, = §(k) for each k € Z9. Conversely, if (ay),cza satisfies
[22), then >, c7a are™® converges in 2'(T).
For a distribution f € @’(Td) let f; € Q(Td) be given by
Z QDJ zkr 17 ] e N.
kezd

By the properties of (¢;);>0 the series in j has only finitely many nonzero terms. Observe
that

fi(@) = @5 % f(x) = (Pj, [) (2.3)
where ¢;(x) = 35y cza j(k)e™ ™ and ¢, (y) = @j(z —y).
DEFINITION 2.1 (Periodic Besov spaces). Let p,q € [1,00]. Let

£330 == (2905 a)

§>0
if ¢ < 00, and

/1

if ¢ = co. The Besov space By ,(T?) is the space of all distributions f € 2'(T?) such that
”f”B* o (Td) < 00.
One can show that the definition of Bj . (T?) does not depend on the choice of ¢.

Moreover, with two different functions ¢, the corresponding norms in B;oo(’ﬂ‘d) are equiv-
alent (see [I4], Section 3.5.1]).

— ST £.
B3 oo (Td) = ?121182 ||f]||LP(Td)

2.2. Vector-valued Gaussian random variables. Let (Q,<,P) be a probability
space. Recall that v : Q — R is a complex standard Gaussian random variable if

Y= rYRe/\/i—" Z’ylm/\/iv

where ygro and 4, are independent real standard Gaussian random variables (see [7,
Chapter 5] for the definition of real Gaussian random variables). Let (7,))_; be a se-
quence of independent complex standard Gaussian. It is easy to check that the distri-

bution (v1,...,7n) is invariant under unitary transformations and 22;1 an7Yn has the

same distribution as ||a|2y1, where ||all2 = (22[:1

/ /
(E’Z Yrln P)l P_ Il zr () (Z |an|2>1 2. (2.4
n>1 n>1

Let K be either R or C. A random variable v : Q@ — K is called a (complez) Gaussian
random variable if v € L?(Q) and E(y) = 0 and ~/(E|y|?>)*/? is a (complex) standard
Gaussian random variable. Note that all our Gaussian random variables are centered by
definition.

|an|2)1/2. In particular,

Let X be a (complex) Banach space. A strongly measurable mapping £ : Q@ — X is
called a (complex) Gaussian random variable if for all z* € X* (£ z*) is a (complex)
Gaussian random variable. Observe that if X is a complex Banach space, then we can
consider X as a real Banach space and denote this by Xg. Let X’ be the dual space of Xg.
One can show that for every function x’ € X’ there exists a unique z* € X* such that
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x' = Re(z*). Moreover, one can define z* : X — C as (z,z*) = (z,2') —i(iz,2’). Now if
¢ : Q) — X is a complex Gaussian random variable, it follows that £ can be viewed as a
real Gaussian random variable with values in Xg. Indeed, for any ' € X', let z* € X*
be as before. Then one has (¢, 2') = Re((£, z*)), and the latter is a real Gaussian random
variable.

From the above discussion one can deduce that all results on real Gaussian random
variables have a complex version. Of particular interest is the weak variance of a complex
Gaussian random variable. Define the complez and real weak variances by

or(€) = sup{(B|(¢,2)[)/? 12’ € X', |la|| < 13,
oc(€) = sup{(B|(¢,2")|*)/? 12" € X*, [la"|| < 1.

LEMMA 2.2. Let £:Q — X be a complex Gaussian. Then
1
02(6) = 5 o3(6).
Proof. Given z* € X* we can write (£,2%) = 27Y2a(y; + iy2) with a > 0 and 1,72

independent standard Gaussian random variables. Then one has E|(£, 2*)|? = a?. Letting

2’ = Re(z*), one has ||z*|| = ||2/|| and E[Re (({,2'))]*> = a?/2. This proves o2(§) <

102(€). To prove the converse let 2’ € X*, and define 2* : X — C as in the discussion

before the lemma. Then z* € X* with Re (z*) = 2/, hence ||z*|| = ||2’||. The first part
1

implies 02(§) > 307 (£), and the result follows. m

The following result follows from immediately from the real setting in [6] and Lemma
It is a crucial ingredient in the proof of our main result Theorem [3.4

PROPOSITION 2.3. Let X be a complex Banach space. Let (€,)n>1 be an X -valued cen-
tered multivariate complexr Gaussian random variables with first moments (my,)n>1 and
complex weak variances (0, )n>1. Let m = sup,,>1 my,,. Then

Esup 1€ < m + 3v200 ((01)n>1)-
n>1

Here peo((an)n>1) denotes the Luxemburg norm in the Orlicz space (€, where © :
R, — Ry is given by
1
0(0)=0 and O(z)=2? exp(—ﬁ) for z > 0.

We refer to [6] and references therein for details. For the purposes below it is sufficient
to recall that (see [0, Example 2.1]) if a,, = @™ with o € [1/2,1), then

pe((an)n>1) ~ v/1og[(1 —a)~']. (2.5)
Moreover, if a,, = o™ with a € (0,1/2), then a,, < 27" and therefore (2.5)) yields
po((an)n>1) < pe((27")n>1) = V/log(2). (2.6)

REMARK 2.4. In the case that the elements (£,),>1 are independent, Esup, > [|€n]| is
equivalent to m + pe((0y)n>1). Moreover, the independence assumption can even be
weakened (see [16]).
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Finally, recall that M > 0 is a median of a centered (complex) Gaussian random
variable £ : Q — X if

B(Jgll < M) 2 1/2 and B(¢] = M) > 1/2.

3. White noise and Besov spaces on T<. Let (Q,.</,P) be a probability space.

DEFINITION 3.1 (White noise). A random variable W : Q — 2'(T9) is a called Gaussian
white noise if

(1) for each f € 2(T?), the random variable w — (f, W(w)) is a complex Gaussian
random variable,
(2) for all f,g € 2(T?) one has

E({f;W)(g: W) = (f,9) 1> (xe)-
If W:Q — 2'(T?) is a Gaussian white noise, then for all f € Z(T%) one has
I W29y = I fllL2(ra)-

Therefore, the mapping f — (f, W) uniquely extends to a bounded linear operator
W : L?(T?) — L%(Q). Moreover, W satisfies

(1) for each f € L2(T%), the random variable W is a complex Gaussian random
variable,
(2) for all f,g € 2(T?) one has

EW(f)W(g)) = (f, g)L2('JT4)'
Indeed, since Z(T?) is dense in L2(T¢), (1) follows from the standard fact that the L?(Q)-
limit of a sequence of complex Gaussian random variables is again a complex Gaussian
random variable, and (2) follows by an approximation argument.
The following lemma is obvious from the properties (1) and (2) and the fact that a
complex Gaussian vector is determined by its covariance structure.

LEMMA 3.2. Assume V,W : Q — Z'(T%) are both Gaussian white noises with correspond-
ing operators V, W : L*(T%) — L?(Q). Then (Vf : f € L*(T?)) and (W] : f € L*(T%))
are identically distributed.

For k € Z%, let e}, : T — C be given by ey (z) = e?*2.
PROPOSITION 3.3. Let (k) peza be a sequence of independent standard complex Gaussian
random variables. Let W : Q — 2'(T?) be defined by W = 3, cpa veex in 2'(T?), i.e
(fW) =3 pepa i f(=k). Then W is a Gaussian white noise.

Proof. By [9, equation (3.7)] there is a set Qy € & with P(Qy) = 1 such that
&= sup el (log(|kl? + 1)) ™"/* = sup sup |yl (log(n? + 1)) % < o
kezd n>0 |k|=n
on . Therefore, for any f € 2(T%) and w € ©y one has

W@ = | > FRm)| < 32 1Rl

keZa kezZd
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@) 3" S (log(k|* + 1)) /1 (=k)|

n>0 keZd

<w)ea Y (log(Ik[ + 1)) P (k] +1)72 < CE(w).

kezd
2| f d 1/2 —2
where ¢3 = supyeza(1 + [k])?|f(—k)| and C = c2 > jcza (log(|k|? + 1)) " “(|k[ + 1)~ Tt
is well-known that ¢ < K37, <5 [ flla for some constant K (see [5 Theorem 3.2.9]).

Therefore, it follows that W(w) € 2'(T) for all w € Q. To see that it is a Gaussian
white noise, note that (f, W) is a complex Gaussian and

E(W Z Z (ve77)f / Zf = (f, )L?(Td u

kezd jeze kezd

THEOREM 3.4. Let W : Q — 2'(T%) be a Gaussian white noise.

(1) For allp € [1,00) one has P(W € B;%Q(']I‘d)) =1
(2) Forallp € [2,00) there exists a constant ¢, 4 such thatIP’(HWHB;%z(W) > cpa) =1.
(3) For any p,q € [1,00] and s < —d/2 one has P(W € Bj ,(T%)) =
(4) For any p € [1,00] and q € [1,00) one has P(W € B,;é‘,‘/?(ﬂrd)) =0.
(5) For any p,q € [1,00] and s > —d/2 one has P(W € Bj ,(T%)) = 0.
(6) One has P(W € Bx'22(T%)) = 0.

REMARK 3.5. Some remarks on the theorem:

(i) We do not know whether (2) holds for p € [1,2) as well. Applying the Hausdorff-
Young inequality instead of Parseval’s identity is not sufficient here.
(i) The proof shows that one can take cg g = V/23%/2 — 2-3d/2 in (2).

Proof of Theorem[3.4} Before we present the proof we reduce to a particular choice of the
Gaussian white noise. Let W = >, /1 yxex in 2'(T4). Then by Proposition Wis a
Gaussian white noise. Let V : Q — 2/(T%) be an arbitrary white noise, and let W and V

be as in Lemma Fix p,q € [1,00]. As in (2.3)) let
WJ(I) = <<F7j,acaW> = W(‘P]‘,x) and VJ(I) = <<Pj,:cvv> = V(‘Pj,:c)v jeN. (3.1)

Now one has

Wli5s e = [(27°W;)z0lles (e (nay) and

(3.2)
IVIBs , (re) = 12°V;) 20/l ea (Lo (v

It follows from and Lemmathat (W;)j>0 and (V;);50 (Vj(z): 2z € T, j € N)
and (W;(z) : « € T4 j € N) are P-identically distributed. Therefore, since each V;
and W; is continuous, an approximation with Riemann sums shows that for all n € N,
(2j5||WjHLp(Td));‘:1 and (2jSHV}||Lp(Td))§‘:1 are identically P-distributed. Therefore,

H(stHWj”Lp(Td))?:lHé% = H(QjS”VjHLP(W))?:IH@L in P-distribution.
By (3.2) and monotone convergence one obtains that

Wi

B; q(Td) = ||VHB; q(Td) in P-distribution.
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The above shows that below it suffices to consider the situation where

W= Z yrer in 2'(TY).
kezd
(1): For each j > 0, one has

z) = @j(k)me™*, jeN.
kezd

To show that W € B;%Q(’]I‘d) note that

—jd/2
E”W”B;%Q(Td) :E(j;EQ gd/ ||WjHLp(’]I‘d)) < Q.

To estimate the latter note that by Proposition one has
E(sup2 2 W, | 1ore)) < sup2 I EIW ooy +3v2p0((03),20). (33
J> J>

By (2.4) one has

BIW, liscroy < I3l ) = ([ 1950 oy )"

= (27)P ||y | 1o Q)(Z o (k)ex| ) ||71||LP(Q)(27T)d/p(Z |ij(k)|2)1/2.
kezd kezd
Since pj(k) = 0 if |k| > 29+1 it follows that E||Wj||Lp(Td) < ||ryl||Lp(Q)(27.r)d/p2jd/2 and
therefore
jggTjd/QEIIWmem) < 7l o oy (2) 7.

To estimate the complex weak variances o; of 2-7d/ 2W;, let p’ € (1, 00| be such that
+ ﬁ = 1. Note that for any f € 2(T¢) with || f|| ;. (1¢) < 1 one has

E(W;. 1) =B Y oikrmf (0| = X lePIfRP < X 1F-R)P

kezd kezd |k|<2i+1

1
p

First assume p € [2,00). In that case by Holder’s inequality with % = % + % and the
Hausdorff-Young inequality we obtain

> |f(*k)|2)1/2 - 2(j+3)d/r(z |f(7k)|p>1/p

|| <2i+1 kezd
< QT f]| sy < 2T — gD o2
It follows that o; < 23%/22=(+3)4/P if p € [2,00) and therefore by (2.5) and (2:6)),
pe((0)521) < 22747 pg ((279%7) ;50) < oo
Next assume p € [1,2). Then by Holder’s inequality one has
. 1/2
> 1 ERE) T < ey < Calflw ey = Cas
k| <2741

where Cy = (27)'/P~1/2. Therefore, o; < C4,27742 if 1 < p < 2, and again pe((d;);>1) <
oo. Now (1) follows from (3.3]).
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(T4)
from below by a constant. For each j > 1 let

(2): Since HWHde/z(Td) > (27r)d/p_d/2||WHde/2 it suffices to estimate the ran-
P, 00 2,00

dom variable ||W||B—d/2(Td)
2,00

Sj={kezt 20712 < ||| < 20+1/2],

Then ¢; =1 on S;, and the (S;);>1 are pairwise disjoint. By Parseval’s identity one has

—jd jd 2 id 2
1w ||L2(1rd) =277 Z s (k) vel” > 277 Z Ve |”
kezd keS;
We claim that lim; oo 279937, co |k|* = 24/2 — 2=4/2 almost surely. Indeed, one can
write
27N P =277 > P27 Y
Kes, k] <201/2 (k| <2012
— 93d/29—(j+3/2)d Z Iy |2 = 9—3d/29—(j+1/2)d Z a2,
k| <2 +1/2 k| <2172

and by the strong law of large numbers the latter converges almost surely to 23¢/2—2-3d/2
Therefore, we can conclude that

IW Il 5172 oy = S 2792 Wy | 2y > /25072 — 23472,
o0 jz0

almost surely.

(3): This is clear from the fact that B;%Q(’]I‘d) C B;’q('ﬂ‘d) for any s < —d/2.

(4): From the proof of (2) one immediately sees that for all p € [2,00) and ¢ € [1, 0),
Wl 512 = oo almost surely. Indeed, let N € &/ be the set of all w € § such that

IW @)l 53720
In (2) we have seen that lim; .o 279%2||W;]|1s(ra) > cpa on a set Qg of probability 1.
Therefore, N C Q\ Qo, and hence N is a zero set.

If p = 0o and ¢ € [1,00), then taking any 2 < r < co one obtains that HW”B},C/?,Z(W) >
Cd”W”BTl,’/qQ(’]I‘d)

If1 <p<2andqe€[l,oc0) we cannot use (2) and we need to argue in a different
way. Fix integers n > m > 0. For each w € Q one has HW(w)”B,ﬁ,/f(Td) < oo if and only
if (2_jd/2Wj(w))3?°;1 has a finite £¢(L?(T?))-norm. The latter is equivalent to the con-
vergence of >, §;j(w), where §;(w) = 27744/2|| W (w )||Lp tay- Therefore, by a standard
0/1 law argument (see [7, Corollary 3.14]) it follows that IP’(||W||B;{‘12 (Tay < 00) is either
0 or 1. Assume ]P’(||WHBl/2(W) < 00) = 1. Then one can show that (2 _]d/zW) ©,isa
vector-valued Gaussian random variable. In particular, it has finite r-th moment for all
r < oo (see [9 Corollary 3.2]). By the Kahane-Khintchine inequality (see [9, Corollary
3.2]) and (1) we obtain

EIW511%, )" = EIW I )7 = Ity 207 (3 Les (B
kezd

(X lemr) = (1) o

kezd kES;

(T4)
< o0. Then for all w € N one has lim;_, Z*jd/2||Wj(w)||Lp(Td) = 0.

= 0o almost surely.

1/2

Since
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it follows that

E”(Q jdq/QW )_7 1ng Lp(Td)) ZQ jdq/z]E”W HLp('[rd
7>0

Zpa Im ||%P(Q) (27T)dq/p Z g~da/20ida/2,
Jj=0
Clearly, the latter series is infinite and this gives the desired contradiction.

(5): Fix s > —d/2. Since B} (T%) C Bj . (T?%) C B;f/Q(Td) for all p,q € [1,00],
it suffices to show that W ¢ B_d/ *(T?) almost surely. However, this has already been
proved in (4) and therefore (5) follows.

(6): Since each W; is continuous, one has

IWillzee(moy = 1Wallomay = IW5(0)] = 27992 37 s (k)
kezd
Since the supports of (y3;);>1 are disjoint one has that (W3;(0)),;>1 are independent
complex Gaussian random variables with values in R. Moreover,

—3j 2 — 2 2
2SRy, (0)[2 = 2731 3 Jips; (k) > 2794 > 12>e,
kezad 23j—1/2§‘k|523j+1/2

where c¢ is independent of j. Therefore,

W% a2 gy = 8D 27| Wi [ ey > sup 275 W5 (0) 2 = oo,
oo i1 i1

almost surely. m

The following result characterizes for which exponents (s, p,q) one has W € B, q(']I‘d)
almost surely.

COROLLARY 3.6. Let W : Q — 2'(T%) be a Gaussian white noise. For exponents
(s,p,q) € R x [1,00] x [1,00] the following are equivalent:

(1) W e B; (T almost surely.
(2) (s <—d/2 and p,q € [1,00]) or (s =—d/2 and p € [1,00) and g = o0).
Proof. This follows from Theorem L]
Another consequence concerns the tail behavior of [|[W|| ;-a/2 (T4)"
COROLLARY 3.7. Let W : Q — 2'(R™) be a white noise and let p € [1,00). there are
constants M,o > 0 depending on p such that for every r >0

P(]HWHB;%QW) — M| >r) < exp(—r®/(40?)). (3.4)
Here for M one can take the median of ||W||de/2(1rd) and for o one can take
p,00
234/20-31p if p € [2, o0);
o =
(2m)*P=42, ifpe1,2).
In particular, this result implies that W satisfies
1
Eexp<@||WHQB;%2(W)) < 00 (3.5)
for all & > o (see [9, Corollary 3.2]).
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Proof. By Theorem we can define a mapping Z :  — B;%Q(Td) by Z(w) = W(w).
As in [6l Theorem 5.1] one can show that Z defined by Z(w) = W(w) is a Gaussian
random variable in the sense of [9]. However, note that Z does not take values in a
separable subset of By 2/%(T?) (see [9, p. 60-61]). Now follows from [9, Lemma 3.1].
Moreover, the choice for o follows from the fact that one can take ¢ = max; o;, where
o; is as in the proof of Theorem Note that in [9 Lemma 3.1] one has to take into
account Lemma [2.2] because we consider the complex situation and this gives a number

4 instead of 2 in the exponential function. m

As a consequence one has the following result for the periodic Sobolev spaces. For the
definition of the Sobolev space H*P(T¢) we refer to [14, Chapter 3].

COROLLARY 3.8. Let W be a Gaussian white noise on T¢. Then
(1) For allp € [1,00) and s < —d/2 one has P(W € H*?(T%)) = 1.
(2) For all p € [1,00] one has P(W € H~%/2P(T4)) = 0.
Proof. (1): This follows from Theorem (3) and (L.1).
(2): This follows from Theorem [3.4] (4) and (1.1]). =

It would be interesting to know whether the results of this section are valid for Gaus-
sian white noises on domains D C R? and on Riemannian manifolds.

4. White noise and Fourier—Besov spaces on T?. Let p,q € [1,00] and s € R. For
a distribution f € 2(T%) consider the following Fourier—Besov norm

Wi o= (20 3 o))

7=>0 21 -1<|k|<29+1

Moreover, if p = oo or ¢ = 0o, then one needs to use a supremum norm in this expression.
DEFINITION 4.1. The Fourier—Besov space l;;’q(Td) is the space of all f € 2(T?) for
which Hle;;’q(Td) < 0.

Let ¢ and (¢;) >0 be asin Section The following is an equivalent norm on lA);’q (T9):

1/q
Ilf

o = (S (3 Gk + 17les 0 far) ")

j=0 kezd

where if p = 0o or ¢ = 00 one has to use the supremum norm again. To show the
equivalence of the norms observe that the estimate || f

bg ,(T%) <|If
the fact that |p;(k)] < 1 and ¢j(k) = 0 for all k € Z? which satisfy |k| > 2! or
|k| < 2771, For the converse direction, we let ¢_; = 0. Recall that for all j > 0 and
k € Z% such that 27-1 < |k| < 27t! one has 3"} _ | ¢jym(k) = 1. Therefore, by the
triangle inequality in ¢9(¢P) and elementary calculations one sees that

0.0 (D DN (R _isoj+m<k>\p|f<k>|p)q”’)

520 25-1<|k|<20+1

ST 0 eenmriimr) )

m=—1j>0 2i-1<|k|<2i+1

by, (T4) follows from

1/q

I1f

IN
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< 3 (S Ok + 07 lesemPli) ™)

m=—1 j>0 kezd
q/p\1/q

<332 (D2 (el + 1 les P R)F) ) =31

j>0 kezd

0T

From the above discussion and the Hausdorff-Young inequality one obtains the fol-
lowing result which has also been observed in [I0] for ¢ = oco.

PROPOSITION 4.2. Let s € R and g € [1,00]. Let p € [2,00] and let p' € [1,2] satisfy
% + 1% = 1. Then B;,Vq('ﬂ“d) — bzyq('ﬂ‘d), Moreover, if p = 2, then B;Vq(']I‘d) = b§7q(']I‘d)
with equivalent norms.

Let
. . Y
Uy o= (29 X 1iwr)™)",
' j>0 29 1< k| <2941

where one has to use the supremum norm if ¢ = oo. Then this also defines an equivalent
norm on by . (T%). Indeed, this follows from the fact that for 271 < |k| < 27+ one has

.27 < (k[ +1)<4-20.

In the calculations below we use this equivalent norm.

In [I0] it has been proved that the Gaussian white noise as defined in Lemma
satisfies W € b5 (T) almost surely as soon as sp < —1. The following result is an
extension of this result to the sharp exponent and to arbitrary dimensions d.

THEOREM 4.3. Let W : Q — 2'(T9) be a Gaussian white noise.

(1) For allp € [1,00) one has ]P’(W € ngép(']l‘d)) =1.

(2) For all p € [1,00) there exists a constant ¢, 4 such that ]P’([W]E;iép(w) > cpa) = 1.
(3) For all p,q € [1,00] and s < —d/p one has P(W € l;f,’q(’IFd)) =1.

(4) For any p € [1,00] and q € [1,00) one has IP’(W € B;,Z/p(ﬂrd)) =0

(5) For any p,q € [1,00] and s > —d/p one has ]P’(W IS l;f,’q(Td)) =0.

(6) One has P(W € b3, . (T%)) = 0.

Proof. As in the proof of Theorem [3.4] it is sufficient to consider a Gaussian white noise

W as defined in Proposition [3.3] This follows again from Lemma and the identity
W(k’) = W(ek).

1
For p < oo let w;,, = (ZQFISWSQJ-H 17[P) /P Then one has
(Wi, cray = 127 wjples-
(1): By the above we can write

(W] = sup 27jd/pwj7p.

21
b () J>0
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Noting that

2w, lP =270 Nyl
27 -1< k<27 +1
=207 0D N P — 27dpm G Ny,
|k|<2d+1 |k|<29-1
from the strong law of large numbers we see that

lim 279w, [P = (2% — 27 HE|y, |,
J—00

almost surely. Therefore, sup,>, 2-7d/ Pw; p, < 0o almost surely and this proves (1).

(2): It follows from the proof of (1) that [W]
surely, and this proves the result.

(3): This follows from (1) in the same way as in Theorem

(4): This follows from (2) in the same way as in Theorem [3.4} This time p € [1,2)
does not have to be considered separately, because (2) holds for all p € [1, ).

(5): This follows from (2) in the same way as in Theorem

(6): In this case one has

(T) = (2d - 2_d)||’}’1||Lp(Q) almost

by iLP

Wls (pay=sup ~ sup |ye| = sup |y.
P >0 20-1<|k|<2i+1 kezd

It is well-known that the latter is infinite almost surely (see [d equation (3.7)]). m

The following result characterizes for which exponents (s, p, ¢) one has W € B;7q(Td)
almost surely.

COROLLARY 4.4. Let W : Q — 2'(T¢9) be a Gaussian white noise. For exponents
(s,p,q) € R x [1,00] x [1,00] the following are equivalent:

(1) We Bg’q('ﬂ‘d) almost surely.

(2) (s<—d/p and p,q € [1,00]) or (s =—d/p and p € [1,00) and g = c0).
Proof. This follows from Theorem .

Another consequence concerns the tail behavior of ||[W{[;-a/» (Td)"
p,00

COROLLARY 4.5. Let W : Q — 2'(R™) be a white noise and let p € [1,00). There are
constants M,o > 0 depending on p such that for every r >0
P(’||W||B;7iép(w) — M| >r) <exp(—r?/(40?)). (4.1)

Here for M one can take the median of |W|;- and for o one can take
D,

&P (1)
1, if p € [2,00);
g =
23d/p=3d/2 " if € [1,2].

Again this result implies that W satisfies the exponential integrability result in (3.5])

with B, &/%(T?) replaced by by 2P (T?).

Proof. This can be proved in the same way as in Corollary 3.7 To calculate the ¢;’s in
this case, let G : Q — (P(Z?) be given by G; = 2’jd/pz‘k|§2j+1 Yetg, where (ug)peza
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is the standard unit basis of £#(Z%). Then for all a = (ag)peze in €7 (Z%) with norm < 1,
one has that

E[(Gj,a)> =277 Y Jal®

k| <2541

Hence, if p € [2,00), then |lal[s2za) < [lallp(zay < 1, and therefore, o; < 2-3d/p Tt
follows that ¢ = max; o; < 1. If p € [1,2), then by Hélder’s inequality

Sl Y2 QD pg= G2 g, < 9GH9pg-(9a/2

k| <241

Hence o; < 234/P2=(+3)4/2 and it follows that o = max; o; < 23¢/P2734/2 g

References

[1] A. Bényi, T. Oh, Modulation spaces, Wiener amalgam spaces, and Brownian motions,
Adv. Math. 228 (2011), 2943-2981.

[2] J. Bourgain, Periodic nonlinear Schrodinger equation and invariant measures, Comm.
Math. Phys. 166 (1994), 1-26.

[3]  Z. Ciesielski, Orlicz spaces, spline systems, and Brownian motion, Constr. Approx. 9
(1993), 191-208.

[4] Z. Ciesielski, G. Kerkyacharian, B. Roynette, Quelques espaces fonctionnels associés a des
processus gaussiens, Studia Math. 107 (1993), 171-204.

[5] L. Grafakos, Classical Fourier Analysis, 2nd ed., Grad. Texts Math. 249, Springer, New
York, 2008.

[6] T.P.Hytonen, M. C. Veraar, On Besov regularity of Brownian motions in infinite dimen-
stons, Probab. Math. Statist. 28 (2008), 143-162.

[7]  O. Kallenberg, Foundations of Modern Probability, 2nd ed., Prob. Appl. (N.Y.), Springer,
2002.

[8] S. Kusuoka, The support property of a Gaussian white noise and its applications, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 387-400.

[9] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Isoperimetry and Processes,
Ergeb. Math. Grenzgeb. (3) 23, Springer, Berlin, 1991.

[10]] T. Oh, Invariance of the white noise for KdV, Comm. Math. Phys. 292 (2009), 217-236.

[11]] J. Quastel, B. Valké, KdV preserves white noise, Comm. Math. Phys. 277 (2008), 707-714.

[12]] M. Reed, L. Rosen, Support properties of the free measure for Boson fields, Comm. Math.
Phys. 36 (1974), 123-132.

[13] B. Roynette, Mouvement brownien et espaces de Besov, Stochastics Stochastics Rep. 43
(1993), 221-260.

[14] H.-J. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Math. An-
wendungen Phys. Tech. 42, Akademische Verlagsgesellschaft Geest & Portig K.-G.,
Leipzig, 1987.

[15] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland
Math. Library 18, North-Holland Publ., Amsterdam, 1978.

[16]] M. C. Veraar, Correlation inequalities and applications to vector-valued Gaussian random
variables and fractional Brownian motion, Potential Anal. 30 (2009), 341-370.


http://dx.doi.org/10.1016/j.aim.2011.07.023
http://dx.doi.org/10.1007/BF02099299
http://dx.doi.org/10.1007/BF01198003
http://dx.doi.org/10.1007/s00220-009-0856-7
http://dx.doi.org/10.1007/s00220-007-0372-6
http://dx.doi.org/10.1007/BF01646326
http://dx.doi.org/10.1007/s11118-009-9118-8

	Introduction
	Preliminaries
	Besov spaces of periodic functions
	Vector-valued Gaussian random variables

	White noise and Besov spaces on Td
	White noise and Fourier-Besov spaces on Td

