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Abstract. Four basic results of Marcinkiewicz are presented in summability theory. We show
that setting out from these theorems many mathematicians have reached several nice results for
trigonometric, Walsh– and Ciesielski–Fourier series.

1. Introduction. In this survey paper we will consider Marcinkiewicz’s work in summa-
bility theory and its impact up to the present days. We present four of his fundamental
theorems and several (recent) extensions and generalizations. We investigate convergence
and summations of one- and multi-dimensional trigonometric, Walsh– and Ciesielski–
Fourier series. First we give the corresponding results in the one-dimensional case and
then the generalizations for higher dimensions. Two types of summability methods will be
investigated, the Fejér and Cesàro or (C,α) methods. The Fejér summation is a special
case of the Cesàro method, (C, 1) is exactly the Fejér method.

In the multi-dimensional case three types of convergence and maximal operators are
considered, the restricted (convergence over the diagonal or over a cone), the unrestricted
(convergence over Nd) and the Marcinkiewicz-type convergence. Marcinkiewicz proved
that the Fejér means σnf of a two-dimensional integrable function f converge a.e. to
f as n → ∞ over a cone. Another theorem of Marcinkiewicz says that the so called
Marcinkiewicz means (i.e. the arithmetic means of the cubic partial sums taken on the
diagonal) of a two-dimensional function f ∈ L logL converge a.e. to f . We introduce
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classical and martingale Hardy spaces Hp(X) (where X = T or X = [0, 1)) and prove
that the maximal operators of the summability means are bounded from Hp(X) to Lp(X)
whenever p > p0 for some p0 < 1. The exact value of p0, which depends on the type of
the Fourier series and on the dimension, is given in each case. For p = 1 we obtain a weak
type inequality by interpolation, which implies by the density theorem of Marcinkiewicz
the a.e. convergence of the summability means just mentioned. The a.e. convergence and
the weak type inequality are proved usually with the help of a Calderón–Zygmund type
decomposition lemma. However, this lemma does not work in higher dimensions. Our
method, that can be applied in higher dimensions, too, can be regarded as a new method
to prove the a.e. convergence and weak type inequalities.

Finally, the strong summability result of Marcinkiewicz and Zygmund is generalized
for multi-dimensional trigonometric, Walsh– and Ciesielski–Fourier series. This paper was
the base of my talk given at the Józef Marcinkiewicz Centenary Conference, June 2010,
in Poznań (Poland).

2. Trigonometric and Walsh system. We consider either the torus X = T or the
unit interval X = [0, 1) with the Lebesgue measure λ. We briefly write Lp(X) instead of
the real Lp(X, λ) space equipped with the norm (or quasinorm) ‖f‖p := (

∫
X |f |

p dλ)1/p

(0 < p ≤ ∞). The weak Lp(X) space Lp,∞(X) (0 < p < ∞) consists of all measurable
functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞.

Note that Lp,∞ is a quasi-normed space. It is easy to see that

Lp(X) ⊂ Lp,∞(X) and ‖ · ‖p,∞ ≤ ‖ · ‖p
for each 0 < p <∞.

The Rademacher functions are defined by

r(x) :=

{
1, if x ∈ [0, 1

2 );
−1, if x ∈ [ 12 , 1),

and
rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The product system generated by the Rademacher functions is the one-dimensional Walsh
system:

wn :=
∞∏
k=0

rk
nk (n ∈ N),

where

n =
∞∑
k=0

nk2k (0 ≤ nk < 2).

In what follows let φn(x) denote the trigonometric system e2πın·x defined on T or the
Walsh system φn(x) := wn(x) defined on the unit interval.

In this paper the constants Cp depend only on p and may denote different constants
in different contexts.
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3. Partial sums of one-dimensional Fourier series. The Fourier coefficients and
partial sums of the Fourier series of f ∈ L1(X) (X = T or X = [0, 1)) are defined by

f̂(k) :=
∫

X
fφk dλ, snf :=

∑
|k|≤n

f̂(k)φk (n ∈ N).

The definition of the Fourier coefficients can be extended easily to distributions and
martingales.

One of the deepest results in harmonic analysis is Carleson’s result, i.e. the partial
sums of the Fourier series converge a.e. to f ∈ Lp(X) (1 < p <∞) (see Carleson [6], Hunt
[25] for trigonometric series and Billard [4], Sjölin [47], Schipp [42] for Walsh series).

Theorem 3.1. If f ∈ Lp(X) for some 1 < p <∞, then∥∥sup
n∈N
|snf |

∥∥
p
≤ Cp‖f‖p

and
lim
n→∞

snf = f a.e. and in Lp-norm.

4. Summability of one-dimensional Fourier series. The preceding theorem does
not hold, if p = 1, however it can be generalized for p = 1 with the help of some
summability methods. Summability is intensively studied in the literature, we refer at
this time only for the books Stein and Weiss [50], Butzer and Nessel [5], Trigub and
Belinsky [51], Grafakos [23] and Weisz [59] and the references therein. Here we consider
the Fejér and Cesàro (or (C,α)) means defined by

σnf :=
1
n

n−1∑
k=0

skf =
∑
|j|≤n

(
1− |j|

n

)
f̂(j)φj

and

σαnf :=
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kskf =

1
Aαn−1

∑
|j|≤n

Aαn−1−|j|f̂(j)φj ,

where

Aαk :=
(
k + α

k

)
=

(α+ 1)(α+ 2) . . . (α+ k)
k!

.

It is known (Zygmund [66]) that

Aαk ∼ kα (k ∈ N).

If α = 1 then we get the Fejér means. We will suppose always that 0 < α ≤ 1. The case
α > 1 can be led back to α = 1. The maximal Cesàro operator

σα∗ f := sup
n∈N
|σαnf |

is of weak type (1, 1) (see Zygmund [66] for the trigonometric system and Schipp [40] and
Weisz [56] for the Walsh system), i.e.
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Theorem 4.1. If 0 < α ≤ 1 and f ∈ L1(X), then

sup
ρ>0

ρλ(σα∗ f > ρ) ≤ C‖f‖1.

This weak type (1, 1) inequality and the density argument of Marcinkiewicz and Zyg-
mund [30] imply the well known theorem of Fejér [12] and Lebesgue [26] with α = 1.
Riesz [33] proved it for other α’s and Fine [13], Schipp [40] and Weisz [56] for the Walsh
system.

Corollary 4.2. If 0 < α ≤ 1 and f ∈ L1(X), then

lim
n→∞

σαnf = f a.e.

The next density theorem of Marcinkiewicz and Zygmund [30] is fundamental and
similar to the Banach–Steinhaus theorem about the norm convergence of operators.

Theorem 4.3. Suppose that X is a normed space of measurable functions and X0 ⊂ X

is dense in X. Let T and Tn (n ∈ N) be bounded linear operators from X to Lp for some
1 ≤ p <∞ such that for each f ∈ X0, Tf = limn→∞ Tnf a.e. If

sup
ρ>0

ρλ(Tf > ρ)1/p ≤ C‖f‖X (f ∈ X)

and
sup
ρ>0

ρλ(T ∗f > ρ)1/p ≤ C‖f‖X (f ∈ X),

where
T ∗f := sup

n∈N
|Tnf | (f ∈ X),

then
Tf = lim

n→∞
Tnf a.e.

for every f ∈ X.

In Corollary 4.2 we apply this theorem for T = id, Tn = σαn , p = 1 and X = L1(X).
The dense set X0 is the set of the trigonometric or Walsh polynomials. It is easy to see
that Corollary 4.2 holds for f ∈ X0.

5. Multi-dimensional partial sums. Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Yd
be its Cartesian product Y × . . . × Y taken with itself d times. The Lp(Xd) spaces are
defined in the usual way. For x = (x1, . . . , xd) ∈ Rd and u = (u1, . . . , ud) ∈ Rd set

u · x :=
d∑
k=1

ukxk, ‖x‖2 :=
( d∑
k=1

|xk|2
)1/2

, |x| := sup
k=1,...,d

|xk|.

The d-dimensional trigonometric and Walsh system is introduced as a Kronecker
product by

φk(x) := φk1(x1) · · ·φkd(xd),

where k = (k1, . . . , kd) ∈ Nd, x = (x1, . . . , xd) ∈ Xd. The multi-dimensional Fourier
coefficients, rectangular partial sums and cubic partial sums of the Fourier series of
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f ∈ L1(Xd) are defined by

f̂(k) :=
∫

Xd
fφk dλ (k ∈ Nd), (1)

snf :=
∑
|k1|≤n1

. . .
∑
|kd|≤nd

f̂(k)φk (n ∈ Nd) (2)

and
snf(x) :=

∑
k∈Zd,|k|≤n

f̂(k)φk(x) (n ∈ N).

It is easy to see that

lim
n→∞

snf = f in Lp-norm as n→∞,

whenever f ∈ Lp(Xd) (1 < p < ∞). The analogue of Carleson’s theorem does not hold
in higher dimensions for the rectangular partial sums. However, it is true for the cubic
partial sums (Fefferman [11] and Grafakos [23] for the trigonometric system and Móricz
[31] for the Walsh system).

Theorem 5.1. If f ∈ Lp(Xd) for some 1 < p < ∞, then for the trigonometric Fourier
series ∥∥sup

n∈N
|snf |

∥∥
p
≤ Cp‖f‖p

and
lim
n→∞

snf = f a.e.

The same result holds for the Walsh–Fourier series if p = 2.

It is an open question, whether this theorem holds in the last case for p 6= 2 (cf.
Schipp, Wade, Simon and Pál [45]).

6. Summability of multi-dimensional Fourier series and Hardy spaces. The
summability results can be generalized for higher dimensions in several ways. We con-
sider three methods, which were introduced/investigated by Marcinkiewicz. He proved
fundamental results in this topic. The Fejér and Cesàro means of f are defined by

σnf :=
1∏d
i=1 ni

n1−1∑
k1=1

. . .

nd−1∑
kd=1

skf =
∑
|j1|≤n1

. . .
∑
|jd|≤nd

d∏
i=1

(
1− |ji|

ni

)
f̂(j)φj ,

and

σαnf :=
1∏d

i=1A
α
ni−1

n1−1∑
k1=1

. . .

nd−1∑
kd=1

( d∏
i=1

Aα−1
ni−1−ki

)
skf

=
1∏d

i=1A
α
ni−1

∑
|j1|≤n1

. . .
∑
|jd|≤nd

( d∏
i=1

Aαni−1−|ji|

)
f̂(j)φj ,
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respectively. For a given τ ≥ 0 the restricted and non-restricted maximal operators are
defined by

σα�f := sup
2−τ≤ni/nj≤2τ

i,j=1,...,d

|σαnf |, σα∗ f := sup
n∈Nd

|σαnf |.

Note that we can define the Cesàro means and operators also for a vector α = (α1, . . . , αd),
but for simplicity we assume that α ∈ (0, 1]. The next result follows easily from the
corresponding one-dimensional result by iteration.

Theorem 6.1. If 0 < α ≤ 1 and 1 < p ≤ ∞, then

‖σα∗ f‖p ≤ Cp‖f‖p (f ∈ Lp(Xd)). (3)

Moreover, for all f ∈ Lp(Xd) (1 < p <∞),

lim
n→∞

σαnf = f a.e. and in Lp-norm. (4)

The Lp-norm convergence holds also if p = 1. Here n → ∞ means that
min(n1, . . . , nd) → ∞ (the Pringsheim’s sense of convergence). Inequality (3) does not
hold for p ≤ 1. However, with the help of Hardy spaces we extend it to p ≤ 1.

6.1. Hardy spaces. We give a common definition of the periodic and dyadic Hardy
spaces. Let us define the periodic and dyadic d-dimensional Poisson kernel by

PTd
t (x) :=

∑
m∈Zd

e−t‖m‖2e2πım·x (x ∈ Td, t > 0)

and

P
[0,1)d

t (x) := 2nd1[0,2−n)×...×[0,2−n)(x) if n ≤ t < n+ 1 (x ∈ [0, 1)d).

A distribution or martingale f is in the periodic or dyadic Hardy space H�
p (Xd),

Hp(Xd) and Hi
p(Xd) (0 < p ≤ ∞, i = 1, . . . , d) if

‖f‖H�
p (Xd) :=

∥∥sup
0<t
|f ∗ PXd

t |
∥∥
p
<∞, (5)

‖f‖Hp(Xd) :=
∥∥ sup
tk>0,k=1,...,d

|(f ∗ (PX
t1 ⊗ . . .⊗ P

X
td

))|
∥∥
p
<∞, (6)

and

‖f‖Hip(Xd) :=
∥∥ sup
tk>0,k=1,...,d;k 6=i

|(f ∗ (PX
t1 ⊗ . . .⊗ P

X
ti−1
⊗ PX

ti+1
⊗ . . .⊗ PX

td
))|
∥∥
p
<∞,

respectively. It is known (see e.g. Stein [48] or Weisz [59]) that

H�
p (Xd) ∼ Hp(Xd) ∼ Hi

p(Xd) ∼ Lp(Xd) (1 < p ≤ ∞).

Moreover, each Hardy space has an atomic decomposition, in other words every function
from the Hardy space can be decomposed into the sum of simple functions, the so called
atoms (e.g. Stein [48], Lu [27] and Weisz [59]).

6.2. Restricted summability. In this subsection we investigate the operator σα� and
the convergence of σαnf over the cone {n ∈ Nd : 2−τ ≤ ni/nj ≤ 2τ ; i, j = 1, . . . , d}, where
τ ≥ 0 is fixed.
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Theorem 6.2. If 0 < α ≤ 1 and p0(X) < p ≤ ∞, then

‖σα�f‖p ≤ Cp‖f‖H�
p

(f ∈ H�
p (Xd)), (7)

where p0([0, 1)) = 1/(α+ 1) and p0(T) = max{d/(d+ 1), 1/(α+ 1)}.

This theorem is due to the author [55, 59]. By the atomic decomposition (7) has to
be proved for atoms, only. It is known that p0(X) is the best possible constant, in other
words, if p ≤ p0(X) then σα� is not bounded anymore (see Stein, Taibleson and Weiss
[49], Simon and Weisz [46], Goginava [21]).

Theorem 6.3. The operator σα� is not bounded from H�
p (Xd) to Lp(Xd) if 0 < p ≤ p0(X).

However, in the one-dimensional case the operator σα� satisfies a weak type inequality,
i.e. it is bounded from H�

p (X) to weak Lp(X) for the endpoint p = p0(X) = 1/(α + 1)
(see Weisz [46, 59] for the result and Goginava [21] for the counterexample).

Theorem 6.4. If f ∈ H�
1/(α+1)(X), then

‖σα�f‖1/(α+1),∞ = sup
ρ>0

ρλ(σα�f > ρ)α+1 ≤ C‖f‖H�
1/(α+1)

.

This inequality does not hold for higher dimensions.

Of course Theorem 6.4 is not true for p < 1/(α+ 1), because then (7) would hold for
p < 1/(α+ 1) by interpolation.

The next corollary can be obtained from Theorem 6.2 by interpolation. For the basic
definitions and theorems on interpolation theory see Bergh and Löfström [3] and Bennett
and Sharpley [2] or Weisz [52, 59]. The interpolation of martingale Hardy spaces was
worked out in [52]. The method of Theorem 6.2 can be regarded also as an alternative tool
to the Calderón–Zygmund decomposition lemma for proving weak type (1, 1) inequalities.
In many cases this theorem can be applied better and more simply than the Calderón–
Zygmund decomposition lemma.

Corollary 6.5. If 0 < α ≤ 1 and f ∈ L1(Xd), then

sup
ρ>0

ρλ(σα�f > ρ) ≤ C‖f‖1.

The set of the trigonometric and Walsh polynomials is dense in L1(Xd), so Corollary
6.5 and Theorem 4.3 imply the convergence of the Cesàro means over a cone.

Corollary 6.6. If 0 < α ≤ 1 and f ∈ L1(Xd), then

σαnf → f a.e.

as n→∞ and 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

The first version of this result is due to Marcinkiewicz and Zygmund [30, 66]. They
proved Corollary 6.6 for trigonometric Fourier series and for α = 1, which have motivated
further researches about the restricted summability. The general version of this corollary
is due to the author [53, 55], for Fejér means and for two-dimensional functions it can
also be found in Gát [14].
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The following results are known ([59]) for the norm convergence of σαnf , which gen-
eralize (4).

Theorem 6.7. If 0 < α ≤ 1 and p0(X) < p <∞, then

‖σαnf‖H�
p
≤ Cp‖f‖H�

p
(f ∈ H�

p (Xd))

whenever 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

Corollary 6.8. If 0 < α ≤ 1, p0(X) < p <∞ and f ∈ H�
p (Xd), then

σαnf → f in H�
p -norm

as n→∞ and 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

6.3. Unrestricted summability. Now we deal with the operator σα∗ and the conver-
gence of σαnf as n → ∞ in the Prigsheim’s sense, i.e. min(n1, . . . , nd) → ∞. The next
result is due to the author ([54, 59]).

Theorem 6.9. If 0 < α ≤ 1 and 1/(α+ 1) < p ≤ ∞, then

‖σα∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp(Xd)).

As Goginava [21] proved, 1/(α+ 1) is the best possible constant.

Theorem 6.10. The operator σα∗ is bounded from Hp(Xd) neither to Lp(Xd) nor to weak
Lp(Xd) if 0 < p ≤ 1/(α+ 1).

By interpolation we get here a.e. convergence for functions from the mixed Hardy
spaces Hi

1(Xd) instead of L1(Xd). One can say that Hi
1(Xd) plays the role of the integrable

functions in some sense. Of course, in the one-dimensional case Hi
1(X) = L1(X).

Corollary 6.11. If 0 < α ≤ 1 and f ∈ Hi
1(Xd) for some i = 1, . . . , d, then

sup
ρ>0

ρλ(σα∗ f > ρ) ≤ C‖f‖Hi1 .

The density of the set of the trigonometric and Walsh polynomials in Hi
1(Xd) and

Theorem 4.3 imply the next unrestricted convergence.

Corollary 6.12. If 0 < α ≤ 1 and f ∈ Hi
1(Xd) (i = 1, . . . , d), then

lim
n→∞

σαnf = f a.e.

Recall thatHi
1(Xd) ⊃ L(logL)d−1(Xd) for all i = 1, . . . , d, where log+ u = 1{u>1} log u

and f ∈ L(logL)d−1(Xd) means that∥∥|f |(log+ |f |)d−1
∥∥

1
<∞.

Obviously,
L1(Xd) ⊃ L(logL)d−1(Xd) ⊃ Lp(Xd) (1 < p ≤ ∞).

Gát [15, 16] proved for the Fejér means that Corollary 6.12 does not hold for all
integrable functions.

Theorem 6.13. The a.e. convergence of Corollary 6.12 is not true for all f ∈ L1(Xd).

Another generalization of (4) reads as follows.
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Theorem 6.14. If 0 < α ≤ 1 and 1/(α+ 1) < p <∞, then

‖σαnf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp(Xd), n ∈ Nd).

Corollary 6.15. If 0 < α ≤ 1, 1/(α+ 1) < p <∞ and f ∈ Hp(Xd), then

lim
n→∞

σαnf = f in Hp-norm.

6.4. Marcinkiewicz summability. With the arithmetic means of the cubic partial
sums skf Marcinkiewicz introduced a third summability method of multi-dimensional
Fourier series. The Marcinkiewicz–Fejér and Marcinkiewicz–Cesàro means of f are defined
by

σnf(x) =
1
n

n−1∑
k=0

skf(x) =
∑

j∈Zd,|j|≤n

(
1− |j|

n

)
f̂(j)φj(x)

and

σαnf :=
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kskf =

1
Aαn−1

∑
j∈Zd,|j|≤n

Aαn−1−|j|f̂(j)φj ,

where |j| := supk=1,...,d |jk|. The maximal Marcinkiewicz–Cesàro operator is defined by

σα∗ f := sup
n∈N
|σαnf |.

Theorem 6.16. If 0 < α ≤ 1 and d/(d+ α) < p ≤ ∞, then

‖σα∗ f‖p ≤ Cp‖f‖H�
p

(f ∈ H�
p (Xd))

and for f ∈ H�
d/(d+α)(X

d),

‖σα∗ f‖d/(d+α),∞ = sup
ρ>0

ρλ(σα∗ f > ρ)(d+α)/d ≤ C‖f‖H�
d/(d+α)

.

This theorem was proved by Oswald [32] for Fourier transforms and for Riesz means,
by the author for multi-dimensional Fourier series and for two-dimensional Walsh–Fourier
series [57, 62] and by Goginava [17, 18, 19, 20] for multi-dimensional Walsh–Fourier series.

Oswald and Goginava verified also that d/(d+ α) is the best possible constant.

Theorem 6.17. The operator σα∗ (0 < α ≤ 1) is not bounded from H�
p (Xd) to Lp(Xd) if

0 < p ≤ d/(d+ α).

The weak type (1, 1) inequality and the almost everywhere convergence of the Marcin-
kiewicz–Cesàro means is obtained again by interpolation and by Theorem 4.3.

Corollary 6.18. If 0 < α ≤ 1 and f ∈ L1(Xd), then

sup
ρ>0

ρλ(σα∗ f > ρ) ≤ C‖f‖1.

Corollary 6.19. If 0 < α ≤ 1 and f ∈ L1(Xd), then

lim
n→∞

σαnf = f a.e.

This corollary was verified first by Marcinkiewicz [29] for two-dimensional Fourier
series, for f ∈ L logL(T2) and α = 1. Later Zhizhiashvili [63, 64] extended this result to
all f ∈ L1(T2) and 0 < α ≤ 1, D’yachenko [10] and Weisz [62] to all f ∈ L1(Td). The
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result for Walsh–Fourier series is due to the author [57] and to Goginava [17, 18, 19, 20].
The next two results can be found in [57, 62].

Theorem 6.20. If 0 < α ≤ 1 and d/(d+ α) < p ≤ ∞, then

‖σαnf‖H�
p
≤ Cp‖f‖H�

p
(f ∈ H�

p (Xd)).

Corollary 6.21. If 0 < α ≤ 1, d/(d+ α) < p <∞ and f ∈ H�
p (Xd), then

lim
n→∞

σαnf = f in H�
p -norm.

7. Ciesielski system. Besides the trigonometric and Walsh system the next results will
be true also for Ciesielski systems, that is a generalization of the Walsh system. First we
are going to introduce the spline systems as in Ciesielski [9]. Let us denote by D the
differentiation operator and define the integration operators

Gf(t) :=
∫ t

0

f dλ, Hf(t) :=
∫ 1

t

f dλ.

Define the χn, n = 1, 2, . . . , Haar system by χ1 := 1 and

χ2n+k(x) :=


2n/2, if x ∈ ((2k − 2)2−n−1, (2k − 1)2−n−1)

−2n/2, if x ∈ ((2k − 1)2−n−1, (2k)2−n−1)

0, otherwise

for n, k ∈ N, 0 < k ≤ 2n, x ∈ [0, 1).
Let m ≥ −1 be a fixed integer. Applying the Schmidt orthonormalization to the

linearly independent functions

1, t, . . . , tm+1, Gm+1χn(t), n ≥ 2,

we get the spline system (f (m)
n , n ≥ −m) of order m. For 0 ≤ k ≤ m+ 1 and n ≥ k −m

define the splines
f (m,k)
n := Dkf (m)

n , g(m,k)
n := Hkf (m)

n

of order (m, k). Let us normalize these functions and introduce a more unified notation,

h(m,k)
n :=

{
f

(m,k)
n ‖f (m,k)

n ‖−1
2 for 0 ≤ k ≤ m+ 1

g
(m,−k)
n ‖f (m,−k)

n ‖2 for 0 ≤ −k ≤ m+ 1.

We get the Haar system if m = −1, k = 0 and the Franklin system if m = 0, k = 0. The
systems (h(m,k)

i , i ≥ |k| −m) and (h(m,−k)
j , j ≥ |k| −m) are biorthogonal, i.e.

(h(m,k)
i , h

(m,−k)
j ) =

{
1, if i = j

0, if i 6= j,

where (f, g) denotes the usual scalar product
∫
[0,1)

fg dλ.

We define the Ciesielski system (c(m,k)n , n ≥ |k|−m−1) in the same way as the Walsh
system arises from the Haar system, namely,

c(m,k)n := h
(m,k)
n+1 (n = |k| −m− 1, . . . , 0)
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and

c
(m,k)
2ν+i :=

2ν∑
j=1

A
(ν)
i+1,jh

(m,k)
2ν+j (0 ≤ i ≤ 2ν − 1),

where
A

(ν)
i,j = A

(ν)
j,i = 2−ν/2wi−1

(2j − 1
2ν+1

)
(see Ciesielski [7] or Schipp, Wade, Simon, Pál [45]). We get immediately that

h
(m,k)
2ν+j :=

2ν∑
i=1

A
(ν)
i+1,jc

(m,k)
2ν+i (1 ≤ j ≤ 2ν − 1).

Then
c(−1,0)
n = wn (n ∈ N),

is the usual Walsh system. The system (c(m,k)n ) is uniformly bounded and it is biorthogonal
to (c(m,−k)n ) whenever |k| ≤ m+ 1 and m ≥ −1 (see Ciesielski [7]).

Now the Fourier coefficients and partial sums of the Ciesielski–Fourier series of
f ∈ L1[0, 1) are defined by

f̂(i) :=
∫

[0,1)

fc
(m,k)
i dλ, snf :=

n∑
i=|k|−m−1

f̂(i)c(m,−k)i (n ∈ N).

8. One-dimensional strong summability. Some of the preceding results are proved
for Ciesielski systems as well (cf. [59]). For example, Carleson’s theorem (Theorem 3.1)
holds (see Schipp [41] and Ciesielski [8, 9]). The author ([58]) proved the Fejér summa-
bility, i.e. the analogues of Theorem 4.1 and Corollary 4.2 for α = 1.

Let φn be the trigonometric, Walsh or Ciesielski system. Corollary 4.2 for α = 1 can
be reformulated as

lim
n→∞

1
n

n−1∑
k=0

(
skf(x)− f(x)

)
= 0 a.e. x ∈ X (f ∈ L1(X)).

Taking absolute value in the last sum we obtain the strong summability. More generally,
we consider the convergence of the means( 1

n

n−1∑
k=0

∣∣skf(x)− f(x)
∣∣r)1/r

.

Strong summability was considered first by Hardy and Littlewood [24] for trigonomet-
ric Fourier series. They verified that these means tend to 0 a.e. as n → ∞, whenever
f ∈ Lp(T) (1 < p < ∞). The generalization of Marcinkiewicz [28] is fundamental, he
proved the a.e. convergence for all integrable functions and for r = 2. Later Zygmund
[65] extended this result to all r > 0 (see also Bary [1]). For Walsh–Fourier series the
strong summability was shown by Schipp [39, 43] for r = 2, by Rodin [36, 34] for r > 0
and for BMO means and for Ciesielski–Fourier series by the author [60] for 0 < r ≤ 2.
If the strong summability holds for an index r then it holds also for all r′ < r. Now we
formulate these results.
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Let

S
(r)
∗ f := sup

n≥1

( 1
n

n−1∑
k=0

|skf |r
)1/r

be the strong maximal operator, where 0 < r <∞.

Theorem 8.1. If 1 < p ≤ ∞, then

‖S(r)
∗ f‖p ≤ Cp‖f‖p (f ∈ Lp(X))

and
sup
ρ>0

ρ λ(S(r)
∗ f > ρ) ≤ C‖f‖1 (f ∈ L1(X)).

The strong maximal operator is not bounded from H1 to L1 (see Schipp and Si-
mon [44]). The weak type (1, 1) inequality in Theorem 8.1 and the density argument of
Theorem 4.3 imply

Corollary 8.2. If 0 < r <∞ and f ∈ L1(X), then

lim
n→∞

( 1
n

n−1∑
k=0

∣∣skf(x)− f(x)
∣∣r)1/r

= 0 a.e. x ∈ X.

Note that the results hold for Ciesielski–Fourier series, whenever 0 < r ≤ 2.

9. More-dimensional strong summability. The multi-dimensional Fejér summabil-
ity, i.e. the analogue of Corollary 6.12 holds for Ciesielski–Fourier series as well with
α = 1. We can rewrite it as

lim
n→∞

1∏n
i=1 ni

n1−1∑
k1=0

. . .

nd−1∑
kd=0

(
skf(x)− f(x)

)
= 0 a.e. x ∈ Xd,

whenever f ∈ L(logL)d−1(Xd).
Now the strong maximal operator is defined by

S
(r)
∗ f := sup

n∈Nd

(
1∏d
i=1 ni

n1−1∑
k1=0

. . .

nd−1∑
kd=0

|skf |r
)1/r

.

The multi-dimensional strong summability was shown by Gogoladze [22] and Rodin
[35, 37] for trigonometric Fourier series, by Rodin [38] for Walsh–Fourier series and by
the author ([61]) for Ciesielski–Fourier series (with 0 < r ≤ 2).

Theorem 9.1. If 1 < p ≤ ∞, then

‖S(r)
∗ f‖p ≤ Cp‖f‖p (f ∈ Lp(Xd))

and for f ∈ L(logL)d−1(Xd),

sup
ρ>0

ρλ(S(r)
∗ f > ρ) ≤ C + C

∥∥|f |(log+ |f |)d−1
∥∥

1
.

Theorem 9.2. If 0 < r <∞ and f ∈ L(logL)d−1(Xd), then

lim
n→∞

(
1∏d
i=1 ni

n1−1∑
k1=0

. . .

nd−1∑
kd=0

∣∣skf(x)− f(x)
∣∣r)1/r

= 0 a.e. x ∈ Xd.
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